Evaluation of long term (10-years+) dysphagia and trismus in patients treated with concurrent chemo-radiotherapy for advanced head and neck cancer

DOI
10.1016/j.oraloncology.2015.05.003

Publication date
2015

Document Version
Final published version

Published in
Oral Oncology

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 22 Nov 2023
Evaluation of long term (10-years+) dysphagia and trismus in patients treated with concurrent chemo-radiotherapy for advanced head and neck cancer

S.A.C. Kraaijenga, I.M. Oskam, L. van der Molen, O. Hamming-Vrieze, F.J.M. Hilgers, M.W.M. van den Brekel

A R T I C L E I N F O
Article history:
Received 13 April 2015
Received in revised form 7 May 2015
Accepted 11 May 2015
Available online 28 May 2015

Keywords:
Head and neck cancer
Deglutition disorders
Dysphagia
Trismus
Long-term effects
Intensity modulated radiotherapy

S U M M A R Y
Objectives: Assessment of long term (10-years+) swallowing function, mouth opening, and quality of life (QoL) in head and neck cancer (HNC) patients treated with chemo-radiotherapy (CRT) for advanced stage IV disease.

Materials and Methods: Twenty-two disease-free survivors, participating in a multicenter randomized clinical trial for inoperable HNC (1999–2004), were evaluated to assess long-term morbidity. The prospective assessment protocol consisted of videofluoroscopy (VFS) for obtaining Penetration Aspiration Scale (PAS) and presence of residue scores, Functional Oral Intake Scale (FOIS) scores, maximum mouth opening measurements, and (SWAL-QOL and study-specific) questionnaires.

Results: At a median follow-up of 11-years, 22 patients were evaluable for analysis. Ten patients (46%) were able to consume a normal oral diet without restrictions (FOIS score 7), whereas 12 patients (54%) had moderate to serious swallowing issues, of whom 3 (14%) were feeding tube dependent. VFS evaluation showed 15/22 patients (68%) with penetration and/or aspiration (PAS P3). Fifty-five percent of patients (12/22) had developed trismus (mouth opening < 35 mm), which was significantly associated with aspiration (p = .011). Subjective swallowing function (SWAL-QOL score) was impaired across almost all QoL domains in the majority of patients. Patients treated with IMRT showed significantly less aspiration (p = .011), less trismus (p = .035), and less subjective swallowing problems than those treated with conventional radiotherapy.

Conclusion: Functional swallowing and mouth opening problems are substantial in this patient cohort more than 10-years after organ-preservation CRT. Patients treated with IMRT had less impairment than those treated with conventional radiotherapy.

Introduction

Head and neck cancer (HNC) patients are at risk to develop substantial functional impairments after organ-preserving treatment with chemoradiotherapy (CRT) [1]. Dysphagia is commonly the most severe functional impairment following this treatment. Given its serious impact on quality of life (QoL), assessment of deglutition disorders has become an important functional end-point measure [2]. It is therefore not surprising that prevention of dysphagia has become a major focus point in HNC research. In the past decade, improved radiotherapy protocols with intensity modulated radiotherapy (IMRT) have been introduced to reduce radiation dosage to swallowing musculature and structures, with the intention to decrease post-treatment dysphagia [3,4]. More recently, the prevalence of dysphagia also has led to the development of preventive exercise programs. These exercise programs are associated with better post-treatment swallowing function, in particular on the short-term [5–10], and probably also longer-term [11]. However, since dysphagia can develop and/or progress years after CRT [12,13], long term (10-years+)}
prospectively collected swallowing and mouth opening data are of great importance to assess deglutition in HNC survivors [14]. In this study the prospectively collected objective and subjective functional results at 10-years+ post-treatment will be reported in a patient cohort treated with CRT for advanced, anatomical and functional inoperable HNC.

Material and methods

This study concerns the long term follow-up of all disease-free and evaluable patients, who participated in a randomized clinical trial (M99RAD) on two different cisplatin-based chemoradiation treatment protocols for advanced HNC [15]. The original cohort consisted of 237 patients diagnosed with advanced (stage IV), anatomical or functional [16] inoperable squamous cell carcinoma of the oral cavity, oropharynx, or hypopharynx. Patients were included between December 1999 and November 2004. The chemotherapy protocol consisted either of 100 mg/m² cisplatin in a 40 min intravenous (IV) infusion on days 1, 2, and 43, or of a weekly high-dose intra-arterial (IA) injection of 150 mg/m² cisplatin in combination with intravenous sodium thiosulphate rescue in weeks 1, 2, 3, and 4. Radiotherapy (70 Gy in 35 fractions) was administered over seven weeks, starting concurrently with chemotherapy. Since IMRT had been gradually introduced in our institute during the trial period, roughly one fourth of the original patient population was treated with IMRT [4,17], while the remaining patients were treated with conventional radiotherapy (RT). During treatment, patients were encouraged to maintain an oral diet for as long as possible and prophylactic tube feeding was not applied. A (nasogastric or gastric) feeding tube only was given when the carefully monitored intake became troublesome. In the period the trial was conducted (1999–2004), the concept of standard preventive swallowing rehabilitation was not yet developed, and swallowing exercises were given post-treatment ‘on demand’, when removal of a feeding tube appeared troublesome because of aspiration and/or when sufficient oral intake could not be regained.

The original (phase III) trial compared standard IV with IA cisplatin infusion on oncological outcomes in 237 patients [17] and QoL in 207 patients [18,19]. Regarding oncological outcomes and toxicities, results showed that CRT with IA infusion is not superior to CRT with IV infusion. Toxicity results were comparable in both arms, although site and degree of toxicity differed. In short, renal toxicity was significantly lower in the IA treatment arm, and neurological toxicity was significantly more prevalent in the IA arm [17]. Regarding QoL results, no statistically significant differences between the groups (IA, IV) were found, and no statistically significant changes over time (1-year versus 5-years post-treatment) were observed for the total patient group during follow-up assessments [19]. Therefore, in the present study, functional swallowing and mouth opening results are reported for the combined patient cohort still alive and evaluable at 10-years+ post-treatment. All patient data and reasons for exclusion after 5-years and 10-years+ follow-up are provided in a consort flow-chart (Fig. 1). As can be seen, at 10-years+ post-treatment, besides the 20 evaluable patients from the 5-year cohort, 4 additional survivors, who had major salvage surgery for recurrent disease during follow-up, and were excluded from swallowing/mouth opening analysis, since the functional outcomes in these patients were no longer (only) attributable to the CRT. Furthermore, two patients had minor (laser) surgery for a second primary at the oropharynx (pharyngeal arch and alveolar process, respectively) at 10-years and 11-years post-treatment. Subsequently, due to a recurrence the alveolar process patient two years later additionally required local resection with bone grafting. These latter two patients were kept in the functional analysis of in total 22 patients.

Multidimensional assessment

Assessment of functional sequels was performed with standard, multidimensional objective and subjective outcome-measures [20,21]. First, the protocol included standard videofluoroscopy (VFS) to determine swallowing function. All VFS studies were carried out by an experienced speech language pathologist. Patients were seated upright and were asked to swallow different consistencies of varying amounts twice (1, 3, 5 and 10 cc thin liquid; 3 and 5 cc paste; as well as solid [Omnipaque coated cake]). Testing was discontinued if the clinicians judged the swallowing potentially harmful to the patient. All VFS studies were reviewed in real-time, slow motion, and frame-by-frame, and rated in consensus by two experienced researchers (authors SK and LM). Results were expressed in terms of the Penetration and Aspiration Scale (PAS), as well as an overall ‘presence of residue’ score. The PAS, a tool with an acceptable reliability, consists of a 8-points scale, ranging from 1 to 8 (score 1: material does not enter the airway; score 2: material enters the airway, remains above the vocal folds, and is ejected from the airway; score 3: material enters the airway, remains above the vocal folds, and is not ejected from the airway; score 4: material enters the airway, contacts the vocal folds, and is ejected from the airway; score 5: material enters the airway, contacts the vocal folds, and is not ejected from the airway; score 6: material enters the airway, passes below the vocal folds, and is ejected into the larynx or out of the airway; score 7: material enters the airway, passes below the vocal folds, and no effort is made to eject) [22]. The overall ‘presence of residue’ score ranges from 0–3 (score 0: no residue, to score 3: residue above and below the vallecula, with minimal residue judged as normal). To interpret and compare results, individual test results were clustered with the highest score representing the total PAS or residue score per patient. The PAS was also simplified by dividing it into three categories (1: normal; 2–5: penetration; 6–8: aspiration), which roughly corresponds to normal, mild-to-moderate, and severe performance [23]. Secondly, oral intake/nutritional status was assessed with the Functional Oral Intake Scale (FOIS; range from 1 to 7 with score 1: nothing by mouth, score 2: tube dependent with minimal/inconsistent oral intake, score 3: tube dependent with consistent oral intake, score 4: total oral diet of a single consistency, score 5: total oral intake of multiple consistencies requiring special preparation or compensations, score 6: total oral intake of multiple consistencies without special preparation but with specific food limitations, and score 7: total oral diet without restrictions), and with data on oral nutritional supplements, tube feeding dependency, weight changes, and Body Mass Index (BMI).

Furthermore, maximum interincisor (mouth) opening (MIO) was measured in mm to determine trismus. MIO was measured using disposable TheraBite range of motion scales (Atos Medical, Sweden), and trismus was defined as a MIO of ≤35 mm [24].

Patients’ subjective swallowing and mouth opening impairment was assessed with quality of life (QoL) questionnaires. The first questionnaire was the Swallowing Quality of Life Questionnaire (SWAL-QOL), which was administered to assess patients’ perceived swallowing disorder. The SWAL-QOL has been translated and validated for use with Dutch oral, oropharyngeal, and laryngeal cancer patients [25,26]. The SWAL-QOL consists of 44-items that assess the effects of swallowing difficulties on 10 QoL domains (30 items), including food selection, eating duration, eating desire, fear, burden, mental health, social functioning, communication, sleep, and...
fatigue. Each domain ranges from 0 to 100 with a higher score indicating more impairment. Also a symptom scale (14 additional items) and a total SWAL-QOL score (the 23 items of the first seven scales listed above) can be calculated. Finally, the questionnaire includes three separate questions regarding nutrition intake, liquids intake, and general health [27]. A cut-off score of 14 points (or higher) has been established for identifying HNC patients with clinically relevant swallowing problems [25,26]. Additionally, a Dutch structured study-specific questionnaire was used, which aimed at assessing in more detail complaints during the last week concerning diet/swallowing and concerning mastication/mouth opening, in part based on the EORTC C30/HN35, as described earlier [20]. There were 6 questions in each category with mostly 4 possible, structured answers. For diet and swallowing these questions were: “What is the consistency of your diet?” “Do you have problems with swallowing solid food?” “Do you have problems with swallowing soft/minced food?” “Do you have problems with swallowing liquid food?” “Do you have to swallow repeatedly to get rid of the food?” “Is it painful to swallow?” For mastication and mouth opening these questions were: “Do you still have your own (set of) teeth?” “How often do you clean your teeth/dentures?” “How do you experience your mouth opening?” “Do you experience problems with eating, because of a limited mouth opening?” “Do you experience problems with speech, because of a limited mouth opening?” “Do you have problems with chewing your food?”.

Statistical analysis

Descriptive statistics were generated for all continuous outcome measures (i.e. MIO, SWAL-QOL) at the 10-years+ assessment point. Data were summarised as medians with associated range. Spearman’s rank correlation was used to determine significant associations between objective and subjective outcome variables (e.g. FOIS with SWAL-QOL score). The Mann–Whitney U test was used to compare outcome variables between two unpaired groups (IMRT vs. conventional RT). Percentages of reported/measured disorders were calculated for categorical outcome parameters, comparable to the methods described by Logemann et al. [28]. Pearson’s Chi-Square test was used to test associations/differences in proportion between two or more groups. All data were collected and analyzed in SPSS (Chicago, Illinois; version 22.0), and a significance level of $p < 0.05$ was used.

Results

Patients’ characteristics

At 10-years+ post-treatment (median 134 months; range 109–165 months), 22 patients (13 male, 9 female; current mean age: 62 years, range 42–74) were evaluable. All patients were in complete remission. The majority of patients (82%) had a primary tumor located at the oropharynx. All patients were curatively treated with CRT for advanced (stage IV) HNC. Eight patients (36%) were treated with standard IV cisplatin infusion and 14 patients (64%) with high-dose IA cisplatin infusion. Ten patients (45%; IA/IV: 6/4) were treated with IMRT and 12 patients (55%; IA/IV: 8/4) with conventional RT. Regarding nutrition and oral intake, during treatment ultimately 19 of 22 patients (86%) needed nasogastric/gastric tube feeding (including 5 patients who already had a feeding tube at baseline), which was discontinued/endured after treatment as soon as nutritional requirements could be maintained orally again (see Table 1 for the number of patients with a feeding tube at the various assessment points).

The clinical patients’ and tumor characteristics of the analyzed patient cohort at 10-years+ post-treatment ($n = 22$) and the original patient cohort at baseline ($n = 207$) are listed in Table 2. There were no significant differences in proportion between these two groups with respect to gender, tumor site, stage, or treatment ($p > .05$).

Functional results

Swallowing and mouth opening results per patient ($n = 22$) are summarized in Table 3.

Swallowing function and dietary intake

VFS evaluation of swallowing function showed more than normal post-swallow contrast residue in all patients, mainly at the vallecula and piriform sinus and already occurring after 1 cc sips of thin liquid. Safe oral intake was demonstrated in 7 patients (32%), whereas penetration and/or aspiration occurred in 15
patients (68%). Specifically, penetration (PAS score 2–5) was demonstrated in 2 patients (9%), and aspiration (PAS score 6–8) was shown in 13 patients (59%), with 10 of 13 patients making no effort to eject (silent aspiration). Aspiration (PAS ≥ 6) occurred significantly less in patients treated with IMRT (3 of 10 patients) compared to patients treated with conventional RT (10 of 12 patients; p = .011; Chi-Square test).

Regarding oral intake, 10 patients (46%) were able to consume a normal oral diet without restrictions (FOIS score 7), whereas 12 patients (54%) had restrictions: 10 patients were only able to consume an oral diet with specific food limitations (FOIS score 6; n = 6) or with special preparation (FOIS score 5; n = 3), and 3 patients were feeding-tube dependent (FOIS score 1–3). Three patients (2 of 3 with a feeding tube) had a history of repeated (≥ 2) aspiration pneumonia and/or other recurring pulmonary problems in the last 6 months. Moreover, according to the study-specific questionnaire, 13 patients (59%) reported swallowing difficulties, of whom 4 patients also reported painful swallowing.

Results of the SWAL-QOL questionnaire (n = 22) are described in Table 4. Signs of impaired swallowing function (score > 14) were found across all QoL domains with exception of the domains sleep and mental health. Especially eating duration was severely impaired (median score = 63; mean score ± SD = 58 ± 32), and significantly associated with lower FOIS scores (r = −.61, p = .002). Similarly, social functioning (r = −.50, p = .019) and fear of eating (r = −.48, p = .025) were associated with restricted oral intake (FOIS score). General burden (r = −.54, p = .010), and fear of eating (r = −.58, p = .005) correlated with repeated pneumonia. Patients treated with IMRT showed significant better scores on the domains food selection, eating desire, communication, mental health, and social functioning (Mann–Whitney U test; see Fig. 2 and/or Table 5). No associations between swallowing outcomes and tumor site or stage were found.

Mouth opening and mastication

Mean maximum mouth opening at 10-years+ post-treatment (n = 22) was 32 mm (median 33 mm, range 8–58 mm) with 12 patients (55%; CONV/IMRT: 9/3) showing trismus (as defined as a MIO ≤ 35 mm) at this assessment point. This concerned mainly oropharyngeal cancer patients (n = 11; CONV/IMRT: 9/2). Ten patients (46%) reported besides swallowing problems also difficulties with mastication and 4 patients (18%) reported also pain during mastication. There was a significant lower incidence of trismus in patients treated with IMRT (3/10) versus patients treated with conventional RT (9/12; p = .035; Chi-Square test). Trismus was significantly associated with aspiration (p = .011).

Discussion

This is one of the first studies prospectively investigating long term (10-years+) QoL, swallowing function, and mouth opening in HNC patients treated with CRT for advanced disease. Regarding swallowing function, both observer-rated and patient-reported severe functional disorders and related morbidity problems were common in this patient cohort. Results showed occurrence of penetration and/or aspiration in almost 70% of patients and profound pharyngeal residue in all patients. Moreover, four patients were still feeding tube dependent and/or had developed frequent aspiration pneumonias and/or other recurring pulmonary problems. Forty-six percent of patients were able

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Baseline</th>
<th>7-weeks During CRT</th>
<th>12-weeks Post-CRT</th>
<th>1-year Post-CRT</th>
<th>5-years Post-CRT</th>
<th>10-years Post-CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>207</td>
<td>17</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Abbreviations: CRT = chemo-radiotherapy.

Table 2

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>207 patients at baseline</th>
<th>22 patients 10-years+</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, y (range)</td>
<td>55 (24–81)</td>
<td>62 (42–74)</td>
<td>NA</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>153 (74%)</td>
<td>13 (59%)</td>
<td>2.191</td>
</tr>
<tr>
<td>Female</td>
<td>54 (26%)</td>
<td>9 (41%)</td>
<td>.139</td>
</tr>
<tr>
<td>Tumor site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral cavity</td>
<td>33 (16%)</td>
<td>1 (4.5%)</td>
<td>2.755</td>
</tr>
<tr>
<td>Oropharynx</td>
<td>136 (66%)</td>
<td>18 (82%)</td>
<td>.252</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>38 (18%)</td>
<td>3 (14%)</td>
<td></td>
</tr>
<tr>
<td>T stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>4 (2%)</td>
<td>1 (4.5%)</td>
<td>3.291</td>
</tr>
<tr>
<td>T3</td>
<td>61 (29%)</td>
<td>10 (45%)</td>
<td>.193</td>
</tr>
<tr>
<td>T4</td>
<td>142 (69%)</td>
<td>11 (50%)</td>
<td></td>
</tr>
<tr>
<td>N stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>37 (18%)</td>
<td>9 (41%)</td>
<td>8.177</td>
</tr>
<tr>
<td>N1</td>
<td>25 (12%)</td>
<td>3 (14%)</td>
<td>.147</td>
</tr>
<tr>
<td>N2a</td>
<td>10 (5%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>N2b</td>
<td>55 (27%)</td>
<td>5 (23%)</td>
<td></td>
</tr>
<tr>
<td>N2c</td>
<td>60 (29%)</td>
<td>3 (14%)</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>20 (10%)</td>
<td>2 (9%)</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>103 (50%)</td>
<td>8 (36%)</td>
<td>1.429</td>
</tr>
<tr>
<td>IA</td>
<td>104 (50%)</td>
<td>14 (64%)</td>
<td>.232</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMRT</td>
<td>(± 25%)</td>
<td>10 (45%)</td>
<td>NA</td>
</tr>
<tr>
<td>CONV</td>
<td>(± 25%)</td>
<td>12 (55%)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: y = years; IV = intravenous; IA = intra-arterial; IMRT = Intensity-Modulated Radiotherapy; CONV = conventional radiotherapy.
Table 3
Swallowing and mouth opening data collection per patient.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>Baseline weight</th>
<th>Tumor Site</th>
<th>Tumor Stage</th>
<th>Treatment</th>
<th>Objective outcomes 10-years</th>
<th>Subjective outcomes 10-years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CTx</td>
<td>RTx</td>
<td>Feeding tube</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>70</td>
<td>106 kg</td>
<td>Oroph</td>
<td>T3N0</td>
<td>IV</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>65</td>
<td>95 kg</td>
<td>Oroph</td>
<td>T4N2c</td>
<td>IV</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>64</td>
<td>72 kg</td>
<td>Oroph</td>
<td>T3N0</td>
<td>IA</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>64</td>
<td>79 kg</td>
<td>Oroph</td>
<td>T4N2b</td>
<td>IA</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>63</td>
<td>93 kg</td>
<td>Oroph</td>
<td>T3N2b</td>
<td>IV</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>58</td>
<td>66 kg</td>
<td>Oroph</td>
<td>T3N2c</td>
<td>IV</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>58</td>
<td>70 kg</td>
<td>Hypo</td>
<td>T3N1</td>
<td>IA</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>57</td>
<td>89 kg</td>
<td>Hypo</td>
<td>T2N0</td>
<td>IA</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>56</td>
<td>88 kg</td>
<td>Oroph</td>
<td>T3N2b</td>
<td>IA</td>
<td>IMRT</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>42</td>
<td>65 kg</td>
<td>Oral</td>
<td>T3N0</td>
<td>IA</td>
<td>IMRT</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>67</td>
<td>83 kg</td>
<td>Oroph</td>
<td>T4N0</td>
<td>IA</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>64</td>
<td>68 kg</td>
<td>Oroph</td>
<td>T4N1</td>
<td>IA</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>67</td>
<td>62 kg</td>
<td>Oroph</td>
<td>T4N2b</td>
<td>IA</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>69</td>
<td>64 kg</td>
<td>Oroph</td>
<td>T4N0</td>
<td>IV</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>63</td>
<td>43 kg</td>
<td>Oroph</td>
<td>T3N0</td>
<td>IA</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>62</td>
<td>45 kg</td>
<td>Oroph</td>
<td>T4N1</td>
<td>IV</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>62</td>
<td>54 kg</td>
<td>Oroph</td>
<td>T4N3</td>
<td>IV</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>70</td>
<td>90 kg</td>
<td>Oroph</td>
<td>T3N0</td>
<td>IA</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>60</td>
<td>54 kg</td>
<td>Oroph</td>
<td>T4N2c</td>
<td>IV</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>60</td>
<td>62 kg</td>
<td>Oroph</td>
<td>T4N2b</td>
<td>IA</td>
<td>CONV</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>74</td>
<td>78 kg</td>
<td>Hypo</td>
<td>T4N0</td>
<td>IA</td>
<td>CONV</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>50</td>
<td>84 kg</td>
<td>Oroph</td>
<td>T4N3</td>
<td>IA</td>
<td>CONV</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviations: TNM = Tumor Node Metastasis; CTx = chemotherapy treatment; RTx = radiotherapy treatment; FOIS = Functional Oral Intake Scale; VFS = Videofluoroscopy; PAS = Penetration and Aspiration Scale; MIO = Maximal Interincisor Opening; M = male; F = female; hypo = hypopharynx; oroph = oropharynx; oral = oral cavity; IA = intra-arterial; IV = intravenous; IMRT = Intensity-Modulated Radiotherapy; CONV = conventional radiotherapy; kg = kilograms; mm = millimetres; NA = not applicable.

* This patient had required laser surgery for second primary at the pharyngeal arch at 10-years post-treatment.
* This patient had required laser surgery for second primary at the alveolar process at 11-years post-treatment, subsequently followed by local resection with bone grafting due to recurrent disease at 13-years post-treatment.
to consume a normal oral diet without restrictions, but four of them still reported having swallowing difficulties. Patients’ perceived swallowing function, as assessed with the SWAL-QOL questionnaire, was impaired across most Qol domains (score >14) too, indicating clinically relevant swallowing problems with significant impact on Qol. We did not find an association between site of disease and dysphagia severity. However, all patients had advanced (stage IV) disease and were predominantly treated with large radiation fields, encompassing several organs at risk involved in swallowing, regardless of disease site.

On a positive note, impairments were significantly less profound in patients treated with IMRT – a treatment modality that during the trial period had gradually been introduced in our Institute. Although the patient population was rather small in the current study, results are in concordance with a previous, larger-scale study from our Institute, that also showed better xerostomia related QoL 2–3-years post-treatment in patients treated with IMRT compared to conventional RT [4]. Interestingly, another article from our Institute on late efficacy/toxicity in the same patient population recently reported that treatment protocol (IV versus IA cisplatin infusion) might also play a role in this. After a median follow-up of 7.5 years, dysphagia according to the RTOG toxicity criteria was reported to be worse in the IV arm [29]. However, the present and previous studies on swallowing function and dietary intake did not reveal any significant differences between the two IA and IV chemotherapy protocols in this respect [18,19]. The authors in the ‘7.5-years study’ did not take into account the effects of the changes in radiation treatment (IMRT versus conventional RT) during the trial. Having those IMRT–conventional RT data taken into consideration now [30], it therefore seems more likely that treatment with IMRT instead of the IV cisplatin infusion has been causing the more favourable swallowing outcomes in this patient cohort.

Regarding mouth opening problems, trismus was observed in more than fifty percent of patients. This is substantially higher than the weighted prevalence of 31% following conventional RT with chemotherapy, as recently determined in a review of several studies where trismus was appropriately assessed [31]. The population of this study, with mainly advanced primaries located at the oropharynx [32], might be a reason for this difference. Limited mouth opening may make proper mastication of food more difficult, which is in accordance with half of our patients complaining about mastication difficulty. Furthermore, trismus may result in compromised airway clearance with poor bolus organization that – together with increased pharyngeal residue – has the potential to lead to aspiration problems [31]. Also in our patient cohort a relationship between trismus and aspiration was found. An explanation might be that the patients who developed both functional deficits (trismus and aspiration) received higher RT doses on the muscles critical to mastication and swallowing [33]. The fact that trismus occurred significantly more in patients treated with conventional RT compared to patients treated with IMRT confirms such a dose–effect relationship.

To prevent CRT-induced swallowing disorders, maintenance of oral intake throughout CRT treatment and/or preventive swallowing exercises (‘eat or exercise’ principle) have independently been associated with better post-treatment swallowing outcomes directly after treatment and at short-term follow-up [34,35]. Also in a recent prospective clinical trial from our institute, with a

Table 4

<table>
<thead>
<tr>
<th>Variable</th>
<th>N valid</th>
<th>Min - Max</th>
<th>Median</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>General burden</td>
<td>22</td>
<td>0–100</td>
<td>31.5</td>
<td>36 ± 33</td>
</tr>
<tr>
<td>Food selection</td>
<td>22</td>
<td>0–75</td>
<td>25</td>
<td>27 ± 24</td>
</tr>
<tr>
<td>Eating duration</td>
<td>22</td>
<td>0–100</td>
<td>63</td>
<td>58 ± 32</td>
</tr>
<tr>
<td>Eating desire</td>
<td>22</td>
<td>0–42</td>
<td>29</td>
<td>25 ± 15</td>
</tr>
<tr>
<td>Fear of eating</td>
<td>22</td>
<td>0–100</td>
<td>56.5</td>
<td>44 ± 36</td>
</tr>
<tr>
<td>Sleep</td>
<td>22</td>
<td>0–75</td>
<td>13</td>
<td>19 ± 22</td>
</tr>
<tr>
<td>Fatigue</td>
<td>22</td>
<td>0–67</td>
<td>21</td>
<td>25 ± 22</td>
</tr>
<tr>
<td>Communication</td>
<td>22</td>
<td>0–88</td>
<td>25</td>
<td>34 ± 27</td>
</tr>
<tr>
<td>Mental Health</td>
<td>22</td>
<td>0–55</td>
<td>10</td>
<td>20 ± 19</td>
</tr>
<tr>
<td>Social Function</td>
<td>22</td>
<td>0–65</td>
<td>25</td>
<td>23 ± 19</td>
</tr>
<tr>
<td>Symptom score</td>
<td>22</td>
<td>0–75</td>
<td>41</td>
<td>41 ± 23</td>
</tr>
</tbody>
</table>

Abbreviations: Min = minimum; Max = maximum; SD = standard deviation.

Table 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>RTx N</th>
<th>Min–Max</th>
<th>Median</th>
<th>Mean ± SD</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>General burden</td>
<td>IMRT 10</td>
<td>0–75</td>
<td>19</td>
<td>26.4 ± 28.6</td>
<td>p = .020</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>0–100</td>
<td>44</td>
<td>44.1 ± 34.6</td>
<td>p = .040</td>
</tr>
<tr>
<td>Food selection</td>
<td>IMRT 10</td>
<td>0–50</td>
<td>12.5</td>
<td>16.3 ± 18.7</td>
<td>p = .059</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>0–75</td>
<td>31.5</td>
<td>36.6 ± 24.6</td>
<td>p = .014</td>
</tr>
<tr>
<td>Eating duration</td>
<td>IMRT 10</td>
<td>0–100</td>
<td>50</td>
<td>41.3 ± 39.2</td>
<td>p = .050</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>50–100</td>
<td>69</td>
<td>72.1 ± 16.9</td>
<td>p = .050</td>
</tr>
<tr>
<td>Eating desire</td>
<td>IMRT 10</td>
<td>0–42</td>
<td>21</td>
<td>17.5 ± 16.4</td>
<td>p = .014</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>17–42</td>
<td>33</td>
<td>31.3 ± 10.1</td>
<td>p = .014</td>
</tr>
<tr>
<td>Fear of eating</td>
<td>IMRT 10</td>
<td>0–100</td>
<td>25</td>
<td>35.1 ± 39.1</td>
<td>p = .014</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>0–94</td>
<td>63</td>
<td>50.8 ± 33.0</td>
<td>p = .050</td>
</tr>
<tr>
<td>Sleep</td>
<td>IMRT 10</td>
<td>0–63</td>
<td>6.5</td>
<td>18.9 ± 23.9</td>
<td>p = .014</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>0–75</td>
<td>19</td>
<td>18.8 ± 22.3</td>
<td>p = .014</td>
</tr>
<tr>
<td>Fatigue</td>
<td>IMRT 10</td>
<td>0–67</td>
<td>17</td>
<td>24.2 ± 24.8</td>
<td>p = .014</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>0–67</td>
<td>25</td>
<td>25.0 ± 21.4</td>
<td>p = .014</td>
</tr>
<tr>
<td>Communication</td>
<td>IMRT 10</td>
<td>0–50</td>
<td>6.5</td>
<td>18.8 ± 23.0</td>
<td>p = .014</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>25–88</td>
<td>50</td>
<td>46.0 ± 22.8</td>
<td>p = .014</td>
</tr>
<tr>
<td>Mental health</td>
<td>IMRT 10</td>
<td>0–40</td>
<td>2.5</td>
<td>10.0 ± 13.9</td>
<td>p = .014</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>5–55</td>
<td>30</td>
<td>27.9 ± 20.1</td>
<td>p = .014</td>
</tr>
<tr>
<td>Social function</td>
<td>IMRT 10</td>
<td>0–45</td>
<td>7.5</td>
<td>13 ± 15.7</td>
<td>p = .014</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>0–65</td>
<td>27.5</td>
<td>31.3 ± 18.0</td>
<td>p = .014</td>
</tr>
<tr>
<td>Symptom score</td>
<td>IMRT 10</td>
<td>0–75</td>
<td>28.5</td>
<td>31.1 ± 28.1</td>
<td>p = .123</td>
</tr>
<tr>
<td></td>
<td>CONV 12</td>
<td>21–68</td>
<td>46.5</td>
<td>48.8 ± 14.8</td>
<td>p = .014</td>
</tr>
</tbody>
</table>

Abbreviations: RTx = radiotherapy treatment; Min = minimum; Max = maximum; SD = standard deviation; p-value according to Mann–Whitney U test; significance level at p = 0.05.; *p-value according to Mann–Whitney U test; significance level at p = 0.05.; CONV = conventional radiotherapy.

Fig. 2. Distribution of domains by SWAL-QOL questionnaire variables in 22 HNC patients at 10-years+ post-treatment, associated by radiotherapy treatment protocol (Intensity-Modulated Radiotherapy [IMRT] versus conventional radiotherapy [CONV]).
cisplatin-based CRT with IMRT therapy protocol, results showed minimal swallowing disorders at 6-years follow-up in patients, who were treated with preventive swallowing exercises [11]. In that study cohort, none of the twenty-two patients was dependent on tube feeding at 6-years post-treatment, and it is likely that the favourable swallowing outcomes can be attributed both to the organ-sparing IMRT and to the preventive and continued post-treatment rehabilitation programs which were applied. It is not clear whether the poor outcome in the current cohort is mainly caused by the lack of preventive rehabilitation, the larger radiation fields, or the progressive fibrosis at long term following RT. However, results probably would have been even more dismal if not 45% of these long term survivors had received IMRT.

Regarding oral intake during treatment, the usefulness of prophylactic gastric tube placement to maintain weight and nutrition during treatment is currently under debate [36]. The controversy is mainly about maintaining weight during treatment versus maintaining swallowing function by training oral intake [37]. As supported by several studies [28,35,38,39], it seems reasonable to assume that prophylactic gastric tube placement leads to worse post-treatment swallowing and diet outcomes, since the swallowing muscles are no longer actively used and may atrophy (the “use it or loose it” principle) [39]. Weight loss during treatment is associated with worse oncological outcome [37], but it is not clear what it or loose it” principle [39]. Weight loss during treatment is associated with worse oncological outcome [37], but it is not clear what is loss is acceptable. However, initial body mass index (BMI) may play a role in that, since oropharyngeal cancer patients with a BMI > 25 at the start of treatment may have a better overall survival [37].

Conclusion

Functional problems in this patient cohort at 10-years+ post CRT treatment are substantial, with noticeable occurrence of dysphagia, recurrent aspiration pneumonia, feeding tube dependency, and trismus. IMRT patients showed less swallowing impairment and trismus, though, than patients treated with conventional RT.

Conflict of interest statement

This study has no conflict of interest.

Acknowledgements

Wilma van Heemstendel, epidemiologist and clinical researcher at the Department of Epidemiology & Biostatistics at the Netherlands Cancer Institute, is greatly acknowledged for her support and advice in the statistical analysis. This study was made possible by grants provided by “Stichting de Hoop” and the “Verweelius Foundation”.

References

