Search for a Heavy Neutral Particle Decaying to $e\mu$, $e\tau$, or $\mu\tau$ in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.115.031801

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for a Heavy Neutral Particle Decaying to $e\mu$, $e\tau$, or $\mu\tau$ in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 13 March 2015; published 14 July 2015)

This Letter presents a search for a heavy neutral particle decaying into an opposite-sign different-flavor dilepton pair, $e^+\mu^-$, $e^+\tau^-$, or $\mu^+\tau^-$ using 20.3 fb$^{-1}$ of pp collision data at $\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. The numbers of observed candidate events are compatible with the standard model expectations. Limits are set on the cross section of new phenomena in two scenarios: the production of $\tilde{\nu}_i$ in R-parity-violating supersymmetric models and the production of a lepton-flavor-violating Z' vector boson.

Lepton-flavor-violation (LFV) in the charged sector, if observed at present sensitivities, would be a clear signature of new physics. Such signatures occur in several new physics scenarios, including R-parity-violating supersymmetry (RPV SUSY) [1,2] and models with an additional heavy neutral gauge boson Z' [3] allowing for LFV couplings.

In RPV SUSY, the Lagrangian terms allowing LFV can be expressed as $\lambda_{ijk}L_iL_j\tilde{e}_k + \lambda'_{ijk}L_iQ_jd_k$ [1], where L and Q are the $SU(2)$ doublet superfields of leptons and quarks; e and d are the $SU(2)$ singlet superfields of leptons and downlike quarks; λ and λ' are Yukawa couplings; and the indices i, j, and k denote fermion generations. τ sneutrino ($\tilde{\nu}_\tau$) may be produced in pp collisions by $d\bar{d}$ annihilation and subsequently decay to $e\mu$, $e\tau$, or $\mu\tau$. Although only $\tilde{\nu}_\tau$ is considered here in order to compare with previous searches performed at the Tevatron, the results of our analysis apply to any sneutrino flavor.

The sequential standard model (SSM), where the Z' boson is often assumed to have the same quark and lepton couplings as the standard model (SM) Z boson, can be extended to include LFV couplings for the Z'. The $Z' \to e\mu$, $e\tau$, or $\mu\tau$ couplings (Q_{12}, Q_{13}, or Q_{23}) [4] are typically expressed as fractions of the SSM $Z' \to \ell^+\ell^-$ ($\ell = e, \mu, \tau$) coupling.

Strong limits on RPV couplings have been obtained by precision low-energy searches, such as μ to e conversion on nuclei [5], rare μ decays [6], and rare τ decays [7]. These limits often depend on masses of supersymmetric particles that occur in loop diagrams and assume the dominance of certain couplings. The CDF [8,9], D0 [10,11], and ATLAS [12] collaborations have searched for a $\tilde{\nu}_\tau$ in LFV final states and placed limits for various $\tilde{\nu}_\tau$ mass hypotheses.

Both the CDF [13] and ATLAS [14] collaborations have placed limits on Q_{12} as a function of the Z' mass.

This Letter describes a search for a neutral heavy particle ($\tilde{\nu}_\tau$ or Z') decaying into $e^+\mu^-$ ($e\mu$), $e^+\tau^-$ ($e\tau$), or $\mu^+\tau^-$ ($\mu\tau$) using pp collision data collected at $\sqrt{s} = 8$ TeV, where τ_{had} is a τ lepton that decays into hadrons. The ATLAS detector is described in detail elsewhere [15]. Events are selected with a three-level trigger system that requires one or two leptons (e or μ) with high transverse momentum (p_T). The data set has a total integrated luminosity of 20.3 ± 0.6 fb$^{-1}$, where the uncertainty is derived following the same methodology as that detailed in Ref. [16].

Electrons are required to have $p_T > 25$ GeV, $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$ [17], and satisfy the “tight” selection in Ref. [18], which was modified in 2012 to reduce the impact of additional inelastic pp interactions, termed pileup. Muon candidates must have $p_T > 25$ GeV, $|\eta| < 2.4$ and be reconstructed in both the inner tracker detector and the muon spectrometer. The muon momenta measured by the inner detector and muon spectrometer must match within five standard deviations of their combined uncertainty. Good quality reconstruction and p_T resolution at high momentum are ensured by requiring a minimum number of associated hits on the inner detector track [19] and in each of the three muon spectrometer stations.

Candidate events must contain at least one primary interaction vertex reconstructed with more than three associated tracks with $p_T > 400$ MeV. If there is more than one such vertex, the one with the highest sum of p_T^2 of associated tracks is chosen. The longitudinal impact parameter is required to be smaller than 2 mm for candidate electrons and smaller than 1 mm for candidate muons. It is further required that the transverse impact parameter is less than six times its resolution for candidate electrons, and that the transverse impact parameter is smaller than 0.2 mm for candidate muons. A calorimeter isolation criterion $E_T^{cal} < 0.2 / E_T < 0.06$ and a tracker isolation criterion

Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
\(p_T^{\Delta R<0.4}/p_T < 0.06 \) are applied for both the electrons and muons, where \(E_T^{\Delta R<0.2} \) is the transverse energy deposited in the calorimeter within a cone of size \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2 \) around the lepton, and \(p_T^{\Delta R<0.4} \) is the sum of the \(p_T \) of tracks with \(p_T > 1 \) GeV within a cone size of 0.4 around the lepton. \(E_T \) and \(p_T \) are the lepton transverse energy and momentum, respectively.

Hadronic decays of \(\tau \) leptons are characterized by one or three charged tracks associated with a narrow energy cluster in the calorimeters [20]. This search uses \(\tau_{\text{had}} \) candidates with only one charged track due to reduced identification and reconstruction efficiency for high-\(p_T \) \(\tau \) decays with three charged tracks. The identification efficiency of one track \(\tau \) is around 50% and the fake rate is typically 2%–5%. Boosted-decision-tree multivariate discriminators, based on tracking and calorimeter information, are used to reject jets and electrons misidentified as \(\tau_{\text{had}} \). The \(\tau_{\text{had}} \) candidates must have \(|\eta| < 2.47 \) and \(E_T > 25 \) GeV. Candidates with \(|\eta| < 0.03 \) are removed to exclude a critical region where the incomplete coverage of the inner tracking detectors and calorimeters contribute to substantially increase the misidentification of electrons.

Jets are reconstructed from clusters of energy in the calorimeter using the anti-\(k_t \) algorithm [21] with radius parameter \(R = 0.4 \). Jet energies are calibrated using Monte Carlo (MC) simulation and a combination of several in situ calibrations [22]. The calculation of the missing transverse momentum vector \(\vec{p}_T^{\text{miss}} \) (with magnitude \(E_T^{\text{miss}} \)) is based on the vector sum of the calibrated \(p_T \) of reconstructed jets, electrons, and muons, as well as calorimeter energy clusters not associated with reconstructed objects [23].

Candidate signal events are required to have exactly two leptons, of opposite charge and of different flavor, satisfying the above lepton selection criteria. The two leptons are required to be back-to-back in the azimuthal plane with \(|\Delta \phi_{\ell\ell'}| > 2.7 \), where \(\Delta \phi_{\ell\ell'} \) is the \(\phi \) difference between the two leptons. Because of the presence of the undetected neutrino in the \(\tau \) decay, the \(E_T \) of the \(\tau_{\text{had}} \) candidate is required to be less than the \(E_T (p_T) \) of the electron (muon) for the \(e\tau_{\text{had}} \) (\(\mu\tau_{\text{had}} \)) channel. Veto on tagged \(b \)-jets, to suppress the contribution of final-state top quarks, is not applied since studies have shown no significant impact on the sensitivity of the search.

A collinear neutrino approximation is used to reconstruct the dilepton invariant mass \(m_{\ell\ell'} \) in the \(e\tau_{\text{had}} \) and \(\mu\tau_{\text{had}} \) channels. In the hadronic decay of a \(\tau \) lepton from a heavy resonance, the neutrino and the resultant jet are nearly collinear. The four-vector of the neutrino is reconstructed from the \(\vec{p}_T^{\text{miss}} \) and \(\eta \) of the \(\tau_{\text{had}} \) jet. Four-vectors of the electron or muon, \(\tau_{\text{had}} \) candidate and neutrino are then used to calculate \(m_{\ell\ell'} \). For \(e\tau_{\text{had}} \) and \(\mu\tau_{\text{had}} \) signal events, the above technique significantly improves the mass resolution and search sensitivity.

Events with \(m_{\ell\ell'} < 200 \) GeV form a validation region to verify the background modeling, and events with \(m_{\ell\ell'} > 200 \) GeV are used as the search region.

The SM processes that produce \(e^+e^-\tau^+\tau^- \) final states can be divided into two categories: processes that produce two prompt leptons such as \(Z/\gamma^* \rightarrow \tau\tau, \ell\ell \), single-top \(Wt \) channel, diboson production, and processes where one or more photons or jets are misidentified as leptons, predominantly \(W/Z+\gamma, W/Z+\text{jets}, \) and multijet events. The decay of a \(\tau \) to an electron or a muon is considered as prompt production. For the \(e\tau_{\text{had}} (\mu\tau_{\text{had}}) \) channel, additional background can originate from the \(Z/\gamma^* \rightarrow e\mu (\mu\mu) \) process if one lepton is misidentified as a \(\tau_{\text{had}} \) candidate. The contributions of these processes are even larger with respect to the \(Z/\gamma^* \rightarrow \tau\tau \) background, since the final states \(e \) or \(\mu \) are usually harder than those from leptonic \(\tau \) decay.

Contributions from processes in the prompt two-lepton category, as well as photon-related and \(Z/\gamma^* \rightarrow e\mu (\mu\mu) \) backgrounds, are estimated using MC simulation [24]. The detector response model is based on the GEANT4 program [25]. Lepton reconstruction and identification efficiencies, energy scales, and resolutions in the MC simulation are corrected to the corresponding values measured in the data. Pileup is included to match distributions observed in the data. Top quark production is generated with MC@NLO v4.06 [26–28] for \(\ell \) and single-top, the Drell–Yan process \((Z/\gamma^* \rightarrow e\ell) \) is generated with ALPGEN v2.14 [29], and diboson processes are generated with HERWIG v6.520.2 [30]. Samples of \(W\gamma \) and \(Z\gamma \) events are generated with SHERPA v1.04 [31–34]. These generated samples are normalized to the most accurate available cross-section calculations, and the uncertainties on the calculations have been included in the overall uncertainty for the SM predictions. For the dominant backgrounds, the Drell–Yan processes are corrected to next-to-next-to-leading order (NNLO) [35], and \(\ell\ell \) is corrected to NNLO, including soft-gluon resummation to next-to-next-to-leading-logarithm order [36,37].

Since it is difficult to model misidentification of jets as leptons, particularly at high \(p_T \), the \(W+jets \) and multijet backgrounds are determined from control regions in the data. The \(W+jets \) background is determined in a control region selected with the same criteria as that used for the signal selection except requiring \(E_T^{\text{miss}} > 30 \) GeV (to enhance the \(W \) contribution) and requiring that the electron or muon \(p_T \) be less than 150 GeV (to eliminate potential signal). Simulation studies indicate there is negligible multijet background in this control region. For the \(e\tau_{\text{had}} \) and \(\mu\tau_{\text{had}} \) channels, the number of events in the control region is corrected for the other SM background sources using MC samples. For the \(e\gamma \) channel, the number of \(W+jets \) events in the control region is too small to yield a statistically meaningful measurement. Instead, the control region is enlarged by removing the isolation criterion on one lepton, and the \(W+jets \) contribution is estimated using the \(E_T^{\Delta R<0.2}/E_T \) distribution to fit the data with the MC predictions for other SM processes (dominant at low values of the isolation variable) and \(W+jets \) (dominant at large values). For the \(W+jets \) background in all three
TABLE I. Estimated SM backgrounds and observed event yields for the validation ($m_{\ell\ell'} < 200$ GeV) and search ($m_{\ell\ell'} > 200$ GeV) regions. Both the statistical and systematic uncertainties are included. $Z/\gamma^* \rightarrow \mu\mu$ background is larger in the validation region since the probability for muons to be misidentified as taus mainly depends on anomalously large calorimeter deposits that have a larger impact on low p_T muons. Because of correlations, particularly anticorrelations of the $W +$ jet and multijet contributions, the total uncertainties are not exactly the sum in quadrature of the components.

<table>
<thead>
<tr>
<th>Process</th>
<th>$m_{\ell\ell'} < 200$ GeV</th>
<th>$m_{\ell\ell'} > 200$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_{ep}</td>
<td>N_{ctal}</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \tau\tau$</td>
<td>6000 ± 400</td>
<td>11000 ± 900</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow ee$</td>
<td>—</td>
<td>6100 ± 1100</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \mu\mu$</td>
<td>4220 ± 290</td>
<td>690 ± 60</td>
</tr>
<tr>
<td>Diboson</td>
<td>1440 ± 80</td>
<td>321 ± 29</td>
</tr>
<tr>
<td>Single top quark</td>
<td>470 ± 40</td>
<td>87 ± 11</td>
</tr>
<tr>
<td>$W +$ jets</td>
<td>54 ± 18</td>
<td>17000 ± 4000</td>
</tr>
<tr>
<td>Multijet</td>
<td>227 ± 32</td>
<td>4800 ± 1000</td>
</tr>
<tr>
<td>Total</td>
<td>12400 ± 600</td>
<td>40400 ± 2900</td>
</tr>
<tr>
<td>Data</td>
<td>12954</td>
<td>41304</td>
</tr>
</tbody>
</table>

channels, the extrapolation factor from the control region to the signal region and the shape of the $m_{\ell\ell'}$ distribution are taken from the $W +$ jets MC sample.

The contribution from multijet production is estimated from a control region with the same selection as the signal region except that the leptons are required to have the same electric charge, under the assumption that the probability of misidentifying a jet as a lepton is independent of the charge. The number of events in this same-sign control region is corrected for contributions from backgrounds with prompt leptons and from $W +$ jets backgrounds using the procedure described above. The assumption of charge independence of the jet misidentification rates is tested in a multijet-enriched region with two nonisolated leptons. After subtraction of other SM backgrounds, the ratio of opposite-sign to same-sign events is found to be 1.07±0.06(stat)±0.02(syst).

The background estimates are verified in validation regions defined with the same selection criteria as for the signal regions but with $1.0 < |\Delta \phi_{\ell\ell'}| < 2.7$. In these validation regions, simulation studies show the backgrounds have compositions similar to the signal regions, and the predictions agree with the data within 20% over the entire $m_{\ell\ell'}$ range. An uncertainty of 20% is hence placed on the total background estimate that is used in the final results.

MC signal events are generated with HERWIG v6.5.20.2 for $\tilde{\nu}_\tau$ and PYTHIA v8.165 [38,39] for Z'. Samples are produced with $\tilde{\nu}_\tau$ and Z' masses ranging from 0.5 to 3 TeV. Signal cross sections are calculated to next-to-leading order for $\tilde{\nu}_\tau$ [40], and NNLO for Z' [35]. The theoretical uncertainties are taken from an envelope of cross-section predictions using different parton distribution function (PDF) sets and factorization and renormalization scales [41,42].

The signal selection efficiency (including τ decay branching ratio if τ is involved) for $m_{\tilde{\nu}_\tau} = 2$ TeV are 42%, 14%, and 10% in the $e\mu$, $e\tau$, and $\mu\tau$ channels, respectively. The corresponding numbers for a Z' boson with $m_{Z'} = 2$ TeV are 37%, 11%, and 9%. The systematic uncertainties on the signal efficiency vary from 3% to 6% depending on the resonance mass and decay mode. The primary contributions are due to the number of MC events, and the uncertainties related to the muon and τ p_T scales.

The observed and expected event yields in both the validation and search $m_{\ell\ell'}$ regions for all three final states are in good agreement, as summarized in Table I. The $m_{\ell\ell'}$ distributions (Fig. 1) show no significant excess above the SM expectations. The dominant contributions to the uncertainty bands in Fig. 1 are due to the number of MC events, the MC cross-section uncertainties, the E_T^{miss} scale and resolution, and the uncertainty in the shape of the $m_{\ell\ell'}$ distribution for $W +$ jets.

Upper limits are placed on the production cross section times branching ratio $[\sigma(pp \rightarrow \tilde{\nu}_\tau/Z') \times BR(\tilde{\nu}_\tau/Z' \rightarrow \ell\ell')]$. For each $\tilde{\nu}_\tau$ or Z' mass, the search region is defined to be $m_{\ell\ell'} \pm 3\sigma_{m_{\ell\ell'}}$, where $\sigma_{m_{\ell\ell'}}$ is the standard deviation of the simulated signal $m_{\ell\ell'}$ distribution. The relative width of the signal $m_{\ell\ell'}$ distribution ranges from 3% to 17% for different mass points, channels, and models. To increase the signal efficiency, if the upper side of the search region is greater than 1 TeV, all events above 1 TeV are used. To further reduce the effect of fluctuations in the high-mass region due to low MC event counts, the number of background events in each mass window is estimated using a double exponential fit to the total background $m_{\ell\ell'}$ distribution. The fit uncertainty is taken into account in the limit-setting procedure, including a contribution from varying the fit function range.

A frequentist technique [43] is used to set the expected and observed upper limits as a function of $m_{\tilde{\nu}_\tau}$ and $m_{Z'}$. The likelihood of observing the number of events in data as a function of the expected number of signal and background events is constructed from a Poisson distribution for each
times branching ratio limits as a function of the expected limits. The ensemble of limits is also used to assess the 1σ and 2σ uncertainty envelopes of the expected limits.

Figure 2 shows the observed and expected cross section times branching ratio limits as a function of \(m_{\tilde{\nu}} \) or \(m_{Z'} \), together with the ±1σ and ±2σ uncertainty bands. For a \(m_{\tilde{\nu}} \) mass of 1 TeV, the observed limits on the production cross section times branching ratio are 0.5 fb, 2.7 fb, and 9.1 fb for the \(e\mu, e\tau, \) and \(\mu\tau \) channels, respectively. The corresponding limits for a \(Z' \) boson mass of 1 TeV are 1.0 fb, 4.0 fb, and 9.9 fb for the \(e\mu, e\tau, \) and \(\mu\tau \) channels, respectively.

Theoretical predictions of cross section times branching ratio are also shown, assuming \(\lambda_{311} = 0.11 \) and \(\lambda_{333} = 0.07 \) for the \(\tilde{\nu} \), and \(Q_{ij} = 1 \) for the \(Z' \), consistent with benchmark couplings used in previous searches. For these benchmark couplings, the lower limits on the \(\tilde{\nu} \) mass are 2.0 TeV, 1.7 TeV, and 1.7 TeV for the \(e\mu, e\tau, \) and \(\mu\tau \) channels, respectively. The corresponding lower

FIG. 1 (color online). Observed and predicted \(e\mu, e\tau, \) and \(\mu\tau \) invariant mass distributions. The contributions of the different processes are also shown: “Others” includes diboson and single-top while “Jet fake” refers to \(W + \text{jets} \) and multijet. All overflows are included in the rightmost bin. Signal simulations are shown for \(m_{\tilde{\nu}} = 1 \) TeV and \(m_{Z'} = 0.75 \) TeV. The couplings \(\lambda_{311} = 0.11 \) and \(\lambda_{333} = 0.07 \) (\(Q_{ij} = 1 \)) are used for the RPV (\(Z' \)) model. The uncertainty bands include both the statistical and systematic uncertainties.

FIG. 2 (color online). The 95% C.L. limits on cross section times branching ratio as a function of \(\tilde{\nu} \) mass (top plots) and \(Z' \) mass (bottom plots) for \(e\mu \) (left), \(e\tau \) (middle), and \(\mu\tau \) (right). Theory curves are for the arbitrary choice of couplings \(\lambda_{311} = 0.11 \) and \(\lambda_{333} = 0.07 \) for \(\tilde{\nu} \), and \(Q_{ij} = 1 \) for \(Z' \). The gray band around the theory curve represents the theoretical uncertainty from the PDFs and factorization and renormalization scales.

031801-4
limits on the Z' mass are 2.5 TeV, 2.2 TeV, and 2.2 TeV for the $e\mu$, $e\tau$, and $\mu\tau$ channels, respectively. The observed lower mass limits are a factor of three to four higher than the best limits from the Tevatron [8–11] and 1.5 to 2 times better than the previous limits from the LHC [12] for the same couplings.

In summary, a search has been performed for a heavy particle decaying to $e\mu$, $e\tau$, or $\mu\tau$ final states using 20.3 fb$^{-1}$ of pp collision data at $\sqrt{s} = 8$ TeV recorded by the ATLAS detector at the LHC. The data are found to be consistent with SM predictions. Limits are placed on the cross section times branching ratio for an RPV SUSY $\tilde{\nu}_\tau$ and a LFV Z' boson. These results considerably extend previous constraints from the Tevatron and LHC experiments.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; AMRF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CPNP and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ERC, Hong Kong SAR, China; ISF, MINECO, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[17] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z axis along the beam direction. The x axis points toward the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam direction. Pseudorapidity is defined in terms of the polar angle $\eta = -\ln \tan(\theta/2)$. Transverse projections are defined relative to the beam axis.

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, New York, USA
3 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4a Department of Physics, Ankara University, Ankara, Turkey
4b Istanbul Aydin University, Istanbul, Turkey
4c Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7 Department of Physics, University of Arizona, Tucson, Arizona, USA
8 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Fisica d’Altes Energies and Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19a Department of Physics, Bogazici University, Istanbul, Turkey
19b Department of Physics, Doğuş University, Istanbul, Turkey
19c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
19d INFN Sezione di Bologna, Italy
19e Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
20a Physikalisches Institut, University of Bonn, Bonn, Germany
20b Department of Physics, Boston University, Boston, Massachusetts, USA
20c Department of Physics, Brandeis University, Waltham, Massachusetts, USA
20d Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
20e Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
20f Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
20g Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
20h Physics Department, Brookhaven National Laboratory, Upton, New York, USA
20i National Institute of Physics and Nuclear Engineering, Bucharest, Romania
20j National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
20k University Politehnica Bucharest, Bucharest, Romania
20l West University in Timisoara, Timisoara, Romania
21 Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
22 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
23 Department of Physics, Carleton University, Ottawa, Ontario, Canada
24a Department of Physics, Carleton University, Ottawa, Ontario, Canada
24b INFN Sezione di Bologna, Italy
24c Dipartimento di Fisica, Università di Bologna, Bologna, Italy
24d Physical Faculty, University of Bonn, Bonn, Germany
24e Department of Physics, Boston University, Boston, Massachusetts, USA
24f Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24g Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24h Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24i Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
24j Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24k Physics Department, Brookhaven National Laboratory, Upton, New York, USA
24l National Institute of Physics and Nuclear Engineering, Bucharest, Romania
24m National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
24n University Politehnica Bucharest, Bucharest, Romania
24o West University in Timisoara, Timisoara, Romania
25a Department of Physics, University of Chile, Santiago, Chile
25b Departamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago, Chile
25c Department of Physics, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile
25d Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
25e Department of Modern Physics, University of Science and Technology of China, Anhui, China
25f Department of Physics, Nanjing University, Jiangsu, China
25g School of Physics, Shandong University, Shandong, China
25h Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China
25i Physics Department, Tsinghua University, Beijing 100084, China
25j Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
25k Nevis Laboratory, Columbia University, Irvington, New York, USA
25l Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
25m INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
25n Dipartimento di Fisica, Università della Calabria, Rende, Italy
25o AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

*Deceased.
1Also at Department of Physics, King’s College London, London, United Kingdom.
2Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
3Also at Novosibirsk State University, Novosibirsk, Russia.
4Also at TRIUMF, Vancouver, British Columbia, Canada.
5Also at Department of Physics, California State University, Fresno, CA, USA.
6Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
7Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
8Also at Tomsk State University, Tomsk, Russia.
9Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
10Also at Università di Napoli Parthenope, Napoli, Italy.
11Also at Institute of Particle Physics (IPP), Canada.
12Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
13Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
14Also at Louisiana Tech University, Ruston, LA, USA.
15Also at Institut Català de Recerca i Estudis Avançats, ICREA, Barcelona, Spain.
16Also at Department of Physics, National Tsing Hua University, Taiwan.
17Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA.
18Also at Institute of Theoretical Physics, Tbilisi, Georgia.
19Also at CERN, Geneva, Switzerland.
20Also at Georgian Technical University (GTU), Tbilisi, Georgia.
21Also at Ochanomizu University, Tokyo, Japan.
22Also at Manhattan College, New York, NY, USA.
23Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
24Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
25Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
26Also at School of Physics, Shandong University, Shandong, China.
27Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
28Also at Section de Physique, Université de Genève, Geneva, Switzerland.
29Also at International School for Advanced Studies (SISSA), Trieste, Italy.
30Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.
31Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
32Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
33Also at National Research Nuclear University MEPhI, Moscow, Russia.
34Also at Department of Physics, Stanford University, Stanford, CA, USA.
35Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
36Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
37Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
38Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.