Measurements of the total and differential Higgs boson production cross sections combining the \(H \to \gamma\gamma \) and \(H \to ZZ^* \to 4\ell \) decay channels at \(\sqrt{s} = 8 \) TeV with the ATLAS detector

DOI
10.1103/PhysRevLett.115.091801

Publication date
2015

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):
Aad, G., et al., U., Aben, R., Angelozzi, I., Beemster, L. J., Bentvelsen, S., Berge, D., Bobbink, G. J., Bos, K., Brenner, L., Butti, P., Castelli, A., Colijn, A. P., de Jong, P., de Nooij, L., Deigaard, I., Deluca, C., Dhalliwal, S., Ferrari, P., ... Williams, S. (2015). Measurements of the total and differential Higgs boson production cross sections combining the \(H \to \gamma\gamma \) and \(H \to ZZ^* \to 4\ell \) decay channels at \(\sqrt{s} = 8 \) TeV with the ATLAS detector. Physical Review Letters, 115, Article 091801. https://doi.org/10.1103/PhysRevLett.115.091801

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ Decay Channels at $\sqrt{s} = 8$ TeV with the ATLAS Detector

G. Aad et al.∗
(Received 23 April 2015; published 27 August 2015)

Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb$^{-1}$ of pp collisions produced by the Large Hadron Collider (LHC) [1] at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. Cross sections are obtained from measured $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be $\sigma_{pp-H} = 33.0 \pm 5.3$ (stat) ± 1.6 (syst) pb. The measurements are compared to state-of-the-art predictions.

DOI: 10.1103/PhysRevLett.115.091801 PACS numbers: 14.80.Bn, 13.85.Lg, 13.85.Qk

This Letter presents measurements of the total and differential cross sections of inclusive Higgs boson production using 20.3 fb$^{-1}$ of pp collisions produced by the Large Hadron Collider (LHC) [1] at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector [2]. The measured cross sections probe the properties of the Higgs boson and can be directly compared to the theoretical modeling of different Higgs boson production mechanisms, such as the most recent gluon fusion (ggF) QCD calculations. They can also be used to constrain new physics scenarios, for example using the effective field theory framework as proposed in Refs. [3–7]. The analysis uses event yields measured in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decays and detector efficiencies, both determined as described in Refs. [8,9]. The statistical uncertainties on the Higgs boson signal yields in both channels are larger than the systematic uncertainties, while the total uncertainties in the two channels are similar. Combining the analyses improves the precision of the cross-section measurements by up to 40%, and by 25%–30% on average, with respect to the corresponding measurements in the most precise individual channel.

Distributions of the differential $pp \rightarrow H$ cross sections are reported as a function of the transverse momentum p_T^H and the rapidity $|y^H|$ of the Higgs boson, the jet multiplicity N_{jets}, and the transverse momentum of the leading jet p_T^{1j}. The observables p_T^H and $|y^H|$ describe the kinematics of the Higgs boson. They are sensitive to perturbative QCD modeling in ggF production, which is the dominant Higgs boson production mechanism in the Standard Model (SM). The $|y^H|$ distribution furthermore offers a clean probe of the gluon parton distribution function (PDF) and will play a role in future PDF fits. The N_{jets} and p_T^{1j} observables probe the theoretical modeling of partonic radiation in ggF production as well as the overall rate and modeling of jets in vector-boson fusion (VBF) and associated Higgs boson production (VH and $t\bar{t}H$). Jets produced in VBF, VH, and $t\bar{t}H$ processes tend to have higher transverse momenta than those produced via ggF production; however, the sensitivity to measuring these contributions is weak with the current amount of data.

Cross sections are extracted using a combined likelihood built from the signal yields in the $H \rightarrow \gamma\gamma$ channel and the data and background yields in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel, as well as detector efficiencies, fiducial acceptances and SM branching fractions [10]. A complementary approach, using a separate likelihood, measures the shape of the differential distributions by imposing a unity normalization constraint, which removes the implicit SM assumption on the branching fractions. For the extraction of the signal yields and the corrections of detector efficiencies, it is assumed that the signal in both channels is due to a narrow resonance with a mass $m_H = 125.36 \pm 0.41$ GeV as measured by the ATLAS Collaboration [11]. The signal yield in the $H \rightarrow \gamma\gamma$ channel is obtained from fits to the diphoton mass spectra [8], and from the background subtracted data yield in a $m_{4\ell}$ mass window of 118 to 129 GeV for the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel [9]. The fiducial acceptance in both channels [8,9] is derived using a set of Monte Carlo (MC) event generators. POWHEG-BOX [12–14], interfaced with PYTHIA8 [15] for showering, is used to generate ggF and VBF events, while PYTHIA8 is used to simulate VH and
associated production with top quarks \((t\bar{t}H)\) and \(b\)-quarks \((b\bar{b}H)\). The fiducial acceptance for events with \(|y^H| < 1.2\) is approximately 72% for \(H \to \gamma\gamma\), and 55%–59% for \(H \to ZZ^* \to 4\ell\). For higher \(|y^H|\), the acceptance decreases to 35%–38% in both channels. The fiducial acceptance is more constant as a function of the other variables and is in the range 56%–62% for the \(H \to \gamma\gamma\) channel and 44%–53% for the \(H \to ZZ^* \to 4\ell\) channel [16].

After correcting the differential cross sections and normalized shapes for fiducial acceptance and branching fractions, the corresponding measurements in both channels are found to be in good agreement with each other; \(p^v\) values obtained from \(\chi^2\) compatibility tests are in the range 56%–99% [16].

In the binned maximum-likelihood fit, the statistical uncertainty of the \(H \to \gamma\gamma\) event yield is modeled using a Gaussian distribution, while the event yield in the \(H \to ZZ^* \to 4\ell\) channel follows a Poisson distribution due to the small sample size. Experimental and theoretical systematic uncertainties affecting the signal yields, detector efficiencies, branching fractions, and fiducial acceptance corrections are taken into account in the likelihood as constrained nuisance parameters. Nuisance parameters describing the same uncertainty sources are treated as fully correlated between bins and channels. Systematic uncertainties on the \(H \to \gamma\gamma\) and \(H \to ZZ^* \to 4\ell\) background estimates and efficiency correction factors, as well as the uncertainty on the integrated luminosity, are described in detail in Refs. [8,9]. The branching fraction uncertainty due to the assumed quark masses and other theoretical uncertainties are evaluated following the recommendations of Ref. [17], considering uncertainty correlations between the \(H \to \gamma\gamma\) and \(H \to ZZ^* \to 4\ell\) decay channels. Uncertainties on the acceptance correction related to the choice of PDF set are evaluated by taking the envelope of the sum in quadratures of eigenvector variations of the baseline (CT10 [18]) and the central values of alternative (MSTW2008NLO [19] and NNPDF2.3 [20]) PDF sets. Uncertainties on the acceptance correction associated with missing higher-order corrections are evaluated by varying the renormalization and factorization scales coherently and individually by factors of 0.5 and 2 from their nominal values, and by reweighting the \(p_T^H\) distribution from POWHEG-BOX to the prediction of the HRES 2.2 calculation [21,22]. The envelope of the maximum deviation of the combined scale variations and the \(p_T^H\) reweighting is used as the systematic variation. To account for the uncertainty in the mass measurement, the Higgs boson mass is varied by \(\pm 0.4\) GeV. To assess the systematic uncertainty due to the assumption of SM cross-section fractions of the Higgs boson production modes, the VBF and \(VH\) fractions are varied by factors of 0.5 and 2 from the SM prediction and the fraction of \(t\bar{t}H\) is varied by factors of 0 and 5. These factors are based on current experimental bounds [23–27].

The total uncertainties on the acceptance correction range from 1% to 6%, depending on the channel, distribution and bin.

The total systematic uncertainties on the combined differential cross sections range from 4% to 12%, depending on the distribution and bin. For the kinematic variables \(p_T^H\) and \(|y^H|\), the largest systematic uncertainties on the differential cross sections are due to the luminosity and the background estimates in both channels. For the jet variables \(N_{jets}\) and \(p_T^j\), the largest systematic uncertainties on the differential cross sections are due to the jet energy scale and resolution. In the shape combination, the normalization uncertainties including luminosity, branching fractions, and efficiency uncertainties do not apply. Statistical uncertainties dominate all resulting distributions, ranging from 23% to 75%.

The total \(pp \to H\) cross section is determined in the \(H \to \gamma\gamma\) channel to be \(31.4 \pm 7.2\) (stat) \(\pm 1.6\) (syst) pb and in the \(H \to ZZ^* \to 4\ell\) channel to be \(35.0 \pm 8.4\) (stat) \(\pm 1.8\) (syst) pb. Combining the analyses yields \(\sigma_{pp \to H} = 33.0 \pm 5.3\) (stat) \(\pm 1.6\) (syst) pb. Figure 1 presents a comparison of these measurements with two ggF predictions to which contributions from other relevant Higgs boson production modes (VBF, \(VH\), \(t\bar{t}H\), \(bbH\)) are added using cross sections and uncertainties from Ref. [10]. The LHC-XS ggF prediction, recommended in Ref. [10], is accurate to next-to-next-to-leading-order (NNLO) in QCD and utilizes threshold resummation accurate to next-to-next-to-leading logarithms (NNLL). A significant effort has been undertaken by the theory community to provide ggF cross sections beyond this precision through various improvements in the perturbative calculations [28–33]. Recently, the ADDFGHLM group has provided a fixed-order calculation accurate to next-to-next-to-next-to-leading order (N\(^3\)LO) [34–37]. A PDF uncertainty
of $+7.5\%$ is assigned to the LHC-XS prediction, derived following the recommendations in Ref. [17]. This uncertainty is increased by $+0.3\%$ for the ADDFGHLM prediction corresponding to the change in uncertainty of the MSTW2008nnlo PDF set when changing the calculation from NNLO to N3LO. The PDF uncertainty is treated as uncorrelated with the QCD scale uncertainty.

The central value of the measured total cross section is larger than the SM predictions presented in Fig. 1. A likelihood-ratio test statistic is used to quantify the agreement, using a bifurcated Gaussian to model the asymmetric theory uncertainties. The resulting p values are 5.5% and 9.0% for the agreement between data and the predictions from LHC-XS and ADDFGHLM, respectively. The ratio of the measured cross section to the LHC-XS prediction is higher than the results presented in Refs. [23,24,38], which use an event categorization based on the expected SM yields in the different Higgs boson production modes.

The larger Higgs event yield observed in data motivates measurements of differential cross sections to investigate if the excess is localized to specific kinematic regions. Figure 2 shows the comparison of the combined cross sections in different inclusive and exclusive jet multiplicity bins with state-of-the-art predictions, including NLO-accurate multi-leg (ML) merged ggF MC event generators (further details are given in Table I). Jets are reconstructed using the anti-k_t algorithm [39] with a radius parameter $R = 0.4$ [40], and are required to have $p_T > 30$ GeV and $|y| < 4.4$. Simulated particle-level jets are built from all particles with $cT > 10$ mm excluding neutrinos, electrons, and muons that do not originate from hadronic decays.

PhotonS are excluded from jet-finding if they lie inside a cone of radius $\Delta R < 0.1$ of an electron or muon, and neither the photon nor lepton originate from a hadron decay. To allow comparisons with the unfolded measurements, the analytical calculations are corrected for effects of hadronization and multiple particle interactions. These correction factors and their associated uncertainties are obtained using the PYTHIA8 and HERWIG [41] MC event generators with different tunes [42,43]. The total cross sections from the ML merged predictions are lower than from fully inclusive NNLO + N3LO calculations. However, for $N_{\text{jets}} \geq 1$, the MC predictions formally have NLO accuracy, which is the same as the analytical calculations. Contributions from other relevant Higgs boson production modes are generated using POWHEG for VBF and PYTHIA8 for VH, tH, and bbH, and are scaled to the cross sections in Ref. [10]. Uncertainties are assigned to all MC predictions from QCD scale and PDF variations. The ML-merged ggF predictions also have uncertainties due to the choice of merging scale. The SHERPA uncertainties further include resummation scale variations. The measured cross sections are higher than the predictions for all measured jet multiplicities. The poorest
FIG. 3 (color online). Differential cross sections (left) and normalized cross-section shapes (right) for inclusive Higgs boson production measured by combining the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels. The measured variables are the Higgs boson transverse momentum p_T^H (top) and its rapidity $|y^H|$ (middle), and the transverse momentum of the leading jet p_T^j (bottom). The 0–30 GeV bin of the p_T^j distributions corresponds to events without jets above 30 GeV. Various theoretical predictions are presented, using the same bin widths as the measurement.
agreement between data and predictions can be found in the inclusive and exclusive 1-jet bins, with local p values ranging between 0.1% and 3.6%. Normalizing the total expected cross section to the data results in an improved agreement for these bins, with local p values ranging from 4%–29%.

The combined differential cross sections as a function of p_T^H, $|y^H|$, and p_T^{jj} are shown in Fig. 3 (left). The measured p_T^H and $|y^H|$ distributions are compared to the HRes calculation and the p_T^{jj} measurement is compared to STWZ and JetVHeto predictions. Figure 3 (right) shows the comparisons of the normalized shapes to predictions from the MC event generators NNLOPS, SHERPA 2.1.1, and MG5_aMC@NLO, as well as the HRES calculation.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. LHC, as well as the support staff from our institutions.

We acknowledge the support of ANPCyT, Argentina; IFIN-HH and INFN, Italy; AEI and DURSI, Spain; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

16. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.115.091801 for more details and numerical values of the acceptance factors, tables with the measured cross sections and their associated covariance matrices, and additional comparisons both between the Higgs decay channels as well as between data and theory predictions.

(Abacol) Collaboration

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, AB, Canada
4Department of Physics, Ankara University, Ankara, Turkey
5Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
6LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
7High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
8Department of Physics, University of Arizona, Tucson, Arizona, USA
9Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
10Physics Departments, University of Athens, Athens, Greece
11Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
12Institut de Physique, University of Belgrade, Belgrade, Serbia
13Department of Physics and Technology, University of Bergen, Bergen, Norway
14Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
15Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 Department of Physics, Bogazici University, Istanbul, Turkey
19c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 INFN Sezione di Bologna, Italy
20b Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, Massachusetts, USA
23 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24 Universidad Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24b Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24c Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
26a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
26b National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
26c University Politehnica Bucharest, Bucharest, Romania
26d West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32a Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
32b Departamento de Física, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
33 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
33a Department of Modern Physics, University of Science and Technology of China, Anhui, China
33b School of Physics, Shandong University, Shandong, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, New York, USA
36 Niels Bohr Institute, University of Copenhagen, København, Denmark
37 INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
38a AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38b Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, Texas, USA
41 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, North Carolina, USA
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 INFN Sezione di Genova, Italy
50a Dipartimento di Fisica, Università di Genova, Genova, Italy
51 E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France