Search for Higgs boson pair production in the gamma γγbb⁻ final state using pp collision data at \(\sqrt{s} = 8 \) TeV from the ATLAS detector

DOI
10.1103/PhysRevLett.114.081802

Publication date
2015

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for Higgs Boson Pair Production in the $\gamma\gamma b\bar{b}$ Final State Using pp Collision Data at $\sqrt{s} = 8$ TeV from the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 19 June 2014; published 26 February 2015)

Searches are performed for resonant and nonresonant Higgs boson pair production in the $\gamma\gamma b\bar{b}$ final state using 20 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of nonresonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrow $X \rightarrow hh$ resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass.

DOI: 10.1103/PhysRevLett.114.081802 PACS numbers: 12.60.Fr, 13.85.Rm, 14.80.Da, 14.80.Ec

Within two years of discovering a new boson with a mass near 125 GeV [1,2], the ATLAS and CMS Collaborations have completed a slate of measurements demonstrating that its spin and couplings conform to the predictions of the standard model (SM) Higgs boson within current experimental and theoretical uncertainties [3,4]. Despite the lack of deviations from SM predictions, the Higgs boson h offers a rich potential for new physics searches. This Letter reports on searches for non-SM physics with events consistent with either resonant ($X \rightarrow hh$) or nonresonant pair production of Higgs bosons in the $hh \rightarrow \gamma\gamma b\bar{b}$ channel.

The predicted rate for Higgs boson pair production in the SM is several orders of magnitude smaller than the rate for the single h process [5–8]; hh production is thus not expected to be observable with current LHC data sets. However, a variety of extensions to the SM predict an enhancement of Higgs boson pair production. In two Higgs doublet models (2HDMs) [9–11] the heavier of the neutral scalar Higgs bosons H may decay to a pair of its lighter scalar partners, h. Depending on the parameters of the 2HDM, the $H \rightarrow hh$ production cross section may exceed a picobarn [11]. A deviation of the Higgs boson self-coupling λ_{hhh} from the SM predicted value could also increase the nonresonant production rate. Such deviations could be observed with future data sets [8]. Larger enhancements in the $pp \rightarrow hh$ rate could arise from the top-Higgs quartic $tihh$ coupling predicted in composite models [12,13], or from the addition of light colored scalars to the SM [14]. Resonant production of two Higgs bosons could appear from the production and decay of gravitons, radions, or stoponion [15–17], as well as from a hidden sector mixing with the observed Higgs boson [18].

The $\gamma\gamma b\bar{b}$ channel is an excellent final state for a search for Higgs boson pair production [19] thanks to the large $h \rightarrow bb$ branching ratio, clean diphoton trigger, excellent diphoton invariant mass resolution, and low backgrounds. This channel is particularly important in the search for resonances with mass m_X in the range $260 < m_X < 500$ GeV considered in this Letter, where backgrounds and combinatorics make other channels such as $b\bar{b}b\bar{b}$ or $b\bar{b}r\tau^{-}$ challenging.

Processes that do not contain Higgs bosons are estimated from data; all other processes are simulated using Monte Carlo techniques. The standard ATLAS detector simulation [20] based on GEANT4 [21] is used. The simulation parameters are tuned to describe soft components of hadronic final states [22,23]. Simulated minimum bias collisions are overlaid on the hard scatter process, and events are reweighted so that the average number of interactions per bunch crossing (\sim20) matches the observed distribution.

Background events with a single Higgs boson produced in association with a W or Z boson or $t\bar{t}$ (Wh, Zh, $t\bar{t}h$) are simulated with PYTHIA8 [24] using CTEQ6L1 parton distribution functions of the proton (PDFs) [25]. Higgs boson production via gluon or vector-boson fusion (ggF, VBF) is simulated using CT10 PDFs [26] with POWHEG-Box [27,28] interfaced to PYTHIA8 for showering and hadronization. Cross sections and associated uncertainties are taken from Ref. [29].

Two benchmark signal models are defined: SM Higgs boson pair production for the nonresonance search, and a gluon-initiated, spin-zero resonant state in the narrow-width approximation for the resonance search. The SM hh process is too small to observe with current data sets, but the SM kinematics are used to model generic nonresonant beyond-SM physics. Both models are generated using...
MadGraph5 [30,31] and CTEQ6L1 PDFs. A generator filter requires a pair of b quarks and a pair of photons in each event. Pythia8 is used to decay the two Higgs bosons, and to shower and hadronize the events. The implementation of SM Higgs boson pair production includes the interference between diagrams with trilinear Higgs boson couplings and box diagrams. For the SM hh process, which is a background to the resonance search, the next-to-leading-order inclusive production cross section of 9.2 fb is taken from Ref. [8]. Resonant samples are generated with a width of 10 MeV (corresponding to a \(\Delta \) of size
\[R \equiv \frac{\Delta}{m} \]
the direction must be less than 6 GeV, and the scalar sum of the two tracks associated with the jet: for jets with \(|\eta| < 2.4 \) and \(p_T > 50 \text{ GeV} \), tracks associated with the hard scatter vertex must contribute over 50% of the sum.

Jets from the decay of long-lived heavy-flavor hadrons are selected using a multivariate tagging algorithm (b tagging) [47] with an efficiency of 70% for jets from b-quark fragmentation in \(t\bar{t} \) simulation. The four-momenta of muons [48] closer than \(\Delta R = 0.4 \) to a b-tagged jet and with \(p_T > 4 \text{ GeV} \) are included in the jet four-momentum.

Events with at least two photons and two or more jets are selected for further analysis if the invariant mass of the two leading jets is consistent with the decay of a Higgs boson. While the invariant mass resolution for the pairs of b-tagged jets is approximately 13 GeV, the mass window is chosen as \(95 < m_{jj} < 135 \text{ GeV} \) to account for the downward shift of the mean from the true value due to effects such as unmeasured neutrinos from semileptonic b decays.

In the nonresonance search, the background and potential signal are fit to the unbinned \(m_{\gamma\gamma} \) distribution of all events passing the dijet and diphoton selections described above. This fit has three components: the signal with a pair of Higgs bosons, the background processes with a single Higgs boson resonant at \(m_{HH} = m_h \), and the continuum background. The single Higgs boson backgrounds are dominated by the processes with pairs of b quarks, namely \(t\bar{t}h \) and \((Z \rightarrow b\bar{b})h \), with smaller contributions from ggF, VBF, and Wh. The combined acceptance and selection efficiency for the SM Higgs boson pair production signal is 7.4%. Simulation studies show that the continuum contribution in the signal region is split between events with two photons and events with a single photon in association with a jet faking the second photon. The b-tagged jets include real heavy-flavor jets and mistagged light-flavor jets. The contribution from dileptonic decays of \(t\bar{t} \) events where two electrons fake the two photons is roughly 10% of the total background. The contribution from other processes is negligible.

The fit is performed simultaneously in two categories. The first category is the signal region, in which at least two jets are b-tagged. The second is a control region, containing events with fewer than two b tags. The two classes of events are kinematically identical: in the signal region, the mass and \(p_T \) requirements defined above must be satisfied by the two leading tagged jets, whereas in the control region, they are met by the two leading jets.

Following earlier ATLAS analyses, the shape of the \(m_{\gamma\gamma} \) resonance is described by the sum of a Crystal Ball function and a wide Gaussian component that models the tails of the

\[m_{\gamma\gamma} \]
distribution [3]. An exponential function describes the continuum backgrounds that fall with \(m_{\gamma\gamma} \). The slope of the exponential is shared in the fit between the two categories so that the control region constrains the background shape in the signal region. Figure 1 shows the separate diphoton mass distributions for events with \(\geq 2b \) tags and events with \(\leq 1b \) tag.

The search for resonant production of pairs of Higgs bosons starts with the same signal selection as above but imposes an additional requirement on \(m_{\gamma\gamma} \). Because of the small number of expected events after this additional requirement, the resonance analysis uses a counting experiment with cuts on \(m_{\gamma\gamma} \) and \(m_{\gamma\gamma}\), in place of the unbinned fit in \(m_{\gamma\gamma} \). The cut on the diphoton mass is set as a window of twice the mass resolution, \(\pm 2\sigma_{m_{\gamma\gamma}} \), around the Higgs boson mass \(m_h = 125.5 \) GeV [3]. For this cut, the \(m_{\gamma\gamma} \) resolution is set to the expected value of 1.6 GeV. The acceptance of this requirement on background events without Higgs bosons, \(e_{m_{\gamma\gamma}} \), is measured by fitting an exponential function to the \(m_{\gamma\gamma} \) sidebands for events with fewer than two \(b \)-tagged jets. For this fit, the \(m_{\gamma\gamma} \) region of \(m_h \pm 5 \) GeV is excluded to eliminate any potential contamination from resonant Higgs boson production. For \(N \) observed events with two \(b \) tags in the sideband (\(|m_{\gamma\gamma} - m_h| > 2\sigma_{m_{\gamma\gamma}} \)), the number of expected non-Higgs boson background events \(N_{m_h} \), within \(2\sigma_{m_{\gamma\gamma}} \) around \(m_h \) is given by

\[
N_{m_h} = N \frac{e_{m_{\gamma\gamma}}}{1 - e_{m_{\gamma\gamma}}},
\]

where the denominator compensates for the fact that \(e_{m_{\gamma\gamma}} \) is derived relative to the full \(m_{\gamma\gamma} \) spectrum while \(N \) contains only those events in the sidebands.

Before reconstructing the four-object mass, \(m_{\gamma\gamma}\), a scaling factor of \(m_h/m_{\gamma\gamma} \) is applied to the four-momentum of the \(bb \) system, where \(m_h \) is set to the value of 125 GeV used in simulation. This improves the \(m_{\gamma\gamma} \) resolution by 30%-60% depending on the mass hypothesis, without biasing or significantly altering the shape of the background. Requirements are then made on \(m_{\gamma\gamma} \) to select the smallest window containing 95% of the previously selected events, simulated for the narrow resonant signal hypotheses. These requirements vary linearly with the mass \(m_X \) of the resonance considered. The width of the signal window varies from 17 GeV at \(m_X = 260 \) GeV to 60 GeV at \(m_X = 500 \) GeV. The acceptance for the continuum background to pass this requirement, \(e_{m_{\gamma\gamma}} \), also varies with \(m_X \). It is measured using events in data with \(|m_{\gamma\gamma} - m_h| < 2\sigma_{m_{\gamma\gamma}} \) and fewer than two \(b \) tags. Studies in both data sidebands and simulation show that the shapes of \(m_{\gamma\gamma} \) and \(m_{\gamma\gamma} \) agree within statistical uncertainties. The distribution of \(m_{\gamma\gamma} \) in data is fitted with a Landau function, which is integrated in the signal window to obtain \(e_{m_{\gamma\gamma}} \) for each mass hypothesis. The bottom panel of Fig. 2 shows this fit. The value of \(e_{m_{\gamma\gamma}} \) is small (<8%) at low and high \(m_X \), and peaks at 18% for \(m_X = 300 \) GeV. The combined acceptance and selection efficiency for a resonance signal to pass

![FIG. 1 (color online). Upper plot: diphoton invariant mass spectrum for data and the corresponding fitted signal and background in the signal region for the nonresonance search. Lower plot: the diphoton invariant mass spectrum in the continuum background from events with fewer than two \(b \) tags and the corresponding fitted curve, the shape of which is also used in the upper plot.](image1)

![FIG. 2 (color online). Upper plot: the constrained four-object invariant mass \(m_{\gamma\gamma} \) for data events in the resonance signal region. The expected backgrounds are also shown. A narrow width resonance at 300 GeV is displayed for comparison only. Lower plot: the diphoton invariant mass spectrum in the continuum background from events with fewer than two \(b \) tags and the corresponding fitted curve, the shape of which is also used in the upper plot.](image2)
all requirements varies from 3.8% at \(m_X = 260 \) GeV to 8.2% at \(m_X = 500 \) GeV.

The total background from sources without Higgs boson decays in the resonance analysis \(N_B \) is given by

\[
N_B = N \frac{e_{m_{T\gamma}}}{1 - e_{m_{T\gamma}}} e_{m_{T\gamma}b},
\]

where \(N \) is the number of events in the \(m_{T\gamma} \) sidebands, and \(N_B \) and \(e_{m_{T\gamma}b} \) are functions of \(m_X \). Uncertainties on this extrapolation are described below.

Because they are not accounted for by the above \(m_{T\gamma} \) sideband techniques, contributions from single Higgs bosons produced in association with jets (particularly with \(c\bar{c} \) or \(b\bar{b} \) pairs) are estimated using simulation. In the resonance analysis, the yield from the nonresonant SM \(hh \) processes is similarly included. SM cross sections and branching fractions are assumed in all cases [29].

Most systematic uncertainties are small when compared to statistical uncertainties, in particular for the resonance search.

The evaluation of experimental uncertainties on photon identification (2.4%) and isolation efficiencies (2%) follows the methods used in the inclusive ATLAS \(h \rightarrow \gamma\gamma \) analyses [3,38]. The theoretical uncertainties [29] on the single Higgs boson backgrounds are similarly adopted. Because there are no heavy flavor quarks at lowest order associated with ggF or VBF production, additional uncertainties are evaluated for these higher-order processes.

These uncertainties are derived from a comparison of simulated predictions to data for similar initial states: gluon-initiated production of \(t\bar{t} \) with heavy flavor [49] for ggF, and quark-initiated \(W \) boson production with heavy flavor [50] for VBF. Since the ggF and VBF contributions are less than 15% of the expected single Higgs boson yield in the signal region, the net impact of these uncertainties remains small. PDF and scale uncertainties are negligible. The uncertainty of 13% on the light Higgs boson decays, the expected upper limit is 4% and is subtracted with negligible impact on the shape.

Uncertainties due to the \(b \)-tagging calibration are typically 2%–4% for both the single Higgs boson and signal processes. Uncertainties due to the jet energy scale are 7% (22%) for single Higgs boson backgrounds and the nonresonance (resonance) analysis, and 1.4% (4.4%) for signal processes. Uncertainties due to the jet energy resolution are 4.8% (21%) for single Higgs boson backgrounds and 6.3% (9.5%) for signal processes. The uncertainty on the integrated luminosity is 2.8%. It is derived, following the same methodology as that detailed in Ref. [34], from a preliminary calibration of the luminosity scale derived from beam-separation scans performed in November 2012.

The combined, unbinned signal plus background fit for the nonresonance analysis is shown in Fig. 1. Within a \(\pm 2\sigma_{m_{T\gamma}} \) window around the Higgs boson mass, 1.5 events are expected, with 1.3 \(\pm 0.5 \) from the continuum background and 0.17 \(\pm 0.04 \) from single Higgs boson production, which is dominated by \(t\bar{t}h \) events. About 0.04 events are expected from SM Higgs boson pair production. Five events are observed, corresponding to \(2.4\sigma \) from the background-only hypothesis, using the test statistic based on the profile likelihood ratio [51] with the hypothesized signal rate set to zero. The 95% confidence level (CL) upper limit on the Higgs boson pair production cross section is calculated using the frequentist \(CL_s \) method [52]. Exclusions and significances are evaluated using pseudoexperiments. Assuming SM branching ratios for the light Higgs boson decays, the expected upper limit is 1.0 \(\pm 0.5 \) pb; the observed limit is 2.2 pb.

For the resonance analysis, as before, SM branching fractions for the light Higgs boson are assumed. The expected exclusion improves from 1.7 to 0.7 pb as a function of \(m_X \) from 260 to 500 GeV, as shown in Fig. 3. This behavior derives from increased event-level acceptance at larger masses. The observed exclusion ranges from 3.5 to 0.7 pb. The five events selected in the \(m_{T\gamma} \) signal...
branching ratios were calculated as described in Ref. [56].

The limits derived are juxtaposed in Fig. 3 with the prediction for an illustrative type I 2HDM [32,33,55] not excluded by current data with \(\cos(\beta-\alpha) = -0.05 \) and \(\tan(\beta) = 1 \). The heavy Higgs bosons are taken to be degenerate in mass, and the mass of the lightest \(CP \)-even Higgs boson is set to 125 GeV. All major production mechanisms of \(H \rightarrow hh \) are considered. Cross sections and branching ratios were calculated as described in Ref. [56].

In conclusion, this Letter presents searches for resonant and nonresonant Higgs boson pair production using 20.3 fb\(^{-1}\) of proton-proton collision data at \(\sqrt{s} = 8 \) TeV generated by the Large Hadron Collider and recorded by the ATLAS detector in 2012. A 95% confidence level upper limit is placed on the nonresonant production cross section at 2.2 pb, while the expected limit is 1.0\(^{+0.5}_{-0.2} \) pb. The difference derives from a small excess of events, corresponding to 2.4\(\sigma \).

In the search for a narrow resonance decaying to a pair of Higgs bosons, the expected exclusion on the production cross section falls from 1.7 pb for a resonance at 260 GeV to 0.7 pb at 500 GeV. The observed exclusion ranges from 0.7–3.5 pb. It is weaker than expected for resonances below 350 GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (U.S.), and in the Tier-2 facilities worldwide.

FIG. 3 (color online). A 95% CL upper limit on the cross section times branching ratio of a narrow resonance decaying to pairs of Higgs bosons as a function of \(m_\chi \) (see text for more details).

region are shown in \(m_{\gamma\gamma} \), in Fig. 2. The local probability of compatibility to the background-only hypothesis, \(p_0 \), reaches a minimum of 0.002 at \(m_\chi = 300 \text{ GeV} \), corresponding to 3.0\(\sigma \). The number of events lying within the \(m_{\gamma\gamma} \) window of each mass hypothesis is readily apparent in “steps” in the exclusion plot. The step size used for the limit is reduced in the range near the observed events, to show this structure. A look-elsewhere effect [53,54] is evaluated by generating pseudodatasets of the background-only hypothesis, and identifying the mass hypothesis with the lowest \(p \) value in each. The global probability of an excess as significant as the observation to occur at any mass in the range studied is found to be 0.019, corresponding to 2.1\(\sigma \).

The limits derived are juxtaposed in Fig. 3 with the prediction for an illustrative type I 2HDM [32,33,55] not excluded by current data with \(\cos(\beta-\alpha) = -0.05 \) and \(\tan(\beta) = 1 \). The heavy Higgs bosons are taken to be degenerate in mass, and the mass of the lightest \(CP \)-even Higgs boson is set to 125 GeV. All major production mechanisms of \(H \rightarrow hh \) are considered. Cross sections and branching ratios were calculated as described in Ref. [56].

In conclusion, this Letter presents searches for resonant and nonresonant Higgs boson pair production using 20.3 fb\(^{-1}\) of proton-proton collision data at \(\sqrt{s} = 8 \) TeV generated by the Large Hadron Collider and recorded by the ATLAS detector in 2012. A 95% confidence level upper limit is placed on the nonresonant production cross section at 2.2 pb, while the expected limit is 1.0\(^{+0.5}_{-0.2} \) pb. The difference derives from a small excess of events, corresponding to 2.4\(\sigma \).

In the search for a narrow resonance decaying to a pair of Higgs bosons, the expected exclusion on the production cross section falls from 1.7 pb for a resonance at 260 GeV to 0.7 pb at 500 GeV. The observed exclusion ranges from 0.7–3.5 pb. It is weaker than expected for resonances below 350 GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (U.S.), and in the Tier-2 facilities worldwide.

18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 Department of Physics, Bogazici University, Istanbul, Turkey
19 Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 INFN Sezione di Bologna, Italy
20 Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, Massachusetts, USA
23 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24 Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24 Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24 Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
24 Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
26a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
26 National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
26 West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, Ontario, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32 Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
32 Departamento de Física, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
33 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
33 Department of Modern Physics, University of Science and Technology of China, Anhui, China
33 Department of Physics, Nanjing University, Jiangsu, China
33 School of Physics, Shandong University, Shandong, China
33 Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, New York, USA
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
37a Dipartimento di Fisica, Università della Calabria, Rende, Italy
37b Department of Physics, Shanghai Jiao Tong University, Shanghai, China
38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas, Texas, USA
40 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
42 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
43 Department of Physics, Duke University, Durham, North Carolina, USA
44 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
45 INFN Laboratori Nazionali di Frascati, Frascati, Italy
46 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
46 Section de Physique, Université de Genève, Geneva, Switzerland
46 INFN Sezione di Genova, Italy
50a INFN Sezione di Genova, Genova, Italy
50 Dipartimento di Fisica, Università di Genova, Genova, Italy
51a E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
51 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
55 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
56 Department of Physics, Hampton University, Hampton, Virginia, USA
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

INFN Sezione di Pavia, Italy

Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

INFN Sezione di Pisa, Italy

Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratorio de Instrumentacion e Física Experimental de Partículas - LIP, Lisboa, Portugal

Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Department of Physics, University of Coimbra, Coimbra, Portugal

Centre de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

Departamento de Física, Universidade do Minho, Braga, Portugal

Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina, Saskatchewan, Canada

Nisumekan University, Kasatsu, Shiga, Japan

INFN Sezione di Roma, Italy

Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata, Italy

Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma TRE, Italy

Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco

Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco

Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco

Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco

Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA

Department of Physics, University of Washington, Seattle, Washington, USA

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada

SLAC National Accelerator Laboratory, Stanford, California, USA

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic

Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Cape Town, Cape Town, South Africa

Department of Physics, University of Johannesburg, Johannesburg, South Africa

School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University, Sweden

The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, Ontario, Canada
TRIUMF, Vancouver BC, Canada
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics, University of California Irvine, Irvine, California, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana, Illinois, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, Connecticut, USA
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Deceased.
†Also at Department of Physics, King’s College London, London, United Kingdom.
‡Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
§Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
¶Also at TRIUMF, Vancouver, British Columbia, Canada.
‖Also at Department of Physics, California State University, Fresno, California, USA.
¶Also at Tomsk State University, Tomsk, Russia.
†Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
‡Also at Università di Napoli Parthenope, Napoli, Italy.
§Also at Institute of Particle Physics (IPP), Canada.
¶Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
‖Also at Chinese University of Hong Kong, China.
‡Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
¶Also at Louisiana Tech University, Ruston, Los Angeles, USA.
|Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
‡Also at Department of Physics, The University of Texas at Austin, Austin, Texas, USA.
|Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
‡Also at CERN, Geneva, Switzerland.
|Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
‡Also at Manhattan College, New York, New York, USA.
|Also at Novosibirsk State University, Novosibirsk, Russia.
‡Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
¶Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
|Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
‡Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
|Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India.
a Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy.
b Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
c Also at Section de Physique, Université de Genève, Geneva, Switzerland.
d Also at International School for Advanced Studies (SISSA), Trieste, Italy.
e Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America.
f Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
g Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
h Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia.
i Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
j Also at Department of Physics, Oxford University, Oxford, United Kingdom.
k Also at Department of Physics, Nanjing University, Jiangsu, China.
l Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
m Also at Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA.
n Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
o Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.