Measurements of the total and differential Higgs boson production cross sections combining the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels at $\sqrt{s} = 8$ TeV with the ATLAS detector


DOI
10.1103/PhysRevLett.115.091801

Publication date
2015

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):
Measurements of the Total and Differential Higgs Boson Production
Cross Sections Combining the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ Decay Channels
at $\sqrt{s} = 8$ TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 23 April 2015; published 27 August 2015)

Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb$^{-1}$ of $pp$ collisions produced by the Large Hadron Collider (LHC) [1] at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. Cross sections are obtained from measured $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be $\sigma_{pp-H} = 33.0 \pm 5.3$ (stat) $\pm 1.6$ (syst) pb. The measurements are compared to state-of-the-art predictions.

DOI: 10.1103/PhysRevLett.115.091801

This Letter presents measurements of the total and differential cross sections of inclusive Higgs boson production using 20.3 fb$^{-1}$ of $pp$ collisions produced by the Large Hadron Collider (LHC) [1] at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector [2]. The measured cross sections probe the properties of the Higgs boson and can be directly compared to the theoretical modeling of different Higgs boson production mechanisms, such as the most recent gluon fusion (ggF) QCD calculations. They can also be used to constrain new physics scenarios, for example using the effective field theory framework as proposed in Refs. [3–7]. The analysis uses event yields measured in the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decays and detector efficiencies, both determined as described in Refs. [8,9]. The statistical uncertainties on the Higgs boson signal yields in both channels are larger than the systematic uncertainties, while the total uncertainties in the two channels are similar. Combining the analyses improves the precision of the cross-section measurements by up to 40%, and by 25%–30% on average, with respect to the corresponding measurements in the most precise individual channel.

Distributions of the differential $pp \rightarrow H$ cross sections are reported as a function of the transverse momentum $p_T^H$ and the rapidity $|y^H|$ of the Higgs boson, the jet multiplicity $N_{jets}$, and the transverse momentum of the leading jet $p_T^{1j}$. The observables $p_T^H$ and $|y^H|$ describe the kinematics of the Higgs boson. They are sensitive to perturbative QCD modeling in ggF production, which is the dominant Higgs boson production mechanism in the Standard Model (SM). The $|y^H|$ distribution furthermore offers a clean probe of the gluon parton distribution function (PDF) and will play a role in future PDF fits. The $N_{jets}$ and $p_T^{1j}$ observables probe the theoretical modeling of partonic radiation in ggF production as well as the overall rate and modeling of jets in vector-boson fusion (VBF) and associated Higgs boson production ($VH$ and $t\bar{t}H$). Jets produced in VBF, $VH$, and $t\bar{t}H$ processes tend to have higher transverse momenta than those produced via ggF production; however, the sensitivity to measuring these contributions is weak with the current amount of data.

Cross sections are extracted using a combined likelihood built from the signal yields in the $H \rightarrow \gamma \gamma$ channel and the data and background yields in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel, as well as detector efficiencies, fiducial acceptances and SM branching fractions [10]. A complementary approach, using a separate likelihood, measures the shape of the differential distributions by imposing a unity normalization constraint, which removes the implicit SM assumption on the branching fractions. For the extraction of the signal yields and the corrections of detector efficiencies, it is assumed that the signal in both channels is due to a narrow resonance with a mass $m_H = 123.56 \pm 0.41$ GeV as measured by the ATLAS Collaboration [11]. The signal yield in the $H \rightarrow \gamma \gamma$ channel is obtained from fits to the diphoton mass spectra [8], and from the background subtracted data yield in a $m_\ell\ell$ mass window of 118 to 129 GeV for the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel [9]. The fiducial acceptance in both channels [8,9] is derived using a set of Monte Carlo (MC) event generators. POWHEG-BOX [12–14], interfaced with PYTHIA8 [15] for showering, is used to generate ggF and VBF events, while PYTHIA8 is used to simulate $VH$ and

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
associated production with top quarks ($t\bar{t}H$) and $b$-quarks ($bbH$). The fiducial acceptance for events with $|y^{H}| < 1.2$ is approximately 72% for $H \to \gamma\gamma$, and 55%–59% for $H \to ZZ^* \to 4\ell$. For higher $|y^{H}|$, the acceptance decreases to 35%–38% in both channels. The fiducial acceptance is more constant as a function of the other variables and is in the range 56%–62% for the $H \to \gamma\gamma$ channel and 44%–53% for the $H \to ZZ^* \to 4\ell$ channel [16].

After correcting the differential cross sections and normalized shapes for fiducial acceptance and branching fractions, the corresponding measurements in both channels are found to be in good agreement with each other; $p$ values obtained from $\chi^2$ compatibility tests are in the range 56%–99% [16].

In the binned maximum-likelihood fit, the statistical uncertainty of the $H \to \gamma\gamma$ event yield is modeled using a Gaussian distribution, while the event yield in the $H \to ZZ^* \to 4\ell$ channel follows a Poisson distribution due to the small sample size. Experimental and theoretical systematic uncertainties affecting the signal yields, detector efficiencies, branching fractions, and fiducial acceptance corrections are taken into account in the likelihood as constrained nuisance parameters. Nuisance parameters describing the same uncertainty sources are treated as fully correlated between bins and channels. Systematic uncertainties on the $H \to \gamma\gamma$ and $H \to ZZ^* \to 4\ell$ background estimates and efficiency correction factors, as well as the uncertainty on the integrated luminosity, are described in detail in Refs. [8,9]. The branching fraction uncertainty due to the assumed quark masses and other theoretical uncertainties are evaluated following the recommendations of Ref. [17], considering uncertainty correlations between the $H \to \gamma\gamma$ and $H \to ZZ^* \to 4\ell$ decay channels. Uncertainties on the acceptance correction related to the choice of PDF set are evaluated by taking the envelope of the sum in quadratures of eigenvector variations of the baseline (CT10 [18]) and the central values of alternative (MSTW2008NLO [19] and NNPDF2.3 [20]) PDF sets. Uncertainties on the acceptance correction associated with missing higher-order corrections are evaluated by varying the renormalization and factorization scales coherently and individually by factors of 0.5 and 2 from their nominal values, and by reweighting the $p_T^{H}$ distribution from POWHEG-BOX to the prediction of the HRES 2.2 calculation [21,22]. The envelope of the maximum deviation of the combined scale variations and the $p_T^{H}$ reweighting is used as the systematic variation. To account for the uncertainty in the mass measurement, the Higgs boson mass is varied by ±0.4 GeV. To assess the systematic uncertainty due to the assumption of SM cross-section fractions of the Higgs boson production modes, the VBF and $VH$ fractions are varied by factors of 0.5 and 2 from the SM prediction and the fraction of $t\bar{t}H$ is varied by factors of 0 and 5. These factors are based on current experimental bounds [23–27]. The total uncertainties on the acceptance correction range from 1% to 6%, depending on the channel, distribution and bin.

The total systematic uncertainties on the combined differential cross sections range from 4% to 12%, depending on the distribution and bin. For the kinematic variables $p_T^{H}$ and $|y^{H}|$, the largest systematic uncertainties on the differential cross sections are due to the luminosity and the background estimates in both channels. For the jet variables $N_{jets}$ and $p_T^{jet}$, the largest systematic uncertainties on the differential cross sections are due to the jet energy scale and resolution. In the shape combination, the normalization uncertainties including luminosity, branching fractions, and efficiency uncertainties do not apply. Statistical uncertainties dominate all resulting distributions, ranging from 23% to 75%.

The total $pp \to H$ cross section is determined in the $H \to \gamma\gamma$ channel to be $31.4 \pm 7.2$ (stat) $\pm 1.6$ (syst) pb and in the $H \to ZZ^* \to 4\ell$ channel to be $35.0 \pm 8.4$ (stat) $\pm 1.8$ (syst) pb. Combining the analyses yields $\sigma_{pp\to H} = 33.0 \pm 5.3$ (stat) $\pm 1.6$ (syst) pb. Figure 1 presents a comparison of these measurements with two ggF predictions to which contributions from other relevant Higgs boson production modes (VBF, $VH$, $t\bar{t}H$, $bbH$) are added using cross sections and uncertainties from Ref. [10]. The LHC-XS ggF prediction, recommended in Ref. [10], is accurate to next-to-next-to-leading order (NNLO) in QCD and utilizes threshold resummation accurate to next-to-next-to-leading logarithms (NNLL). A significant effort has been undertaken by the theory community to provide ggF cross sections beyond this precision through various improvements in the perturbative calculations [28–33]. Recently, the ADDFGHLM group has provided a fixed-order calculation accurate to next-to-next-to-leading order (N$^3$LO) [34–37]. A PDF uncertainty
Jets are reconstructed using the anti-\(k_t\) algorithm [39] with a radius parameter \(R = 0.4\) [40], and are required to have \(p_T > 30\) GeV and \(|y| < 4.4\). Simulated particle-level jets are built from all particles with \(cT > 10\) mm excluding neutrinos, electrons, and muons that do not originate from hadronic decays.

TABLE I. Summary of the ggF predictions used in the comparison with the measured cross sections. The second column states the order in QCD perturbation theory and which threshold resummation is applied, if any. Further details are provided in the footnotes. All predictions are for \(m_H = 125.4\) GeV and \(\sqrt{s} = 8\) TeV.

<table>
<thead>
<tr>
<th>Monte Carlo event generators</th>
<th>ggF predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHERPA 2.1.1 [49,50]</td>
<td>(H + 0, 1, 2) jets (\oplus NLO^{ij})</td>
</tr>
<tr>
<td>MG5_aMC@NLO [51,52]</td>
<td>(H + 0, 1, 2) jets (\oplus NLO^{i,kl})</td>
</tr>
<tr>
<td>POWHEG NNLOPS [53,54]</td>
<td>(NNLO^{2,ij}<em>{\Theta}/NLO^{2,ij}</em>{\Theta})</td>
</tr>
</tbody>
</table>

\(a\)Considers b- (and c-) quark masses in the \(gg \rightarrow H\) loop.
\(b\)Includes electroweak corrections.
\(c\)Based on MSTW2008nnlo\([19]\) (\(\alpha_s\) from PDF set).
\(d\)Uses \(\pi^2\)-resummed \(gg \rightarrow H\) form factor.
\(e\)NNLO refers to the total cross section.
\(f\)Based on the CT10nnlo PDF set.
\(g\)In the notation of Ref. [28], this corresponds to NNLL’.
\(h\)Includes 1-jet resummation included at NLL’ + NLO.
\(i\)Based on the CT10nlo PDF set.
\(j\)Uses MEPS@NLO method and CKKW merging scheme [55–57].
\(k\)Software version 2.2.1, NLO merged using FxFx scheme [52].
\(l\)Interfaced with PYTHIA8 for parton showering.
\(m\)Uses MinLO method and \(\gamma^H\) reweighting to HNNLO [54,58,59].

Photons are excluded from jet-finding if they lie inside a cone of radius \(\Delta R < 0.1\) of an electron or muon, and neither the photon nor lepton originate from a hadron decay. To allow comparisons with the unfolded measurements, the analytical calculations are corrected for effects of hadronization and multiple particle interactions. These correction factors and their associated uncertainties are obtained using the PYTHIA8 and HERWIG [41] MC event generators with different tunes [42–44]. The total cross sections from the ML merged predictions are lower than from fully inclusive NNLO + NNLL calculations. However, for \(N_{jets} \geq 1\), the MC predictions formally have NLO accuracy, which is the same as the analytical calculations. Contributions from other relevant Higgs boson production modes are generated using POWHEG for VBF and PYTHIA8 for \(VH, iH,\) and \(bbH\), and are scaled to the cross sections in Ref. [10]. Uncertainties are assigned to all MC predictions from QCD scale and PDF variations. The ML-merged ggF predictions also have uncertainties due to the choice of merging scale. The SHERPA uncertainties further include resummation scale variations. The measured cross sections are higher than the predictions for all measured jet multiplicities. The poorest
FIG. 3 (color online). Differential cross sections (left) and normalized cross-section shapes (right) for inclusive Higgs boson production measured by combining the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels. The measured variables are the Higgs boson transverse momentum $p_{T}^{H}$ (top) and its rapidity $|y^{H}|$ (middle), and the transverse momentum of the leading jet $p_{T}^{j_1}$ (bottom). The 0–30 GeV bin of the $p_{T}^{j_1}$ distributions corresponds to events without jets above 30 GeV. Various theoretical predictions are presented, using the same bin widths as the measurement.
agreement between data and predictions can be found in the inclusive and exclusive 1-jet bins, with local $p$ values ranging between 0.1% and 3.6%. Normalizing the total expected cross section to the data results in an improved agreement for these bins, with local $p$ values ranging from 4%−29%.

The combined differential cross sections as a function of $p_T^H$, $|y|^H$, and $p_T^{jj}$ are shown in Fig. 3 (left). The measured $p_T^H$ and $|y|^H$ distributions are compared to the HRes calculation and the $p_T^{jj}$ measurement is compared to STWZ and JetVHeto predictions. Figure 3 (right) shows the comparisons of the normalized shapes to predictions from the MC event generators NNLOPS, SHERPA 2.1.1, and MG5_aMC@NLO, as well as the HRes calculation. The uncertainties on the predicted shapes are evaluated following the same approach as for the differential cross-section predictions. They are derived from the impact of QCD scale, merging scale, and PDF variations. The mean of the measured $p_T^H$ distribution is $40.1 \pm 3.0$ GeV, while the means of the MC predictions range from 34 to 37 GeV.

The $p$ values quantifying the compatibility of the measured cross sections and predictions range from 2% to 26%, and for the shapes from 8% to 88%. For the calculation of these values, the theory uncertainties are assumed to be Gaussian distributed and fully correlated between bins [16].

In conclusion, this Letter presents the first measurements of total and differential cross sections and shapes for inclusive $pp \to H$ production. The measurements were performed in the $H \to \gamma\gamma$ and $H \to ZZ \to 4\ell$ channels using the full 2012 data set, which consists of 20.3 fb$^{-1}$ of $pp$ collisions produced by the LHC at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. The results of the two channels are compatible and have similar precision. The measurements indicate that the total production cross section of the Higgs boson is larger, and that it is produced with larger transverse momentum and more associated jets than predicted by the current most advanced SM calculations; however, more data is needed to confirm these observations.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIŽS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[16] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.115.091801 for more details and numerical values of the acceptance factors, tables with the measured cross sections and their associated covariance matrices, and additional comparisons both between the Higgs decay channels as well as between data and theory predictions.


[40] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −2 ln tan(θ/2).


School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Department of Physics, Bogazici University, Istanbul, Turkey
Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
INFN Sezione di Bologna, Italy
Department of Physics, Boston University, Boston, Massachusetts, USA
Department of Physics, Brandeis University, Waltham, Massachusetts, USA
Department of Physics, University of Sao Joao del Rei, Rio de Janeiro, Brazil
Physics Department, Brookhaven National Laboratory, Upton, New York, USA
National Institute of Physics and Nuclear Engineering, Bucharest, Romania
National Institute for Research and Development of Isotopic and Molecular Technologies, Bucharest, Romania
west University in Timisoara, Timisoara, Romania
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa, ON, Canada
CERN, Geneva, Switzerland
Department of Modern Physics, University of Science and Technology of China, Anhui, China
Department of Physics, Nanjing University, Jiangsu, China
School of Physics, Shandong University, Shandong, China
Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China
Physics Department, Tsinghua University, Beijing 100084, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, Kopenhavn, Denmark
INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
Dipartimento di Fisica, Università della Calabria, Rende, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas, Texas, USA
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
Section de Physique, Université de Genève, Geneva, Switzerland
INFN Sezione di Genova, Italy
Dipartimento di Fisica, Università di Genova, Genova, Italy
E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York, New York, USA
111 Ohio State University, Columbus, Ohio, USA
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
114 Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, United Kingdom
121 INFN Sezione di Pavia, Italy
122 Dipartimento di Fisica, Università di Pavia, Pavia, Italy
123 Petersburg Nuclear Physics Institute, Gatchina, Russia
124 INFN Sezione di Pisa, Italy
125 Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
126 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
127 Laboratory de Instrumentaciao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
128 Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
129 Department of Physics, University of Coimbra, Coimbra, Portugal
130 Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
131 Department of Fisica, Universidade do Minho, Braga, Portugal
132 Dep Fisica and CEFITEC de Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
133 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
134 Czech Technical University in Prague, Praha, Czech Republic
135 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
136 State Research Center Institute for High Energy Physics, Protvino, Russia
137 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
138 Ritsumeikan University, Kusatsu, Shiga, Japan
139 INFN Sezione di Roma, Italy
140 Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
141 INFN Sezione di Roma Tor Vergata, Italy
142 Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
143 INFN Sezione di Roma Tre, Italy
144 Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
145 Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco
146 Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
147 Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
148 Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
149 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
150 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
151 Department of Physics, Pacific Northwest National Laboratory, Richland, Washington, USA
152 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
153 Department of Physics, Shinshu University, Nagano, Japan
154 Fachbereich Physik, Universität Siegen, Siegen, Germany
155 Department of Physics, Simon Fraser University, Burnaby BC, Canada
156 SLAC National Accelerator Laboratory, Stanford, California, USA
157 Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
158 Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
159 Department of Physics, University of Cape Town, Cape Town, South Africa
160 Department of Physics, University of Johannesburg, Johannesburg, South Africa
161 School of Physics, University of the Witwatersrand, Johannesburg, South Africa
162 Department of Physics, Stockholm University, Sweden
163 The Oskar Klein Centre, Stockholm, Sweden

PRL 115, 091801 (2015) PHYSICAL REVIEW LETTERS week ending 28 AUGUST 2015