Entropy driven separations in nanoporous materials
Torres Knoop, A.

Link to publication

Citation for published version (APA):
Torres Knoop, A. (2016). Entropy driven separations in nanoporous materials

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Entropic Separation of Styrene/Ethylbenzene Mixtures *

7.1 Introduction

Styrene is an important feedstock in the petrochemical industry. The reactivity of its vinyl group makes styrene easy to polymerize and copolymerize and therefore it serves as raw material for the production of a great variety of materials, the two most important being polystyrene and rubber. [1] Although styrene appears in small quantities in nature, the global consumption (of the order of millions of tons per year) requires its commercial production. There are two main methods to obtain styrene: dehydrogenation of ethylbenzene and co-production of styrene and propylene oxide via hydroperoxidation of ethylbenzene. Direct dehydrogenation of ethylbenzene to styrene accounts for the majority of the production. The conventional method involves two steps: the alkylation of benzene with ethylene to produce ethylbenzene and the dehydrogenation of the ethylbenzene to produce styrene. Complete conversion is not achieved in the reactor and therefore the product stream contains a large fraction of ethylbenzene that has to be removed.

The preferred technology for the ethylbenzene/styrene separation nowadays is extractive distillation [2] and vacuum distillation [3, 4] together with inhibitors like phenylene-diamines or dinitrophenols to avoid styrene polymerization.

However, because of the similarity in the boiling point of styrene (418 K) and ethylbenzene (409 K), this process is energetically expensive and most of the energy needed for the production of styrene is used in the separation process. The

Chapter 7. Entropic Separation of Styrene/Ethylbenzene Mixtures

process is even more complicated due to the presence of side products like toluene, o-xylene and benzene.

An alternative energy-efficient separation strategy involves utilizing the molecular, chemical and geometrical differences by means of adsorptive separation with nanoporous materials like metal-organic frameworks and zeolites. Ahmad et al. [5] performed liquid chromatography separation using HKUST-1(Cu$_3$(BTC)$_2$) a metal-organic framework with open Cu(II) sites and 1,3,5-benzenetricarboxylate (BTC) linkers. They found that styrene is preferentially adsorbed in the structure because of the coordinative interaction of styrene with the Cu(II) in a π-complexation mechanism. Maes et al. [6, 7] and Remy et al. [8] reported results on MIL-47(V) and MIL-53(Al), showing both structures are capable of separation in the liquid phase. They found that in MIL-47(V) styrene selectivity is related to styrene capacity for packing, while for MIL-53(Al) styrene selectivity is related to adsorption enthalpy (interaction with the carboxylate). For competitive adsorption in static conditions, they reported separation factors of 3.6 and 4.1 for MIL-47(V) and MIL-53(Al), respectively, and for an equimolar mixture in dynamic conditions (breakthrough experiments using a column filled with crystallites in an HPLC apparatus) they found separation factors of 2.9 and 2.3. They also observed that if a more realistic mixture is taken into account (with toluene and o-xylene) in MIL-53, o-xylene and toluene are retained even longer, which makes the material good for impurity removal. Yang et al. [9] conducted experiments on stationary phase HPLC with MIL-101(Cr), a material built from a hybrid supertetrahedral building unit formed by terephthalate ligands and trimeric chromium octahedral clusters. Similar to HKUST-1, they reported a higher affinity towards styrene due to the π-π interactions with the metal-organic framework walls and the unsaturated metal sites. They also reported the efficient separation of impurities like o-xylene and toluene.

Separation based on adsorption relies on either adsorption or diffusion characteristics. At low loadings (i.e. the Henry regime), the selectivity is mainly driven by enthalpic effects, and favors the molecule with the strongest interaction with the framework. Selectivity is therefore strongly related to adsorbent and adsorbate properties such as dipole moment, polarizability, quadrupole moment and magnetic susceptibility. At saturation conditions (industrial set-up) the selectivity is driven by either enthalpic effects and/or entropic effects, like:

- **commensurate freezing** [10], which favors molecules which efficiently pack in intersecting-channels structures;

- **size entropy** [11, 12], which favors the smallest molecules;

- **length entropy** [11, 13–15], which favors the molecules with the shortest effective length (footprint) in one-dimensional channels;

- **commensurate stacking** [16], which favors molecules with stacking arrangements that are commensurate with the dimensions of one-dimensional channels;
• *face-to-face stacking* [17], which favors molecules that, when reoriented, significantly reduce their footprint in one-dimensional channels.

The various separation strategies for exploitation of molecular packing effects have been reviewed recently. [18]

Styrene and ethylbenzene are very similar molecules, the main difference being that styrene is a flat molecule whereas ethylbenzene is not. Finding structures with selective adsorption for styrene is not easy. In this work we present a screening study for the separation of styrene and ethylbenzene at liquid conditions. We propose to separate on the basis of a difference in saturation loading because it is more cost-efficient and utilizes the pore volume most efficiently.

7.2 Methodology

The systems were modeled using classical force fields. The adsorbates were modeled with OPLS-AA force field for organic liquids [19]. In previous work [16] we have shown that the use of these force fields is in good agreement with experiments. Because we were interested in the selectivity of planar/non-planar molecules and not in their conformational changes, adsorbates were described as multisite rigid molecules with properties and configurations shown in Figure 7.1. The parameters for the interaction of the adsorbates (Lennard-Jones and electrostatic interactions) together with a schematic representation of the molecules showing the atom types are presented in Table 7.1. Cross-interactions with other molecules and the framework were computed using Lorentz-Berthelot mixing rules.

![Styrene and ethylbenzene configurations](image)

Figure 7.1: Styrene (top) and ethylbenzene (bottom) configurations. The figure shows the typical properties of the modeled adsorbates. Distances are "molecular shadow lengths" [20] from Materials Studio [21]. Besides small differences in the charges, the main difference between these molecules is their height (planarity).
Table 7.1: OPLS-AA force field parameters for styrene and ethylbenzene [19]. The vinyl group charges (*) were taken from Shirley et al. [22].

<table>
<thead>
<tr>
<th>atom/group</th>
<th>q [e⁻]</th>
<th>σ [Å]</th>
<th>ε [kcal mol⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.115</td>
<td>3.55</td>
<td>0.070</td>
</tr>
<tr>
<td>C1</td>
<td>-0.115</td>
<td>3.55</td>
<td>0.076</td>
</tr>
<tr>
<td>C2</td>
<td>-0.005</td>
<td>3.50</td>
<td>0.066</td>
</tr>
<tr>
<td>C3</td>
<td>-0.180</td>
<td>3.50</td>
<td>0.066</td>
</tr>
<tr>
<td>C4</td>
<td>-0.000</td>
<td>3.55</td>
<td>0.076</td>
</tr>
<tr>
<td>C5</td>
<td>-0.115</td>
<td>3.55</td>
<td>0.076</td>
</tr>
<tr>
<td>C6</td>
<td>-0.148*</td>
<td>3.55</td>
<td>0.076</td>
</tr>
<tr>
<td>H</td>
<td>0.115</td>
<td>2.42</td>
<td>0.030</td>
</tr>
<tr>
<td>H1</td>
<td>0.060</td>
<td>2.42</td>
<td>0.030</td>
</tr>
<tr>
<td>H2</td>
<td>0.074*</td>
<td>2.42</td>
<td>0.030</td>
</tr>
</tbody>
</table>

The frameworks were modeled as rigid with atom positions taken from crystallographic experimental data. Most MOFs were further optimized using VASP [23, 24] with the cell fixed to the experimentally determined unit cell size and shape (PBE [25, 26] exchange-correlation functional with dispersion corrections [27] was used and the PAW method was applied to describe the core atoms; convergence criteria of the ionic forces was set to -1×10⁻³ Å/eV). The metal-organic frameworks were modeled using the DREIDING force field [28] and Van der Waals parameters not found in DREIDING were taken from the universal force field (UFF) [29]. DREIDING and UFF force fields were designed to be very generic, so that broad coverage of the periodic table, including inorganic compounds, metals, and transition metals, could be achieved. UFF was tailored for simulating molecules containing any combination of elements in the periodic table. For the zeolites the TraPPE [30] force field was used. This force field was specifically developed for zeolites.

The charge-charge interactions were computed using the Ewald summation (relative precision 10⁻⁶). Charges for the frameworks were computed by minimizing the difference of the classical electrostatic potential and a quantum mechanics electrostatic potential over many grid points using the REPEAT method [31, 32].

7.3 Adsorption isotherms

To compute the adsorption isotherms we perform Monte Carlo simulation in the grand-canonical ensemble (or µ, V, T ensemble). In this ensemble, the number of adsorbates fluctuates until equilibrium conditions are reached: the temperature and chemical potential of the gas inside and outside the adsorbent are equal. Because in confined systems the fraction of successful insertions and deletions is very low, reaching equilibrium with conventional Monte Carlo methods can be very time consuming. In this study we used the Configurational Bias Continuous Fractional Monte Carlo (CB/CFCMC) [33] method to enhance the success rate of
insertions and deletions. The method is a combination of the Configurational Bias Monte Carlo (CBMC) [34–36], where molecules growth is biased towards favorable configurations and Continuous Fractional Component Monte Carlo (CFCMC) [37] in which molecules are gradually inserted or deleted by scaling their interactions with the surroundings. We have shown in previous work [33] that the results obtained with this method do not differ from CBMC calculations but the efficiency is higher.

Using the dual-site Langmuir-Freundlich fits of the pure component isotherms, breakthrough calculations were carried out by solving a set of partial differential equations for each of the species in the gas mixture [38, 39]. The molar loadings of the species at any position along the packed bed and at any time were determined from Ideal Adsorbed Solution Theory calculations. Video animations of the breakthrough behavior as a function of time of selected structures are provided as web-enhanced objects online.

7.4 Results

We perform a screening study of several zeolites and metal-organic frameworks for the separation of styrene/ethylbenzene mixture focusing on saturation conditions. Under these conditions, differences in the saturation capacity of the mixture components strongly dictate the separation.

In systems with small pores, like MRE and MTW zeolites, molecules are forced to adsorb parallel to the channels. The saturation capacity is determined by the effective length per molecule in the channel (footprint). Because of the similarity in the length of styrene and ethylbenzene, the difference in saturation capacities is almost negligible, making systems with small pores unsuitable candidates for the separation.

In structures with cavities or channels much larger than styrene and ethylbenzene molecular dimensions, like IRMOF-1 and Zn-DOBDC, molecules do not present any particular packing. The observed difference in the saturation capacities is a consequence of the natural packing of the molecules in liquid phase ($\rho_{St} = 0.909$ g/mL, $\rho_{Eb} = 0.8665$ g/mL). This makes these materials also unsuitable for the separation process.

We have identified a few materials where styrene has a higher saturation capacity than ethylbenzene. In the following we describe how this difference arises from the previously mentioned entropic mechanisms and we highlight their applicability for the separation process.

Size exclusion is observed in MFI-para [40]. MFI-para is a ZSM-5 zeolite which structure is a combination of interconnected straight and zigzag channels. The straight channels have a diameter of 5.3×5.6 Å and the zigzag channels have a diameter of 5.1×5.5 Å. In Figure 7.2b the simulated single component isotherms of styrene and ethylbenzene in MFI-para at 433 K and snapshots of styrene and ethylbenzene at 1×10^9 Pa and 433 K are presented. At low loadings molecules
preferentially adsorb in the straight channels, the difference in loadings arise from a stronger interaction of styrene with MFI-para. At saturation conditions, styrene can obtain almost twice the loading of ethylbenzene because of a size exclusion effect in the zig-zag channels in which ethylbenzene does not fit due to its height. When an equimolar styrene/ethylbenzene mixture is considered, the difference in loadings at saturation conditions is even larger (Figure 7.2c).

Figure 7.2: (a) Snapshots of ethylbenzene (top) and styrene (bottom) at 1×10^9 Pa and 433 K. (b) Single component isotherms of styrene (red) and ethylbenzene (blue) in MFI-para at 433 K (lines are dual-site Langmuir-Freundlich fits of the pure components, points are the pure component isotherms from CB/CFCMC simulations). (c) Mixture component isotherms for an equimolar mixture in MFI-para at 433 K.

Face-to-face stacking occurs in MAZ [41] and AFI [42] zeolites. MAZ and AFI are 1D-channel zeolites with dimensions that allow a molecular reorientation of ethylbenzene and styrene.

In Figure 7.3 we present the simulation results for the single component isotherms of ethylbenzene and styrene in AFI zeolite at 433 K. At low loadings molecules are mostly adsorbed flat on the walls (parallel to the channels axis), adsorption is dictated by enthalpy effects, which favors ethylbenzene. As the loading increases, the molecules undergo a molecular reorientation from a configuration parallel to the channel axis to a “pile” configuration with the phenyl groups facing each other. This new configuration (face-to-face stacking) reduces styrene’s footprint more than ethylbenzene’s footprint (Figure 7.6a) because of the non-planarity of ethylbenzene, allowing styrene to obtain higher saturation loadings.

For MAZ zeolite a similar behavior is observed however, because MAZ zeolite has smaller channels than AFI, the angle at which molecules can reorient has a smaller effect on the reduction of the molecule’s footprint in the channels (Figure 7.6b). When an equimolar mixture is considered both AFI and MAZ zeolites are styrene selective at saturation conditions as shown in Figures 7.4a and 7.4b where the simulated mixture component isotherms at 433 K are presented.
7.4 Results

Figure 7.3: Single component isotherms of styrene and ethylbenzene in AFI at 433 K. Inset: snapshots of styrene (top) and ethylbenzene (bottom) at 1×10^3 Pa and 1×10^9 Pa. At low loadings both molecules are adsorbed with the phenyl group parallel to the channel axis. At higher pressures styrene can arrange in a tilted face-to-face stacking configuration, which reduces its footprint and allows for a higher saturation capacity. The difference in saturation capacities ensures the selectivity of AFI towards styrene at saturation conditions in the mixture.

Figure 7.4: Mixture component isotherms for and equimolar mixture of styrene and ethylbenzene at 433 K in (a) AFI zeolite and (b) MAZ zeolite.

Face-to-face stacking is also observed in DON zeolite. DON [43] is a structure with 1D-channels slightly larger than AFI and MAZ zeolites. This increase in dimensions favors ethylbenzene to undergo a molecular reorientation into a face-to-face stacking configuration but also, because the diameter of the channels are larger than the length of styrene, it induces styrene to adopt a commensurate stacking configuration where the stacking of two molecules with their phenyl groups facing each other is commensurate with the channel dimensions (Figures 7.5a). This is also observed in MIL-53 [44], a metal-organic framework with lozenge-shaped rhombohedric channels of approximately 0.85 nm, as show in Figure 7.5b.
Figure 7.5: (a) Snapshots of styrene (left) and ethylbenzene (right) in DON zeolite at 1e9 Pa and 433 K. (b) Snapshots of styrene (left) and ethylbenzene (right) in MIL-53 at 1e9 Pa and 433 K. Color code: carbon (cyan), hydrogen (white).

where snapshots of styrene and ethylbenzene at 1×10^9 Pa and 433 K are presented. Because of styrene and ethylbenzene dimensions, styrene with commensurate stacking can obtain higher saturation capacities than ethylbenzene with face-to-face stacking as shown schematically in Figure 7.6c. This is also seen in DON and MIL-53 single component isotherms (Figure 7.7a). Mixture isotherms (Figures 7.7b) and breakthrough curves (Figure 7.7c) further confirm that DON and MIL-53 are styrene selective structures.

Commensurate stacking for both styrene and ethylbenzene is observed in MIL-47 [45] and MAF-X8 [46]. MIL-47 is a metal-organic framework with lozenge-shaped rhombohedric channels which size (slightly larger than MIL-53) allows for ethylbenzene to also have commensurate stacking. In Figure 7.8 we present the simulated single component adsorption isotherms of ethylbenzene and styrene in MIL-47 at 433 K and snapshots of styrene and ethylbenzene at 1×10^6 Pa and 1×10^9 Pa. At 1×10^9 Pa both molecules have commensurate stacking, but in order for ethylbenzene to have commensurate stacking the phenyl groups have to be slightly shifted due to the non-planar ethyl group. This shift affects the amount of ethylbenzene molecules that can be adsorbed (as compared to styrene) and therefore, causes a difference in the saturation capacity of styrene and ethylbenzene. Interestingly, commensurate stacking occurs at lower loading for styrene than for ethylbenzene. We can see in Figure 7.8 that at 1×10^6 Pa styrene already presents commensurate stacking while ethylbenzene seems to have more of a face-to-face stacking. In a mixture, this will favor styrene adsorption even more. In Figure 7.9 simulated mixture adsorption isotherms for an equimolar mixture in MIL-47 at 433 K are presented. MIL-47 is a styrene selective structure. Our results are in good qualitative agreement with Maes et al. [6]. Breakthrough simulations further confirm that MIL-47 is a styrene selective structure at saturation conditions. In MAF-x8, a metal-organic framework with square channels of approximately 1nm,
Figure 7.6: Schematic representation of different entropic effects occurring in the separation of styrene and ethylbenzene in nanoporous materials. (a) The reduction of the molecule's footprint in the channels because of a reorientation into a face-to-face stacking configuration. (b) Effect of the channel size on the reorientation and therefore molecule's footprint reduction. (c) Comparison of the channel length needed for two molecules of styrene to have commensurate stacking vs. two molecules of ethylbenzene to have face-to-face stacking.

Figure 7.7: Simulated isotherms and breakthrough curves of styrene and ethylbenzene in MIL-53 (top) and DON (bottom) at 433 K. (a) Pure component isotherms (lines are dual-site Langmuir-Freundlich fits of the pure components, points are the pure component isotherms from CB/CFCMC simulations). (b) Mixture component isotherms for an equimolar mixture. The IAST results are in good agreement with the mixture isotherms. (c) Simulated step-type breakthrough at 1e6 Pa total fugacity.
it is easier for ethylbenzene to have commensurate stacking than in MIL-47. The single component isotherms of both molecules behave very similar. The topology of the structure seems to induce a shift between parallel styrene molecules and allows for the ethyl group of ethylbenzene to stick in the channel “pockets” (Figure 7.10). This might be the reason for the smaller difference in saturation capacities of styrene and ethylbenzene compared to MIL-47.
Combination/competition of mechanisms is observed in structures with a more complex topology. An example of this is MOF-CJ3 metal-organic framework [47]. The wide segment of the channels are big enough to allow for both styrene and ethylbenzene to form two parallel rows (commensurate stacking), however the shape of the channels forces ethylbenzene molecules to adopt a configuration where the ethyl group is pointing to the channel “pockets”. Styrene has more freedom and molecules can arrange in a way that an extra styrene can be adsorbed in the protracted segments in a configuration perpendicular to the channel (face-to-face stacking) (Figure 7.11). The interplay between different mechanisms rarely makes the separation better. Even when all the mechanisms favor a specific molecule, the competition between them can induce enough disorder to destroy the selectivity one could achieve with a “pure” mechanism.

Figure 7.10: Snapshots of (a) styrene and (b) ethylbenzene in MAF-X8 at 1e9 Pa and 433 K. Both styrene and ethylbenzene have commensurate stacking. Color code: carbon (cyan), hydrogen (white). (c) Simulated single component isotherms of styrene and ethylbenzene in MAF-X8 at 433 K.

Figure 7.11: Snapshots of styrene (top) and ethylbenzene (bottom) at 1×10^9 Pa and 433 K in MOF-CJ3.
7.5 Discussion

There are two important factors to consider when using adsorption for separation processes at industrial conditions, namely selectivity and capacity. A high selectivity ensures that less cycles are needed to achieve a high degree of purity in the separation, but a high capacity implies that the regeneration time is longer. For a binary mixture the adsorption selectivity is defined as

$$S_{ads} = \frac{q_1}{q_2} \frac{f_1}{f_2}$$

(7.1)

and the capacity is defined as the styrene loading in the adsorbed phase of a binary mixture.

$$\text{Capacity} = q_1$$

(7.2)

In Figure 7.12, the relationship between these two properties for different structures is presented. Structures with the same separation mechanism are plotted with the same color. An ideal structure for the separation would be located at the right top corner.

![Figure 7.12: Selectivity as a function of styrene loading (capacity) in a binary mixture at 433 K and 1×10^6 Pa total fugacity. The structures are divided in different colors depending on the selectivity mechanism observed. Color code: Size exclusion (red), face-to-face stacking (purple), commensurate stacking (blue), commensurate-stacking/facet-to-face stacking (green), mixed (orange). The dotted red line corresponds to the ratio styrene/ethylbenzene at liquid conditions. There is a natural trade-off between selectivity and loading, finding structures in the top right corner is not feasible. The black dashed line (guide to the eye) denotes the inverse relationship between selectivity and capacity. MIL-47 is a styrene selective material with a high capacity, therefore a good candidate for the styrene/ethylbenzene separation.](image-url)
In structures where the separation is driven by size-exclusion (MFI-para), the selectivity is high because there is an adsorption site available only for styrene (zig-zag channels) but the capacity is rather low since for size-exclusion to occur among similar molecules, there has to be a very tight fit between the molecules and the adsorbent, usually associated with small pore systems.

In structures where the separation is driven by face-to-face stacking the selectivity relies on the increase of the molecule’s footprints difference, consequence of a reorientation and piling. Ideally, only one of the mixture components should be able to reorient but in the case of styrene and ethylbenzene the similarity in their length and width makes no significant difference in the pore size needed for the reorientation. The selectivity relies thus in how favorable the reorientation and piling are.

In MAZ and AFI both molecules can reorient but the reorientation is restricted by the pore size, forcing a tilting in the face-to-face stacking configuration that is unfavorable for ethylbenzene to form a pile but it is favorable for styrene. This allows styrene to obtain higher saturation loadings and ensures MAZ and AFI styrene selectivity at saturation conditions.

However, face-to-face stacking only occurs at high loadings. In Figure 7.12 the selectivity is presented at 1×10^6 Pa. At this fugacity, MAZ is not yet styrene selective and AFI selectivity is almost negligible. The effect of face-to-face stacking in styrene selectivity can only be observed at higher loadings as shown in Figure 7.13, where the selectivity as a function of styrene loading for higher fugacities is presented.

![Figure 7.13: Selectivity (q_{st}/q_{eb}) in an equimolar mixture at 3 different fugacities. The dashed red line corresponds to the liquid phase ratio. For all the cases styrene loading increases with the fugacity (shift to the right of the plot). The selectivity also increases in most of the cases with the fugacity (shift upwards) except for MFI-para, JUC-77, MIL-47 and Cu-BTC.](image-url)
Face-to-face stacking can only occur when the reoriented molecules are commensurate with the channel diameter. This has an important restriction in the pore size and therefore in the capacity.

In structures where styrene has commensurate stacking an ethylbenzene has face-to-face stacking (as observed in MIL-53 and DON), the difference in saturation capacities arises because the channel length needed to accommodate molecules of styrene in commensurate stacking is smaller than the channel length needed to accommodate molecules of ethylbenzene in face-to-face stacking. When an equimolar mixture is considered, styrene will be favored even more because it does not have to undergo any reorientation to achieve higher loadings. Structures with pore sizes that allow styrene to have commensurate stacking, but not ethylbenzene, are styrene selective and have a higher saturation capacity than structures that present face-to-face stacking or size exclusion.

In structures where both, styrene and ethylbenzene can have commensurate stacking (MIL-47 and MAF-X8), the selectivity will depend on the efficiency in which the molecules can stack. In Figure 7.14 we present schematic commensurate stacking configurations of styrene and ethylbenzene. For ethylbenzene to have commensurate stacking the “minimal length”, the “packing length” or both have to be larger than for styrene. At saturation conditions, this implies that more styrene molecules can be adsorbed than ethylbenzene ones, favoring the adsorption of styrene over ethylbenzene in a mixture. Commensurate stacking enhances the dimensional differences of styrene and ethylbenzene as “pairs” of molecules. Because commensurate stacking occurs in structures with larger pores, high capacity can be attained.

Commensurate stacking is the best mechanism for the separation of ethylbenzene and styrene. It offers a geometrical solution to the separation problem that ensures a high selectivity and it occurs in open pore structures ensuring a high
capacity. The channel topology can facilitate or impede the selectivity.

In the case of MIL-47, the almost planar walls force ethylbenzene molecules to be shifted increasing the difference in “length” per pair of molecules in the channel as compared to styrene. This makes MIL-47 a highly styrene selective material and the best candidate for the separation of styrene/ethylbenzene from the structures we screened.

7.6 Conclusion

Styrene and ethylbenzene are very similar molecules and finding structures that can discriminate between them is not easy. At liquid conditions, the success in the separation process is strongly related with difference in saturation capacities of the mixture components which in turn is strongly dictated by the underlying entropic mechanisms occurring in the nanoporous material. Commensurate stacking offers the best trade-off between saturation capacity and selectivity and is therefore a very efficient mechanism for the separation of styrene and ethylbenzene. Among the different structures we studied, MIL-47, a styrene selective structure, is the best candidate for the adsorpitive separation of styrene/ethylbenzene mixture in nanoporous materials. Commensurate stacking offers a geometrical solution to the separation of planar/non-planar molecules, this enables a convenient approach to designing materials for the separation.

Acknowledgments

This material is supported by the Netherlands Research Council for Chemical Sciences (NWO-CW), also through a VIDI grant (David Dubbeldam) and by the Stichting Nationale Computerfaciliteiten (National Computing Facilities Foundation, NCF) for the use of supercomputing facilities.

Associated Content

This material provides (a) structural details of various materials investigated (b) pure component and mixture adsorption data, (c) dual-Langmuir-Freundlich fits parameters for unary isotherms (d) transient breakthrough simulation results for various materials. http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5b00363.
References

