Marfan syndrome: Getting to the root of the problem
Franken, Romy

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Adapted from:
Losartan versus atenolol in the Marfan aorta - How to treat?

Nat Rev Cardiol. 2015;12(8):447-8

Romy Franken
Barbara J. M. Mulder
Uncertainty surrounds the benefit of preventive pharmacological therapies in reducing aortic disease in patients with Marfan syndrome. The Marfan Sartan trial now suggests that losartan is not beneficial in reducing the rate of aortic dilation - the precursor of dissections and premature death in Marfan syndrome. Patients with Marfan syndrome are at increased risk of premature death when untreated. To reduce the risk of aortic complications, patients with Marfan syndrome undergo elective aortic surgery when the diameter of the aorta exceeds 50 mm, and β-blockers are administered to reduce aortic haemodynamic stress. Losartan might be an alternative or complementary therapy to β-blockers, given that losartan reduces arterial pressure and potentially interferes with the pathophysiology of Marfan syndrome.

In the randomized, placebo-controlled Marfan Sartan trial, investigators evaluated the benefit of adding losartan to baseline therapy. A total of 292 patients aged >10 years were included (mean age 30 years, 38% aged <18 years). During 3.5 years of follow-up, 146 patients received losartan (50 mg if <50 kg [15%] or 100 mg if ≥50 kg [85%]), and 146 patients received a placebo in addition to baseline therapy (86% received β-blockers, mean dosage 65 mg). The rate of aortic root dilation was measured by linear regression lines using echocardiography performed every 6 months. The primary end point, expressed as mean change in z-score per year, was similar for the losartan and placebo groups (–0.03 versus –0.01 z-score per year; P = 0.69), as was the mean change in dilation rate (0.44 versus 0.51 mm per year; P = 0.36). Losartan tended to be more beneficial in patients with an FBN1 mutation compared with those without (–0.04 versus 0.00 z-score per year and 0.40 versus 0.51 mm per year; P value not reported). No significant differences in clinical events were reported between the losartan and placebo groups (zero versus three deaths, 15 versus 13 aortic surgeries, and one versus two dissections). The investigators conclude that their study provides no evidence that losartan might be of benefit in patients with Marfan syndrome, and that β-blockers alone should remain the first-line therapy.

We would like to highlight the importance of studies evaluating pharmacological treatment in Marfan syndrome, because the benefits of preventive therapies are uncertain. The current most-frequently prescribed preventive pharmacological treatment is β-blockade, as recommended in the US guidelines (level of evidence B) and noted without recommendation in the European guidelines. However, for 20 years, β-blockade has been prescribed on the basis of studies with conflicting results, and only one small, prospective, randomized study of 70 patients. Now, the uncertainty of treatment continues with losartan. This drug is hypothetically useful in slowing aortic disease, because it reduces arterial pressure and antagonizes transforming growth factor β, a protein that is found at elevated levels in patients with Marfan syndrome and which is associated with severity of cardiovascular disease.
After evidence for the effectiveness of losartan in a mouse model of Marfan syndrome, losartan significantly decreased the rate of aortic dilation from 3.54 ± 2.87 mm per year to 0.46 ± 0.62 mm per year ($P<0.001$) in a retrospective, observational study of 18 children with a rapid rate of aortic dilation despite other medical therapy. Worldwide, eight randomized clinical trials were initiated to test whether losartan, given in addition to, or instead of, β-blockers, would be beneficial in reducing the rate of aortic dilation in patients with Marfan syndrome (Table 1). So far, four studies have been published. At first, a small pilot study demonstrated that losartan (50 mg in children, 100 mg in adults) combined with β-blockers (2 mg/kg in children, maximum of 150 mg in adults, $n = 15$) significantly reduced the rate of aortic root dilation compared with β-blockers alone ($n = 13$; 0.10 versus 0.89 mm per year; $P = 0.02$) measured using echocardiography during 35 months of follow-up. The COMPARE trial demonstrated the beneficial effect of losartan added to baseline therapy (mostly β-blockers [74%], 50–100 mg) compared with no losartan in a study with an open-label design and blinded end points. After 37 months of follow-up, losartan ($n = 76$) significantly reduced the rate of aortic root dilation compared with no losartan ($n = 61$) in patients with a native aortic root (0.26 versus 0.45 mm per year; $P = 0.01$), and the rate of aortic arch dilation in patients with previous aortic root surgery (0.17 versus 0.34 mm per year; $P = 0.03$), as measured using MRI. In line with the results of the Marfan Sartan trial, losartan seemed to be more effective in reducing the rate of aortic dilation in patients with an $FBN1$ mutation. Lastly, investigators in the Pediatric Heart network study compared losartan versus atenolol in a large, blinded trial including 608 children (mean age 11 years, range 0.5–25.0 years) with the use of echocardiography during 36 months of follow-up. They demonstrated that losartan (1.3 mg/kg, maximum of 100 mg) and β-blockers (2.7 mg/kg, maximum of 250 mg) were both effective in reducing the aortic z-score, but losartan was neither superior nor inferior to atenolol ($–0.107$ versus $–0.139$ z-score per year; $P = 0.08$).

How can we explain the discrepancies between the results of these studies? Important differences exist in study design, which might explain the variability in outcome. Firstly, the use of placebo is preferable to an open-label design. The open-label design of the pilot study and the COMPARE trial might, theoretically, have positively influenced the beneficial effect of losartan. Secondly, losartan in addition to β-blockers was investigated in three studies, whereas losartan was compared with β-blockers in one study. Furthermore, the dosage of the β-blocker used varied from low to very high, both within and between the studies. Thirdly, the use of MRI in the COMPARE trial is more accurate than echocardiography, especially for measurements of only several millimetres of growth. Aortic root asymmetry and chest deformation are well-known features in Marfan syndrome, indicating that the high interobserver variability with echocardiography might limit its value in a clinical trial over 3.5 years, during which the aorta dilates only 0.1–0.9 mm per year. Fourthly, study population size and differences in power calculation might
influence the results of the different studies. Investigators in the COMPARE trial\(^6\) did not enrol the intended 330 patients. The results of the Marfan Sartan trial\(^1\) were based on intention-to-treat analysis, but 69 patients prematurely stopped the trial drug (28% of those in the losartan group), thereby diluting a possible beneficial effect of losartan. Lastly, the age of the included patients differed substantially between the four studies. A post-hoc sub analysis between children and adults in the Marfan Sartan trial might be informative.

The large heterogeneity of Marfan syndrome might be an alternative explanation for the present uncertainty about the effect of losartan on aortic dilation. The type of \(FBN1\) mutation might influence the drug response. Indeed, in a small sub-study of the COMPARE trial, patients with an \(FBN1\) mutation leading to haploinsufficiency responded better to losartan treatment than patients with a dominant-negative \(FBN1\) mutation.\(^7\) As haploinsufficient mutations comprise only around 35% of \(FBN1\) mutations, the effect of losartan on the overall Marfan population might have been masked by the larger number of dominant-negative mutations. These analyses should be explored in more depth in larger cohorts. The three ongoing trials should be awaited to have a complete overview of losartan and \(\beta\)-blocker treatment in Marfan syndrome. Then, a collaboration between the trialists from all the losartan studies is planned to perform a meta-analysis.\(^9\)

Despite the differences in study design and outcome, we can conclude that losartan does not seem to be more effective in reducing the rate of aortic dilation than a high dosage of \(\beta\)-blockers. Losartan in addition to \(\beta\)-blockers seems to be more effective than a low dosage of \(\beta\)-blockers (50–100 mg). Even when added to \(\beta\)-blocker therapy, losartan is well-tolerated and a safe treatment option in patients with Marfan syndrome. Losartan can be administered as an alternative treatment when \(\beta\)-blockers are not well tolerated. Losartan does not seem to be a panacea in the treatment of aortic disease in Marfan syndrome. However, until the results of ongoing trials and meta-analyses are known, losartan can safely be administered as an alternative treatment to \(\beta\)-blockers or in addition to low-dose \(\beta\)-blockers.
Table 1. Randomized clinical trials into losartan and β-blockers in Marfan syndrome

<table>
<thead>
<tr>
<th>Country</th>
<th>Design</th>
<th>Treatment</th>
<th>Follow-up (months)</th>
<th>Age (years)</th>
<th>Number of patients*</th>
<th>Imaging</th>
<th>Aortic root dilatation (mm per year)</th>
<th>Death and aortic dissection (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taiwan (Mayo)</td>
<td>Open-label (blinded end points)</td>
<td>Losartan and β-blockers vs β-blockers</td>
<td>35</td>
<td>13 ± 6.3</td>
<td>29 (28)</td>
<td>Ultrasonography</td>
<td>0.10 vs 0.89 (P = 0.02)</td>
<td>1 vs 0</td>
</tr>
<tr>
<td>The Netherlands (COMPARE trial)</td>
<td>Open-label (blinded end points)</td>
<td>Losartan vs no losartan</td>
<td>37</td>
<td>38 (18–71)</td>
<td>233 (145)</td>
<td>MRI / ultrasonography</td>
<td>0.26 vs 0.45 (P = 0.014)</td>
<td>0 vs 2</td>
</tr>
<tr>
<td>USA (Pediatric Heart Network Study)</td>
<td>Double-blind</td>
<td>Losartan vs atenolol</td>
<td>36</td>
<td>11 (0.5–25.0)</td>
<td>608 (535)</td>
<td>Ultrasonography</td>
<td>0.75 vs 0.69 (P = 0.20)</td>
<td>3 vs 0</td>
</tr>
<tr>
<td>France (Marfan Sartan trial)</td>
<td>Double-blind</td>
<td>Losartan vs placebo</td>
<td>42</td>
<td>30 (>10)</td>
<td>297 (292)</td>
<td>Ultrasonography</td>
<td>0.44 vs 0.51 (P = 0.36)</td>
<td>1 vs 5</td>
</tr>
<tr>
<td>Belgium (Ghent Marfan Trial)</td>
<td>Double-blind</td>
<td>Losartan vs placebo</td>
<td>36</td>
<td>>10</td>
<td>NA</td>
<td>Ultrasonography / MRI</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>UK (AIMS)</td>
<td>Double-blind</td>
<td>Irbesartan vs placebo</td>
<td>48</td>
<td>6–40</td>
<td>490</td>
<td>Ultrasonography</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Italy</td>
<td>Open-label (blinded end points)</td>
<td>Losartan vs nebivolol vs both</td>
<td>48</td>
<td>1–55</td>
<td>291</td>
<td>Ultrasonography</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Spain</td>
<td>Double-blind</td>
<td>Losartan vs atenolol</td>
<td>36</td>
<td>5–60</td>
<td>150</td>
<td>MRI / ultrasonography</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

β-Blocker therapy was with atenolol or propranolol. *Total number (number included in the analysis of rate of aortic root dilatation). †Treatment in addition to prescribed medication, mostly β-blockers. ‡Study prematurely terminated owing to inclusion difficulties; included children were added to the Pediatric Heart Network Study. §Studies currently ongoing or not yet reported. Abbreviation: NA, not available.
References