Split-root labelling to investigate 15N rhizodeposition by Pinus sylvestris and Picea abies

Veerman, L.; Kalbitz, K.; Schoorl, J.C.; Tietema, A.

DOI
10.1080/10256016.2017.1352586

Publication date
2018

Document Version
Final published version

Published in
Isotopes in Environmental and Health Studies

License
CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 21 Sep 2023
Split-root labelling to investigate 15N rhizodeposition by *Pinus sylvestris* and *Picea abies*

Liz Veermana, Karsten Kalbitzb, Jorien C. Schoorla and Albert Tietemaa

aInstitute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Amsterdam, Netherlands; bInstitute of Soil Science and Site Ecology, Technical University Dresden, Dresden, Germany

ABSTRACT

We investigated the transfer of 15N into the soil via 15N uptake and release by tree roots, which involves the principles of the split-root technique. One half of the root system received an injection of (15NH$_4$)$_2$SO$_4$ and the other half equivalent amounts of (NH$_4$)$_2$SO$_4$ at 15N natural abundance level. 15N was transferred from one side of the root system (15N side) to the other side (14N side) and released into the soil. The method was conducted with Scots pine (*Pinus sylvestris* L.) and Norway spruce (*Picea abies* [L.] Karst). Two concentration levels of (NH$_4$)$_2$SO$_4$ were used, corresponding with annual N deposition in the Netherlands (30 kg N ha$^{-1}$) and a twelfth of that (2.5 kg N ha$^{-1}$). Samples were taken 3 and 6 weeks after labelling and divided into needles + stem, roots, rhizosphere and bulk soil. Already 3 weeks after labelling, Scots pine took up 23.7 % of the low and 9.1 % of the high amounts of 15N, while Norway spruce took up 21.5 and 32.1 %, respectively. Both species transported proportions of 15N to the rhizosphere (0.1–0.2 %) and bulk soil (0.3–0.9 %). The method is a useful tool to investigate the fate of root-derived N in soils, for example, for the formation of stable forms of soil organic matter.

ARTICLE HISTORY

Received 1 December 2016
Accepted 1 June 2017

KEYWORDS

Biochemistry; coniferous species; isotope ecology; nitrogen-15; pulse labelling; rhizodeposition; rhizomes; roots; soil; split-root technique; stable isotope tracer techniques; trees

1. Introduction

Trees can release organic nitrogen from their roots into the soil through rhizodeposition [1]. The rhizodeposits can vary from low-molecular-weight soluble root exudates to high-molecular-weight insoluble substances [2]. The amount, type and function of these N-rich rhizodeposits are controlled by various biotic and abiotic factors such as moisture stress, vegetation type, soil type and microbial activity, influencing nutrient availability and organic matter dynamics in the soil [2,3]. As described by the multi-layered model of Kleber et al. [4], organic N compounds might be important for the stabilization of soil organic matter (SOM), due to the preferential adsorption of N-rich compounds to juvenile mineral surfaces.
Rhizodeposition of (in)organic N compounds can be investigated with several 15N enrichment techniques, which are applied either above ground: leaf or stem labelling [5,6], or below ground: root labelling [7]. The latter approach follows direct uptake of 15N via the roots and can be carried out by transplantation of previously labelled plants [8,9] or via split-root labelling [10,11]. Most of the 15N enrichment studies focused on 15N rhizodeposition in crop systems [3,12], while there is a knowledge gap on N rhizodeposition in forest ecosystems [13]. To be able to mimic the situation in a forest as much as possible, split-root labelling seems the most suitable method because this method follows the physiological pathway of N assimilation via roots and allows relatively homogeneous enrichment in all N pools, already in an early stage after labelling [3].

This split-root labelling technique enables the detection of root-derived N among the different pathways of N in forest soils. The potential of this technique will be investigated using two commonly occurring European coniferous species, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst). These species have different root structures depending on their function in a specific ecological niche [14]. However, when growing conditions are kept similar, flexibility in root development can produce similar root structures [15]. Experiments related to N uptake by coniferous seedlings showed a fast immobilization of especially ammonium (NH$_4^+$), within a few hours [16,17], though the time it takes for these conifers to release N back in the soil is unclear. Several studies [18–20] show that conifers prefer uptake of NH$_4^+$ over nitrate (NO$_3^-$), provided that the NH$_4^+$ nutrient levels are within an acceptable range. When the NH$_4^+$ levels are too high, it might cause seedling mortality due to toxicity [19,20]. Furthermore, high N addition might promote higher levels of mineral N rhizodeposition instead of organic N rhizodeposition [5].

The objective of this study was to test the suitability of the split-root method to measure 15N rhizodeposition by coniferous tree seedlings and to investigate useful time frames and 15N addition levels. This was investigated with Scots pine and Norway spruce seedlings at low and high levels of 15N-(NH$_4$)$_2$SO$_4$ over a period of 3 and 6 weeks. We hypothesized that after 3 weeks, 15N would be released by the roots in the soil compartment where it was not added. We expected to find higher 15N rhizodeposition in Norway spruce due to its higher above- (needles + stem) and belowground (roots) tree biomass and its dominant lateral root structure in natural environments [13]. It was expected that 15N rhizodeposition levels would be higher when higher concentrations of 15N were added because there would be more 15N available for the trees to take up. Furthermore, we expected 15N levels to increase in the soil over time, due to microbial immobilization of organic and inorganic N rhizodeposition.

2. Methods

2.1. Experimental design

Twenty-two-year-old Scots pine (15 cm long) and 22-year-old Norway spruce (30 cm long) seedlings were planted individually in a split-root set-up (Figure 1). The plants were incubated in a greenhouse from November 2015 till January 2016. Prior to plantation, the roots were washed with water to remove the potting soil and separated in two (optically) equal parts. The plants were planted during autumn/winter time, when the sap flow was less active; to overcome desiccation of the roots. Greenhouse temperature was kept a 20 °C. The soil compartments were filled with approximately 2.4 kg sand derived from a haplic
podzol from an experimental site at Oldebroek, the Netherlands [21]. We used sand from
the B-horizon of a depth of 5.5–27.0 cm (pH 4.3; C/N ratio 17.7), more details about the soil
can be found in [21]. The sandy soil was sieved and homogenized prior to plantation. The
seedlings were watered three times per week, to average soil moisture content (W_d) of
0.15 ± 0.04. (NH$_4$)$_2$SO$_4$ was injected in the soil at 8 fixed positions with 12-cm long
needles. This was done to equally spread the amount of added (NH$_4$)$_2$SO$_4$ in each pot
and to minimize the change of contamination at the 14N side of the set-up. The needles
were connected to a syringe pump, which pumped the (NH$_4$)$_2$SO$_4$ solution into the soil
while the needles were pulled towards the soil surface at a constant speed. The soil con-
tainers were injected either with high (17.4 mg N kg$^{-1}$) or low (1.45 mg N kg$^{-1}$) concen-
trations of highly enriched (15NH$_4$)$_2$SO$_4$ (98 at.%) at one (15N) side of the split-root set-
up and equivalent amounts of (NH$_4$)$_2$SO$_4$ (15N natural abundance) at the other (14N)
side. The concentration corresponded with the annual N deposition in the Netherlands
(30 kg N ha$^{-1}$) [22] and with one-twelfth of that (2.5 kg N ha$^{-1}$).

2.2. Harvest and laboratory analysis

Prior to N additions, reference samples were taken from above- (needles + stem) and
belowground parts (roots, rhizosphere and bulk soil) (Figure 1(A)) in order to measure
the natural abundance of 15N. Then, 3 and 6 weeks after labelling, the abundance of
15N was analysed in these N pools at both 15N and 14N sides (Figure 1(B)). At each time
step, three seedlings of each species and treatment were harvested (12 trees per
harvest). During harvest, trees were cut at ground level, and the above ground parts
were separated into needles and stem. The roots were carefully removed from the bulk

![Figure 1. Diagram showing samplings prior to 15N addition (A), and after addition of 15N–(NH$_4$)$_2$SO$_4$ at one side (a) and (NH$_4$)$_2$SO$_4$ at 15N natural abundance to the other side (b) of the root system (B).](image)
soil, while the rhizosphere soil was still attached to the roots. The roots were washed with 45-ml water to separate the rhizosphere soil from the roots. Plant material was freeze-dried and soil samples were oven-dried at 40 °C. After drying, the soil samples were sieved (2 mm diameter) and ground with a ball mill. Organic samples were ground with a centrifuge mill, all to a homogenous powder. Approximately 10 g of the moist soil samples were dried at 105 °C to calculate total dry mass (g). 15N was analysed in all samples (10 mg organic and 40 mg mineral) with a continuous flow elemental analyser (Vario ISOTOPE cube, Hanau, Germany) connected to an isotope ratio mass spectrometer (Vision Isoprime, Manchester, UK). Reference gas (high-purity N$_2$ gas) was calibrated to atmospheric N$_2$ standard (at-air) using certified reference materials (IAEA-N2, IAEA-NO$_3$ and USGS-32; from the International Atomic Energy Agency, Vienna).

2.3. Calculations

2.3.1. Abundance and recovery of 15N in plant–soil system

The abundance of 15N in the N pools was either expressed as delta 15N (δ15N ‰) or as percentage 15N (at.% 15N) of total N. δ15N (‰) was calculated as

$$\delta^{15}\text{N} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \text{‰},$$

in which R is the molar ratio of 15N to 14N, with atmospheric N$_2$ used as standard ($R_{\text{standard}} = 0.0036764$). The percentage 15N (at.%15N) was calculated as

$$\text{at.}\%^{15}\text{N} = \frac{R_{\text{sample}}}{1 + R_{\text{sample}}} \times 100\%.$$

The 15N mass balance approach of Wessel et al. [23] was used to calculate the recovery (\%15N$_\text{rec,i}$) of the applied 15N in each N pool (i) as

$$\%^{15}\text{N}_{\text{rec,i}} = \frac{m_i(\text{at.}\%^{15}\text{N}_i - \text{at.}\%^{15}\text{N}_{i,\text{ref}})}{M_{\text{label}}} \times 100\%,$$

where \%15N$_{\text{rec,i}}$ was the atom percentage of the added 15N that was recovered in the N pool, and at.%15N$_i$ as 15N abundance in N pool, and at.%15N$_{i,\text{ref}}$ as reference in N pool before 15N was added. N pool sizes (m_i) were used as N mass (g N) in each compartment. To calculate N pool sizes (m_i), dry matter of each N pool was multiplied by the measured N percentage of that pool. The added 15N (M_{label}) was the total mass (g 15N) of the added tracer.

2.3.2. 15N rhizodeposition

15N rhizodeposition was estimated based on recovery (\%15N$_{\text{rec}}$) levels in the rhizosphere and bulk soil as calculated by Equation (3) and based on the Janzen and Bruinsma equation [24]:

$$\%\text{NdfR} = \frac{\text{at.}\%^{15}\text{N}_{\text{soil}} - \text{at.}\%^{15}\text{N}_{\text{soil},\text{ref}}}{\text{at.}\%^{15}\text{N}_{\text{roots}} - \text{at.}\%^{15}\text{N}_{\text{roots},\text{ref}}} \times 100\%,$$

where the 15N rhizodeposition (\%NdfR) is the 15N atom percentage of the soil (at.%15N$_{\text{soil}}$ – at.%15N$_{\text{soil},\text{ref}}$) related to the atom percentage in the roots (at.%15N$_{\text{roots}}$ – at.%15N$_{\text{roots},\text{ref}}$).
Corrections for variation in the background signal of the non-labelled reference samples are given as ref. Enrichment (at.%15N) in the soil was the sum of enrichment (at.%15N) in the rhizosphere and the bulk soil, in proportion to the N pool sizes (g N).

2.4. Assumptions

Both methods that were used to estimate 15N rhizodeposition assume (1) a homogenous 15N distribution of the tracer within the N pools. Furthermore, 15N rhizodeposition based on the Janzen and Bruinsma equation [24] assumes (2) comparable 15N enrichment levels in both roots and rhizodeposits.

2.5. Data analysis

With the limited amount of observations per treatment and tree species ($n = 3$), normality of the data set could neither be accepted nor rejected. Assuming that the data set was normally distributed, we performed an independent (differences between species and treatments) and paired (change over time) two-tailed t-test with Welch correction for non-homogeneity of variance in R.

3. Results

3.1. Enrichment and recovery of 15N in the plant–soil system

The total 15N recovery per species, treatment and time step varied between 62 and 93 % of total 15N added, of which the majority (40–70 %) remained available at the 15N side (roots + soil) of the set-up (Figure 2). The proportions (%) that were taken up and released

![Figure 2](image_url). Average (\pm sd) recoveries (% of applied 15N) for each species, treatment and time step. Divided into the 14N side (& needles + stem) and the 15N side soil compartments.
Figure 3. Average recoveries (% of applied 15N) for Scots pine (A and B) and for Norway spruce (C and D) at three and 6 weeks after labelling. There are two 15N addition levels, low (light grey) and high (dark grey). The arrow indicates total recovery (% 15N$_{\text{rec}}$) in above- and belowground (14N side) compartments. Belowground compartments are divided in roots (square), rhizosphere (pentagon) and bulk soil (circle). For further explanation of the soil compartments see Figure 1.
(at the \(^{14}\text{N} \text{side})\) in the various N pools are visualized in Figure 3. It shows a fast uptake and release of \(^{15}\text{N} \text{in the above- (needles + stem) and belowground (roots, rhizosphere and bulk soil) N pools, for both tree species and for low and high concentrations of \(^{15}\text{NH}_4^+\). Three weeks after labelling, Scots pine seedlings took up 23.7 % of the applied low and 9.1 % of the applied high \(^{15}\text{NH}_4^+\) concentrations (Figure 3(A)). Six weeks after labelling, these levels increased towards 37.5 and 23.7 %, respectively (Figure 3(B)). For Norway spruce this was 21.5 and 32.1 % after 3 weeks (Figure 3(C)), and 23.2 and 36.0 % after 6 weeks (Figure 3(D)), for the low and high treatment, respectively. The \(^{15}\text{N} \text{recovery values for the N pools are also shown in Table 1, combined with the associated \(^{15}\text{N} \text{abundance levels and pool sizes.}}\)

3.1.1. Treatment effects

Treatment effects were most evident when looking at the \(^{15}\text{N} \text{abundance levels (Table 1). Especially Norway spruce showed significant higher abundance levels in the needles + stem and roots within the high treatment compared with the low treatment. In Scots pine, significant higher abundance levels were only found in the needles + stem at time 6 within the high treatment (P < .1). Still the average abundance values of the high treatments were always higher compared with the low treatment, confirming our expectations that the trees took up more \(^{15}\text{N} \text{when there was more \(^{15}\text{NH}_4^+\) available. \(^{15}\text{N} \text{recovery levels in the (above- and belowground on the \(^{14}\text{N} \text{side}) Scots pine N pools were generally higher within the low treatment compared to the high treatment, most likely because a relatively larger proportion of \(^{15}\text{N} \text{remained behind at the \(^{15}\text{N} \text{side of the set-up within the high treatment (Figure 2). In the bulk soil samples of Scot pine, this resulted in significant higher recovery levels (P < .1; P < .05) in the low treatment in comparison with the high treatment at both time steps. For Norway spruce, significant higher recovery levels (P < .1; P < .05) were found in the rhizosphere samples within the low treatment at both time steps. \(^{15}\text{N} \text{recovery in the needles + stem was significantly higher (P < .01) in the high treatment, 6 weeks after labelling.}}\)

3.1.2. Species effects

Species effects were most evident in terms of tree biomass. Tree biomass (needles + stem and roots) of Norway spruce was often significantly higher (P < .05; P < .001) compared to Scots pine. This resulted in generally (not significantly) lower \(^{15}\text{N} \text{abundance levels for Norway spruce compared to Scots pine. Despite the lower \(^{15}\text{N} \text{abundance levels, recovery levels of Norway spruce in the needles + stem and roots within the high treatment were often significantly (P < .1; P < .05) higher in Norway spruce compared to Scots pine.}}\)

3.1.3. Influence of time

To investigate seedling growth, tree biomass pool sizes (g) at 3 and 6 weeks after labelling were compared with the time before labelling (\(t_0\)). Compared to \(t_0\), significant increases were found at \(t_0\) for Norway spruce aboveground biomass (needles + stem) within the low treatment (P < .1) and for Norway spruce roots within the low (P < .05) and high (P < .1) treatment. To investigate changes in \(^{15}\text{N} \text{abundance over time, the abundance levels at 3 and 6 weeks after labelling were first compared with the natural abundance levels (\(t_0\)) to confirm that there was some actual \(^{15}\text{N} \text{uptake and release. As expected, \(^{15}\text{N} \text{abundance levels at \(t_3\) and \(t_6\) were in most cases significantly (P < .1; P < .01) higher}}\)
<table>
<thead>
<tr>
<th>Species</th>
<th>Treatment</th>
<th>Sample type</th>
<th>Pool size (g)</th>
<th>Abundance (δ15N ‰)</th>
<th>Recovery (%15Nrec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Pine</td>
<td>Low</td>
<td>Needles + Stem</td>
<td>4.3±0.4</td>
<td>5.3±1.2</td>
<td>4.6±0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roots</td>
<td>1.8±0.2</td>
<td>2.3±0.5</td>
<td>tr*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhizosphere</td>
<td>67.7±22.3</td>
<td>60.2±28.9</td>
<td>64.4±21.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulk</td>
<td>216.5±84.8</td>
<td>2159.3±132.4</td>
<td>2104.8</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Needles + Stem</td>
<td>4.4±0.5</td>
<td>5.2±1.1</td>
<td>tr*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roots</td>
<td>1.1±0.1</td>
<td>2.2±0.6</td>
<td>13,345±10,568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhizosphere</td>
<td>33.0±9.8</td>
<td>77.3±34.0</td>
<td>181±1065</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulk</td>
<td>2103.2±89.3</td>
<td>2104.8</td>
<td>55±13</td>
</tr>
<tr>
<td>Spruce</td>
<td>Low</td>
<td>Needles + Stem</td>
<td>10.5±1.4</td>
<td>11.6±1.3</td>
<td>sp***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roots</td>
<td>4.5±0.5</td>
<td>4.6±1.3</td>
<td>sp***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhizosphere</td>
<td>71.3±10.3</td>
<td>79.6±10.4</td>
<td>129.2±45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulk</td>
<td>2472.7±43.6</td>
<td>1991±212.4</td>
<td>2104.8</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Needles + Stem</td>
<td>12.1±2.2</td>
<td>13.9±1.0</td>
<td>sp***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roots</td>
<td>5.5±0.3</td>
<td>5.9±0.1</td>
<td>sp***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhizosphere</td>
<td>142.1±16.6</td>
<td>110.5±41.5</td>
<td>tr*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulk</td>
<td>2233.3±121.8</td>
<td>2104.8</td>
<td>159±116</td>
</tr>
</tbody>
</table>

Note: Given as mean ± standard deviation (n = 3). Bulk soil pool sizes (g) at week 6 are mean values of pool sizes at week 3, due to loss of the data. Significant differences between species (sp), treatments (tr) or time steps (t0 or t1) are given at levels: *** (P < .01), ** (P < .05) or * (P < .1).
in comparison with t_0, except for the high treatment of Scots pine at t_3. This was most likely affected by the high standard deviations. Actual changes in 15N recovery from 3 to 6 weeks after labelling were small. However, significant increases in 15N recovery were found within the high treatment of Scots pine in the needles + stem ($P < .1$), roots ($P < .001$) and bulk soil ($P < .1$). 15N recovery in the rhizosphere of Norway spruce was significantly higher ($P < .05$) at t_3 compared to t_6.

3.2. 15N rhizodeposition

We used two different approaches to estimate 15N rhizodeposition, the mass balance approach and the Janzen and Bruinsma equation [24]. 15N recovery levels in the rhizosphere varied between 0.05 and 0.27 % and in the bulk soil between 0.04 and 0.89 % (Figure 2 and Table 1). The relatively small pool sizes of the rhizosphere resulted in higher 15N abundance levels in comparison with the bulk soil, but in lower recovery levels. 15N recovery levels in both soil pools were often higher for Scots pine than for Norway spruce, but only significantly higher in the high treatment at t_6 ($P < .1$). For Scots pine, the 15N recovery levels in the soil were generally higher in the low treatment compared to the high treatment, which were significantly higher in the bulk soil at both time steps ($P < .1$; $P < .05$). Scots pine 15N recovery levels in the soil slightly increased over time, but significantly only in the high treatment at t_6 ($P < .1$). For Norway spruce, 15N recovery levels in the soil (rhizosphere + bulk soil) were generally higher (not significantly) in the low treatment compared to the high treatment. 15N recovery levels in the soil slightly decreased over time, except for the bulk soil pool within the low treatment at t_6. The soil (rhizosphere + bulk soil) to root ratio (%Ndfr) defined by Janzen and Bruinsma [24] to estimate 15N rhizodeposition was often higher for Scots pine than for Norway spruce, only significantly higher ($P < .05$) within the low treatment at 3 weeks after labelling. For both species %Ndfr values were significantly higher within the low treatment compared to the high treatment ($P < .1$; $P < .05$). Variations over time were not significant. Both approaches showed similar trends in terms of treatments, species and time effects.

4. Discussion

4.1. Suitability of the split-root method

The main purpose of this paper was to test the suitability of the split-root method to measure 15N rhizodeposition. The technique proved to be a suitable method for that

Table 2. Rhizodeposition presented as the percentage of total soil 15N, derived from roots (%Ndfr), for each tree species and treatment, 3 and 6 weeks after labelling.

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>Treatment</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>Low</td>
<td>1.01±0.2 sp**</td>
<td>0.98±0.6 tr*</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.75±0.6</td>
<td>0.29±0.2</td>
</tr>
<tr>
<td>Spruce</td>
<td>Low</td>
<td>0.72±0.4 tr**</td>
<td>1.09±0.2</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.46±0.6</td>
<td>0.3±0.1</td>
</tr>
</tbody>
</table>

Note: Significant differences between species (sp) or treatments (tr) are given at levels: ** ($P < .05$) or * ($P < .1$).
purpose and could be applied to both treatments and tree species. Due to the pot growing conditions of the seedlings, both root systems consisted primarily of lateral roots, which made it easy to separate the roots into two parts without severe damage. We decided to use one pulse label instead of continuous flow or multiple pulses, because this approach provided information about the residence time of the applied 15N in a specific N pool [3]. Thereby, not all injected 15N was taken up by the roots at the same time. A part remained at the 15N side of the soil (Figure 2) for later plant uptake or was immobilized by microorganisms and not available anymore for plant uptake. The high variation between the replicates ($n = 3$) was most likely related to differences in tree biomass and possibly caused by an unequal separation of the roots in terms of size and mass. Unequal root separation would not only affect 15N uptake by the roots, but due to the addition of natural abundance (NH_4SO_4) at the non-labelled side, this would also cause unequal 14N incorporation and dilution in the replicates [25]. Variation between the replicates might have been reduced when seeds were used to self-grow the seedlings and to separate the roots in an early stage.

4.2. Measuring 15N rhizodeposition

15N rhizodeposition was estimated based on two approaches: (1) 15N recovery (%) in the rhizosphere and bulk soil, and (2) the percentage of enriched soil, relative to the roots ($%\text{NdfR}$). Using both approaches we observed slightly higher 15N rhizodeposition levels for Scots pine compared to Norway spruce seedlings. Despite the lower above- (needles + stem) and belowground (roots) pool sizes of Scots pine, their 15N rhizodeposition was higher. A possible explanation is that Scots pine seedlings reached their maximum [17] in terms of 15N storage and translocation to shoot and roots, and consequently released more 15N to the soil. Furthermore, the extra released 15N by Scots pine seedlings might consist of higher proportions of inorganic N as shown by Janzen [5], which requires further identification of the N compounds. Comparing both approaches, we observed higher 15N rhizodeposition within the low treatment in comparison with the high treatment. With increased addition levels, the percentage of enriched soil relative to the roots ($%\text{NdfR}$) or to the total mass balance ($%^{15}$N$_{\text{rec}}$) decreased.

For both methods, the first assumption (homogenous 15N distribution) was largely encountered when most N pools (needles + stem, roots and rhizosphere) were completely milled and mixed prior to the 15N analysis. The bulk soil samples were not entirely milled because of the large pool sizes (approximately 2 kg). For the Janzen and Bruinsma method [24], the second assumption (comparable 15N abundance levels in both roots and rhizodeposits) was more difficult to meet because changes in root 15N enrichment levels were not one-to-one related to changes in 15N enrichment levels in the soil. 15N levels in the roots could have been diluted due to shoot or root growth, causing overestimated results. Though, the remainder of 15N in the soil (15N side) might have contributed to a relatively constant uptake of 15N by the roots. An important aspect related to the second assumption is time. The longer the duration of the experiment, the larger the potential for dissimilar 15N abundance levels in both roots and rhizodeposits. In the current time frame (6 weeks), we saw that the roots did not take up all of the injected 15N, possibly contributing to a relatively constant uptake of 15N by the roots. With a longer duration of the experiment, it is expected to be more difficult to keep the tracer content of the
roots constant over the growing period of the trees. This will then disqualify the use of the Janzen and Bruinsma equation [24] for calculating rhizodeposition. In that case, the tracer mass balance equation would be the only suitable approach [26].

5. Conclusion

The split-root method proved to be suitable to measure 15N rhizodeposition. The seedling roots could easily be separated in two parts for both tree species, and there was no 15N contamination in the soil at the 14N side of the split-root set-up. 15N rhizodeposition was already visible at 3 weeks after labelling, for both tree species and for both low and high 15N addition levels. In terms of 15N rhizodeposition, some significant differences between the two treatments were observed, small trends between the two species, but no explicit trends over the time period of 6 weeks. These results offer potential applications of the method in studies related to 15N rhizodeposition compound identification and its fate in the soil. Also, analysis of 15N in various soil fractions can provide information about the stability of the 15N rhizodeposits in the soil and ultimately about its contribution to soil organic compound stabilization.

Acknowledgements

We are grateful to Dr Chiara Cerli and Joke Westerveld for their laboratory assistance. We thank Ludek Tikovski and Harold Lemereis for their care in the greenhouse.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Earth and Life Sciences (ALW) division of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) [grant number 824.14.013].

References

[23] Wessel WW, Tietema A, Boxman AW. The fate of 15NH$_4$ labeled deposition in a Scots pine forest in the Netherlands under high and lowered NH$_4$ deposition, 8 years after application. Biogeochemistry. 2013;113:467–479.

