Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome
Arbab, T.; Battaglia, F.P.; Pennartz, C.M.A.; Bosman, C.A.

Published in:
Neurobiology of Disease

DOI:
10.1016/j.nbd.2018.02.011

Citation for published version (APA):
Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome

Tara Arbab, Francesco P. Battaglia, Cyriel M.A. Pennartz, Conrado A. Bosman

ABC Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postal Box 22660, 1000 DD Amsterdam, The Netherlands

Cognitive & Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands

Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands

Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postal Box 22660, 1100 DD Amsterdam, The Netherlands

Donders Institute for Brain, Cognition, and Behaviour, Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Research Priority Program Brain and Cognition, University of Amsterdam, Postal Box 94216, 1090 GE Amsterdam, The Netherlands

ARTICLE INFO

Keywords:
Fragile X syndrome
Hippocampus
Neuronal network activity
Spike-field coherence
Gamma oscillations
Theta oscillations

ABSTRACT

Neuronal networks can synchronize their activity through excitatory and inhibitory connections, which is conducive to synaptic plasticity. This synchronization is reflected in rhythmic fluctuations of the extracellular field. In the hippocampus, theta and gamma band LFP oscillations are a hallmark of the processing of spatial information and memory. Fragile X syndrome (FXS) is an intellectual disability and the most common genetic cause of autism spectrum disorder (Belmonte and Bourgeron, 2006).

Here, we investigated how neuronal network synchronization in the mouse hippocampus is compromised by the Fmr1 mutation that causes FXS (Santos et al., 2014), relating recently observed single-cell level impairments (Arbab et al., 2017) to neuronal network aberrations. We implanted tetrodes in hippocampus of freely moving Fmr1-KO and littermate wildtype (WT) mice (Mientjes et al., 2006), to record spike trains from multiple, isolated neurons as well as LFPs in a spatial exploration paradigm.

Compared to wild type mice, Fmr1-KO mice displayed greater power of hippocampal theta oscillations, and higher coherence in the slow gamma band. Additionally, spike trains of Fmr1-KO interneurons show decreased spike-count correlations and they are hypersynchronized with theta and slow gamma oscillations. The hypersynchronization of Fmr1-KO oscillations and spike timing reflects functional deficits in local networks. This network hypersynchronization pathologically decreases the heterogeneity of spike-LFP phase coupling, compromising information processing within the hippocampal circuit. These findings may reflect a pathophysiological mechanism explaining cognitive impairments in FXS and autism, in which there is anomalous processing of social and environmental cues and associated deficits in memory and cognition.

1. Introduction

Fragile X syndrome (FXS) is a monogenic intellectual disability that shows behavioral overlap with autism spectrum disorder (ASD) (Belmonte and Bourgeron, 2006), accounting for an estimated 5% of its prevalence (Budimirovic and Kaufmann, 2011). FXS arises from a tripotent expansion of the Fmr1 gene, silencing expression of the fragile X mental retardation protein (FMRP). FMRP binds mRNAs encoding approximately one third of pre- and postsynaptic proteins, most significantly targeting those involved in synaptic signaling pathways involved in long-term potentiation (LTP) and depression (LTD), CREB signaling, glutamate receptor regulation, and GABA receptor mediated inhibition (Darnell et al., 2011; Bhakar et al., 2012). FMRP silencing effectively leads to disturbed synaptic function and plasticity of both interneurons and pyramidal cells (Santos et al., 2014; Pilpel et al., 2009).

FXS is a promising target for obtaining a multi-dimensional understanding from genes, to microcircuits and networks, to cognitive...
impairment in neuropsychiatric disease due to its relatively simple genetic etiology (Fung and Reiss, 2016) and the development of rodent models (Mientjes et al., 2006; Berzhanskaya et al., 2017). Particularly affected in human patients and animal models is the hippocampus (Kates et al., 1997; Reiss et al., 1994), a structure essential for storing and consolidating experiences into long-term episodic and semantic memory.

Both animal (Kim and Fanselow, 1992; Morris et al., 1982) and human (Manns et al., 2003; Moscovitch et al., 2016) studies link the hippocampus to spatial, contextual, autobiographical and semantic memory. Single hippocampal neurons respond to the concept of given individuals, landmarks or objects (Quiroga et al., 2005). In FXS animal memory. Single hippocampal neurons respond to the concept of given hippocampus to spatial, contextual, autobiographical and semantic models, learning and memory decoordination of neuronal activity is recoordination of neuronal activity (Markram et al., 1997). This temporal function of the mechanisms underlying activity-dependent synaptic plasticity in the hippocampus (Bhakar et al., 2012; Huber et al., 2002).

Synaptic plasticity strongly depends on the precise temporal coordination of neuronal activity (Markram et al., 1997). This temporal coordination of neuronal activity is reflected in rhythmic oscillations of the local field potential (LFP) (Buzsáki et al., 2012). Neuronal oscillations have been associated with several cognitive and mechanistic processes through the brain, including neuronal communication and precise spike timing of activated neuronal groups (Bosman et al., 2014; Fries, 2015; Sejnowski and Paulsen, 2006). Hippocampal theta (4–8 Hz) chunks this experiential information in oscillation cycles (Skaggs and McNaughton, 1996; Gupta et al., 2012), and theta-nested gamma (20–100 Hz) oscillations induce synaptic plasticity, supporting memory consolidation processes (Bosman et al., 2014; Zheng et al., 2016; Colgin and Moser, 2010). Recently, abnormal gamma and theta phase-amplitude patterns of dendritic CA1 LFP oscillations were found in a mouse model of FXS (Radwan et al., 2016), related to an impaired excitatory-inhibitory equilibrium in FXS neuronal networks (Fenton, 2015; Contractor et al., 2015). However, it is unknown how these oscillatory dysfunctions affect the temporal coordination of spiking responses in these networks. Here, we hypothesize that compromised synaptic functions affect the temporal coordination of spiking responses in these networks. Here, we hypothesize that compromised synaptic function in Fmr1-KO mice affects both the temporal coordination of cell ensembles and hippocampal oscillatory rhythms supporting neuronal synchronization. We evaluated this hypothesis using tetrode recordings the CA1 region of freely moving Fmr1-KO mice.

2. Material and methods

2.1. Subjects

We used four male Fmr1-KO (Mientjes et al., 2006) and four littermate wildtype (WT) control mice. All experiments were performed in accordance with Dutch National Animal Experiments regulations, were approved by the University of Amsterdam. Animals were received from the Erasmus MC Rotterdam breeding unit at an age of 8 weeks and group-housed until surgery. They were maintained on a regular 12-hour light-dark cycle (lights on: 8 am, lights off: 8 pm) and received water and food ad libitum throughout the experiment. To minimize bias due to possible undetected changes in environmental conditions, Fmr1-KO and WT animals were always studied in pairs; both recordings were done on the same day and counterbalanced per genotype. Therefore, the experimenter was not blind to genotype during the experiments: pairs of one Fmr1-KO and one WT mouse were implanted with a microdrive in each experiment. Once habituated to the experimenter and handling, mice underwent drive implantation surgery under buprenorphine-isoflurane anesthesia and were left to recover before the experiments.

2.2. Electrophysiological techniques

Six independently moveable tetrodes were loaded into a custom-made microdrive (Battaglia et al., 2009) and implanted over dorsal hippocampus (AP: – 2.0 mm, ML: – 2 mm; Fig. 1A). The tetrodes were advanced into the CA1 pyramidal cell layer guided by electrophysiological signals (sharp wave-ripple events) over the course of days following implantation surgery. Electrophysiological activity was recorded on an analog 27-channel Neuroamp data acquisition system at a 32 kHz sampling rate. Tetrode signals (bandpass filtered 0.6–6.0 kHz for single unit and 0.1–475 Hz for LFP) were referred to a nearby tetrode which was targeted to a location devoid of single unit activity. Single-unit data were preprocessed with Klustakwik (Harris et al., 2000) for automated spike clustering and the results were manually refined using Klusters (Hazar et al., 2006). The resulting spike trains were analyzed using custom-written MATLAB code. LFP analyses were done in MATLAB using FieldTrip (Oostenveld et al., 2011) and custom-made routines. Animal tracking position was extracted from video footage by Ethovision XT software (Noldus, Wageningen, the Netherlands) which was synchronized with the electrophysiological data...
acquisition system. At the end of experiments, electrolytic lesions were made to verify tetrode placement. Brains were fixed by transcardial perfusion and Nissl stained (Fig. 1A). Only animals with clear lesions in the CA1 pyramidal layer were included in the analysis.

2.3. Behavioral protocol

A full experiment consisted of four sessions (two per day on two consecutive days) during which hippocampal neuronal network activity was recorded as the mice freely explored a fully transparent, circular open field arena (diameter 64 cm) for 30 min. The arena was surrounded by black curtains and four large visual cues (Fig. 1B). In the final (fourth) session, three of the visual cues were removed. For the current analyses, we excluded this last session and pooled the others. The two daily recording sessions were separated by a two-hour break, during which the animal rested in its home cage. Each animal was used for multiple experiments; a new set of cues was selected for each experiment.

2.4. Analysis of neural data

Tracking of animal position was automated. For further control, however, tracking data were visually inspected, checked for accuracy, and corrected manually when necessary. Inactivity periods (animal speed \(< 3 \text{ cm/s} \)) were excluded from analysis. Recording stability of individual neuronal clusters was examined; clusters whose first principal component exceeded more than three standard deviations from beginning to end of recording were excluded from analysis. Using a fuzzy clustering algorithm (Fuzzy Clustering and Data Analysis Toolbox, http://www.abonyilab.com/software-and-data/fclusttoolbox), the remaining clusters were separated in putative interneurons and pyramidal cells based on their firing rate and the mean width of their spike interval autocorrelograms (mean AC) (Lansink et al., 2010). The fuzzy clustering algorithm quantifies the certainty (e.g., confidence level) that a neuron belongs to either group. Thus, neurons with a < 70% certainty of belonging to either group (unclassified) were excluded from analysis.

2.5. Spectral analysis

Power line artifacts of LFP raw traces were eliminated using a Discrete Fourier Transform (DFT) filter at 50 Hz and its 2nd and 3rd harmonic (Schoffelen et al., 2005). Each epoch of interest (where animal speed was > 3 cm/s), was centered in 10 s of the continuous signal. We then calculated the DFT of this 10 s epoch at 50 Hz, 100 Hz, and 150 Hz and subtracted their respective sine waves from the continuous raw signal, with the amplitudes and phases as estimated by the respective DFTs. The epoch of interest (animal speed > 3 cm/s) was cut out from the cleaned 10 s epoch (Schoffelen et al., 2005). LFP segments containing artifacts were discarded from further analyses. Remaining data were z-transformed to equalize the contribution of different tetrodes and sessions across animals. Raw LFP data was demeaned and divided by its standard deviation. Periods of animal activity (speed > 3 cm/s) were segmented in epochs of 1 s, Hanning tapered and Fourier transformed. Power estimates were normalized per session and animal relative to the mean power between 4 and 100 Hz (Malkki et al., 2016). An additional normalization to the maximum value of the averaged power spectrum across animals and sessions was used in Fig. 4A. Time-frequency estimates were calculated using a sliding window of 0.5 s with 95% overlap across the original segments. The average estimation over the first 4 s of activity in each segment is represented in Fig. 4B.

Coherence between LFP channels across different tetrodes was calculated using the weighted phase lag index (WPLI) (Vinck et al., 2011). The WPLI is a measure of phase-synchronization between LFP signals which is less affected by volume-conduction, noise and sample size. The WPLI was computed by:

\[
\Phi = \frac{|E[3|X]| \text{sgn}(3|X|)|}{E[3|X|]} \tag{1}
\]

where \(3|X|\) represents the imaginary part of the cross-spectrum between channels (Schoffelen et al., 2005). Normalized power and WPLI spectra were averaged across sessions and animals.

The consistency with which a cell fired spikes in a given phase range of an LFP oscillation was quantified using the pairwise phase consistency (PPC), a pairwise measure which is not biased by the number of spikes and non-Poissonian effects within spike trains (Vinck et al., 2010). Briefly, for each frequency \(f \) we determined spike-LFP phases in epochs of \(2/f \) (2 cycles) length centered around each spike, in order to maintain the same resolution at any frequency bin. These segments were Fourier transformed using a Kaiser taper (\(\beta = 3 \)). The resulting complex arguments were used to quantify the PPC per cell and per frequency bin as follows:

\[
\psi = \frac{\sum_{j=1}^{N_{m}} \sum_{k=1}^{N_{m}} (\sin(\theta_{jm}) \sin(\theta_{km}) + \cos(\theta_{jm}) \cos(\theta_{km}))}{N_{m} - 1} \tag{2}
\]

where \(\theta_{jm} \) and \(\theta_{km} \) are the jth and kth spikes at frequency \(f \) in trial \(m \) and \(N_{m} \) denotes the number of spikes \(N \) in trial \(m \) (Vinck et al., 2010). Additionally, we calculated the LFP spike-triggered average of ± 0.5 s segments around spikes.

2.6. Spike count correlations

The spike-count correlation (\(r_{SC} \)) measures the Pearson correlation between binned firing rate fluctuations of spike trains of two neurons (Cohen and Kohn, 2011; Averbeck and Lee, 2006; Kass et al., 2005). It is defined as:

\[
r_{SC} = \frac{\sum_{i=1}^{N} (r_{i}^{m} - \bar{r}_{m}) \times (r_{i}^{n} - \bar{r}_{n})}{\sigma_{m} \times \sigma_{n}} \tag{3}
\]

where \(N \) is the number of trials and \(r_{i}^{m} \) is the number of spikes of cell \(i \) in trial \(n \) over a specific spike-count window. The resulting spike-counts are z-scored using the mean spiking rate \(\bar{r} \) and standard deviation of the firing rate of neuron \(i \) (\(\sigma_{i} \)) across sessions, to allow comparisons between different sessions and animals (Nandy et al., 2017). In our analyses, \(r_{SC} \) was calculated over a spike-count window of 0.5 s across data segments in which animals were active (speed > 3 cm/s). To control for trial-to-trial variability in spike-count correlation (Kass and Ventura, 2006), we repeated the spike-count correlation analysis through different spike-count windows, ranging from 0.05 to 1 s (Fig. 3C).

2.7. Statistical testing

Spike-count correlations and behavioral differences between genotypes were quantified using a Wilcoxon rank sum test, with a significance threshold of \(p < 0.05 \). Spectral estimates (Power, WPLI, Spike-LFP PPC) were tested across all frequencies for significance at a \(p < 0.05 \) level, using a nonparametric randomization test, corrected for multiple comparisons across frequencies (Bosman et al., 2012). We first calculated a spectral estimate across all epochs per genotype. Then, we calculated the T-statistic between genotypes for every frequency bin. Next, we performed 10,000 randomizations, in which: (Belmonte et al., 2005) the epochs from both conditions were randomly assigned to two distributions. These randomizations yielded two distributions, we calculated the T-statistics for every frequency bin; and for multiple comparisons across frequencies (Bosman et al., 2012). We first calculated a spectral estimate across all epochs per genotype. Then, we calculated the T-statistic between genotypes for every frequency bin. Next, we performed 10,000 randomizations, in which: (Belmonte et al., 2005) the epochs from both conditions were randomly redistributed; (Santos et al., 2014) from these two new random distributions, we calculated the T-statistics for every frequency bin; and (Arbab et al., 2017) the maxima and minima of these T-statistics were assigned to two distributions. These randomizations yielded two distributions of the 10,000 maximal and minimal differences between the randomly redistributed epochs. Finally, the experimentally observed T-statistics were compared to the maximal and minimal distributions. If differences were smaller than the 2.5th percentile of the minimal distribution or larger than the 97.5th percentile of the maximal
distribution, they were considered significant at a $p < 0.05$ level. This corresponds to a two-sided test with multiple comparison correction across frequencies (Maris et al., 2007; Nichols and Holmes, 2001). Effect sizes and p-values for genotypic differences were quantified using a Wilcoxon rank sum test over the average of the different frequency bands.

3. Results

Four Fmr1-KO (KO) (Mientjes et al., 2006) and four wild-type (WT) mice were implanted with six independently movable tetrodes in the CA1 pyramidal cell layer (Fig. 1A). Mice were habituated to an open field arena, surrounded by 4 different visual cues (Fig. 1B). The behavioral protocol consisted of three sessions of 30 min each, spread across 2 days, in which mice freely explored the arena. Altogether, mice were recorded over 69 sessions (WT: 34, KO: 35).

Both genotypes showed similar exploratory behavior across all recorded sessions. WT and KO mice ran indistinctly through the open arena (Fig. 1C). We did not observe significant differences in running speed (Fig. 1D: WT: 6.4 ± 0.4 cm/s, KO: 5.8 ± 0.4 cm/s, $p = 0.45$, Wilcoxon rank sum test). The amount of time the animal spent actively (> 3 cm/s) exploring the environment was similar in both genotypes (Fig. 1E: WT: 1067 ± 56.8 s, 1004 ± 59.3 s, $p = 0.26$, Wilcoxon rank sum test). Thigmotaxis, the tendency to remain in the periphery of the arena, did not differ between genotypes. WT and KO mice spent approximately 6 neurons per recording session (381 neurons in total). Using a fuzzy clustering algorithm on the recorded neurons (Lansink et al., 2010), we identified 310 putative pyramidal neurons (152 for WT, 158 for KO) and 71 putative interneurons (WT: 36, KO: 35). We compiled and analyzed epochs in which running speed was above 3 cm/s. In both genotypes, CA1 LFP signals showed strong theta band (4 to 8 Hz) activity (Figs. 2A, 4A and B) with nested gamma (Fig. 2A), both features typical of mouse hippocampal LFP during motor activity (Buzsáki et al., 2003). We recorded approximately 6 neurons per recording session (381 neurons in total). Using a fuzzy clustering algorithm on the recorded neurons (Lansink et al., 2010), we identified 310 putative pyramidal neurons (152 for WT, 158 for KO) and 71 putative interneurons (WT: 36, KO: 35). Fig. 2B and C show the different waveforms obtained for both neuronal types and genotypes. Importantly, waveform parameters did not differ between genotypes. The fuzzy clustering algorithm allowed us to identify putative interneurons and pyramidal cells for both genotypes (Fig. 2B and C). We calculated three different waveform parameters: mean AC, Initial slope of valley decay (ISVD) (Lansink et al., 2010) and the peak-to-valley ratio for the previously identified neuronal types, separated by genotype (Table 1). We used a 2-way ANOVA test to reveal potential significant effects for neuronal type and genotype using these waveform parameters. We found a significant effect for mean AC and ISVD (but not for peak-to-valley ratio) for neuronal type (Mean AC: $F_{1,380} = 154.7$, $p < 0.001$; ISVD: $F_{1,350} = 12.08$, $p < 0.001$; peak-to-valley ratio: $F_{1,378} = 0.02$, $p = 0.93$). We did not find any significant effect for genotype (Mean AC: $F_{1,380} = 3.18$, $p = 0.08$; ISVD: $F_{1,380} = 154.7$, $p < 0.001$; ISVD: $F_{1,350} = 12.08$, $p < 0.001$; peak-to-valley ratio: $F_{1,378} = 0.02$, $p = 0.93$).
Therefore, proper comparisons between neuronal populations can be performed across genotypes.

We first evaluated firing rate differences between neuronal types and genotypes. We did not find significant firing rate differences of pyramidal cells and interneurons compared between genotypes (Fig. 3A: pyramidal cells, WT: 1.3 ± 0.1 Hz, KO: 1.1 ± 0.1 Hz, p = 0.27; interneurons, WT: 8.1 ± 1.1 Hz, KO: 8.9 ± 0.9 Hz, p = 0.09, Wilcoxon rank sum test), indicating that, despite the imbalance in excitatory/inhibitory ratio observed in Fmr1-KO mice in the first two postnatal weeks (Gonçalves et al., 2013), isolated spiking responses of CA1 neurons are unaffected in adult animals.

Previous reports have shown that Fmr1-KO mice exhibit higher neocortical excitability, expressed as an increased probability of neuronal firing (Gonçalves et al., 2013). An increased probability of neural firing disrupts spontaneous correlations among cell assemblies (Salinas et al., 2000). We therefore evaluated whether an imbalance in excitatory/inhibitory ratio might trigger CA1 hippocampal network aberrations, using spike-count correlations (r_{SC}), as a measure of the common variance between two neurons (Cohen and Kohn, 2011; Averbeck and Lee, 2006). First, we used a 0.5 s time window (consistent with the analysis time window used for spike-field comparisons) to bin CA1 spikes evoked during active movement through the arena, to then compute spike-count correlations between interneurons and pyramidal cells. We found no difference in r_{SC} between Fmr1-KO and WT pyramidal cell pairs. In contrast, pairs of Fmr1-KO interneurons, together with pyramidal cell-interneuron pairs, showed dramatically lower correlated spike-counts compared to WT (Fig. 3B: mean ± SEM r_{SC} pyramidal neurons comparison: WT: 0.055 ± 0.01 KO: 0.07 ± 0.01, p = 0.10, interneurons comparison: WT: 0.42 ± 0.05 KO: 0.12 ± 0.03 p < 0.001, pyramidal to interneurons comparison: WT: 0.07 ± 0.01 KO: 4 × 10^{-4} ± 0.01 p < 0.001, Wilcoxon rank sum test). Since spike-count correlations can be affected by bin-width (Kass and Ventura, 2006; Ventura et al., 2005), we controlled whether r_{SC} differences between genotypes can be observed across a wide range of bins (from 0.05 to 1 s). We observed a monotonic increase of r_{SC} values across bins.

Table 1

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Type</th>
<th>Mean AC (mean ± SEM) (ms)</th>
<th>ISVD (mean ± SEM) (mV/ms)</th>
<th>Peak-to-valley ratio (mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>Interneurons</td>
<td>26.1 ± 0.4</td>
<td>41.5 ± 2.9</td>
<td>5.9 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>Pyramidal cells</td>
<td>20.5 ± 0.3</td>
<td>30.4 ± 0.8</td>
<td>2.8 ± 0.5</td>
</tr>
<tr>
<td>KO</td>
<td>Interneurons</td>
<td>24 ± 0.4</td>
<td>43.4 ± 3.1</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>Pyramidal cells</td>
<td>20.2 ± 0.3</td>
<td>31.4 ± 0.7</td>
<td>4.8 ± 0.8</td>
</tr>
</tbody>
</table>

Fig. 3. Spike rates and spike-count correlations across different neuronal types.

(A) Average spike rate of CA1 pyramidal cells and interneurons for WT and KO. (B) CA1 WT and KO spike count correlations between pyramidal cells, interneurons, and mixed pyramidal cell-interneuron pairs calculated within 0.4 s time windows. (C) CA1 WT and KO spike count correlations between pyramidal cell, interneuron, and mixed pyramidal cell and interneuron pairs across varying time windows. Gray bar marks significant differences between genotypes (two-tailed p < 0.05, nonparametric randomization test across sessions). Data are represented as mean ± SEM. **p < 0.01.
associated with augmented counting window segments (Fig. 3C), which is particularly evident in all WT comparisons, but less prominent for all KO comparisons. This increase of r_{sc} values has been related to excess of variability in spike timing across trials (Nandy et al., 2017), which tends to be reduced with larger bins of observation (Richter et al., 2009). Therefore, we quantified phase synchronization using the weighted phase lag index metric (WPLI, see Methods).

Finally, we evaluated the spike-LFP phase consistency (PPC) across different neuronal types in CA1. We calculated spike-triggered averages (STAs) of pyramidal cells and interneurons for both genotypes (Fig. 6A and B). Pyramidal cells of both genotypes showed a weak phase locking to a low (~10 Hz) frequency component of the LFP (Fig. 6A). Conversely, interneuron spikes of Fmr1-KO were more strongly locked to two frequency bands (5–8 Hz and 19–21 Hz) associated with an increase of FMRP expression affecting hippocampal networks. We calculated the pairwise phase consistency across frequencies (PPC, see Methods) (Vinck et al., 2010) to quantify these observations. Pyramidal cells of both genotypes showed a PPC spectra peaked at theta frequency (Malkki et al., 2016), but no significant differences between groups (Fig. 6C). Notably, Fmr1-KO interneurons locked to two frequency bands (5–8 Hz and 19–21 Hz) significantly stronger than those of WT mice (Fig. 6D: p < 0.05; non-parametric randomization test across sessions), suggesting an abnormal phase consistency for multi-frequency LFP rhythms in the Fmr1-KO mouse.

4. Discussion

In the present study, we took advantage of the spatial resolution provided by tetrode recordings in a mouse model of FXS to characterize how decreased FMRP expression affects CA1 hippocampal networks. We found increased theta power (5–8 Hz) associated with an increase of slow gamma (19–21 Hz) LFP-LFP synchronization in Fmr1-KO mice.
compared with WT controls, two findings that are consistent with pathological hypersynchronization of Fmr1-KO neurons to the most prominent hippocampal rhythm. Also, we observed decreased spike-count correlation in the Fmr1-KO mouse mainly across pairs of interneurons and pyramidal-interneurons, although it was also present between pyramidal cells at spike-counting windows below 0.3 s. A decrease in spike-count correlations has been linked to V4 cell assemblies during attention (Mitchell et al., 2009). Active states lead to a common variance reduction across connected neurons, which has been associated with increased phase-locking to specific LFPs oscillations (Womelsdorf et al., 2012). Our results suggest that FMRP deficits can be characterized by a hypersynchronized state between CA1 neurons.

Pathologically synchronized neuronal networks can account for several of the symptoms observed in FXS (Fung and Reiss, 2016). FXS patients show a major incidence of epilepsy and enhanced reactivity to sensory stimulation compared to normal subjects (Finelli et al., 1985; Sabaratnam et al., 2001), and abnormal fronto-parietal coherence in alpha, theta and beta frequency bands (van der Molen et al., 2014). Moreover, FXS patients exhibit increased resting-state gamma frequency band power, correlated with impaired social and sensory processing (Wang et al., 2017). This hypersynchronized state has also been found in animal models of FXS. In a FXS rat model, abnormal high-frequency power increases in association with decreased interneuronal firing-rate correlations have been observed in visual cortex during resting states (Berzhanskaya et al., 2017). Also, in the CA1 region of Fmr1-KO mice, an abnormal cross-frequency coupling between low and high-frequency LFP bands has been associated with cognitive inflexibility in a place-avoidance paradigm (Radwan et al., 2016). Experimental and modeling studies have shown that synchronized neuronal inputs cause increased excitability (Salinas et al., 2000; Azouz and Gray, 2000). In our study, Fmr1-KO mice exhibited increased theta power and gamma WPLI when compared with control mice, a finding that is consistent with increased microcircuit excitability in FXS (Berzhanskaya et al., 2017; Gonçalves et al., 2013). As gamma oscillations are nested in theta oscillations, this increased Fmr1-KO gamma synchronization might be driven by the increased power of the theta oscillations.

Hippocampal gamma oscillations in CA1 reflect mainly the weighted sum of postsynaptic inhibitory potentials from local interneurons, which homogenize and temporally align neuronal network
activity upon rhythmic input from CA3 (slow gamma) and entorhinal cortex (fast gamma) (Csicsvari et al., 2003). These two types of gamma activity appear to have functionally distinct roles: sensory signals carrying spatial information may be communicated from entorhinal cortex to CA1 through synchronization of fast gamma (suitable for inducing synaptic plasticity supporting consolidation of this information), whereas synchronization of CA1 to CA3 slow gamma occurs during memory retrieval (Colgin et al., 2009; Bierri et al., 2014). The increased phase consistency in CA1 slow gamma observed Fmr1-KO mice may suggest a preferential communication with the CA3 region (Colgin et al., 2009), reducing the effect of “on-line” inputs from entorhinal cortex and thus, overriding novel memory encoding mechanisms. This dysregulated communication may underlie deficits in spatial coding observed in these animals (Arbab et al., 2017).

Contrary to our results, Radwan and colleagues (Radwan et al., 2016) found minimal hippocampal CA1 power spectral differences between WT and Fmr1-KO. This discrepancy might be explained by differences in the behavioral protocols used in both studies. Radwan and colleagues (Radwan et al., 2016) used an active place avoidance protocol, producing behavioral differences across conditions and genotypes, but limiting free movement of the animals. Conversely, our recordings were obtained in animals freely moving in an open field, and no behavioral differences between genotypes were observed. Nevertheless, Radwan and colleagues (Radwan et al., 2016) also found abnormal rhythmic coupling in the hippocampus of Fmr1-KO.

In neocortex, FXS animal models show increased spiking activity (Berzhansky et al., 2017; Gonçalves et al., 2013). While our hippocampal recordings did not show spike rate differences between genotypes, we found significant differences in spike-count correlations between different cell types. Active neocortical states decorrelate spontaneous neuronal activity (Vinck et al., 2015; Renart et al., 2010; Montijn et al., 2015), possibly through coordinated fluctuations between excitatory and inhibitory populations (Renart et al., 2010). This uncorrelated state has been found in other studies. For instance, barrel cortex activity is actively desynchronized during active whisking (Poulet and Petersen, 2008) and visual cortical neurons show attention-dependent reduction in correlated low-frequency firing rate fluctuations (Mitchell et al., 2009; Hansen et al., 2012). In hippocampus, two-photon calcium imaging in CA1 neuronal populations has shown increased calcium event-count correlation of neuronal populations sharing common inputs (Modi et al., 2014). Once animals have been exposed to associative learning training, these spontaneous correlations tend to decrease and form separate clusters of correlated activity (Modi et al., 2014; Montijn et al., 2016). Thus, uncorrelated neuronal activity is important to efficiently transfer information across neuronal populations. At first glance, it seems counterintuitive that Fmr1-KO mice show decreased spike-count correlations compared with WT. However, this uncorrelated activity was observed together with an abnormal phase locking of interneurons to theta and slow gamma oscillations, and other studies have shown that increased spike phase-locking to gamma rhythm decreases noise correlations during visual stimulation in V1 cells (Womelsdorf et al., 2012). Possibly, synaptic deficits in Fmr1-KO may interfere with interneuron locking to the LFP, imposing an aberrant temporal precision to the activity of both pyramidal cells and interneurons in area CA1. In turn, this temporal precision, imposed on interneuron activity, may decrease the common variance across cells measured by spike-count correlations. Future studies will need to investigate whether this aberrant hippocampal activity affects hippocampus-dependent learning and memory consolidation processes in Fmr1-KO mice.

In conclusion, our results support the notion that deficits in FRMP produce an increased and pathological synchronization of CA1 neurons, probably because of an inadequate excitatory/inhibitory coupling between neurons, expressed in the theta and gamma ranges (Fenton, 2015). Hypersynchrony is thus not only related to neocortical activity, but is a more general feature of FXS, affecting both neocortical and hippocampal microcircuits.

Acknowledgements

We thank L. Noldus for the use of Ethovision XT software, K. Harris for the use of Klustalwvik, and L. Hazan for the use of Clusters. This work was supported by SenterNovem BSIS grant 03053, STW grant AET7613, and EU project 720270 (HBP SGAI, Human Brain Project) to CMAP and the FLAG-ERA JTC 2015 project CANON (co-financed by NWO to CAB). Animals were kindly provided by Prof. Dr. R. Willemsen at the Department of Clinical Genetics, Erasmus MC in Rotterdam, The Netherlands.

Financial disclosures

The authors declare no competing financial interests.

References

