Qualcomm Research and University of Amsterdam at TRECVID 2015: Recognizing Concepts, Objects, and Events in Video

Published in:
2015 TREC Video Retrieval Evaluation: notebook papers and slides

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Qualcomm Research and University of Amsterdam at TRECVID 2015: Recognizing Concepts, Objects, and Events in Video

Cees G.M. Snoek†∗, Spencer Cappallo∗, Daniel Fontijne†, David Julian‡, Dennis C. Koelma∗, Pascal Mettes*, Koen E.A. van de Sande†, Anthony Sarah‡, Harro Stokman†, R. Blythe Towal†

†Qualcomm Research Netherlands
Amsterdam, The Netherlands
‡Qualcomm Research
San Diego, USA
∗University of Amsterdam
Amsterdam, The Netherlands

Abstract

In this paper we summarize our TRECVID 2015 [12] video recognition experiments. We participated in three tasks: concept detection, object localization, and event recognition, where Qualcomm Research focused on concept detection and object localization and the University of Amsterdam focused on event detection. For concept detection we start from the very deep networks that excelled in the ImageNet 2014 competition and redesign them for the purpose of video recognition, emphasizing on training data augmentation as well as video fine-tuning. Our entry in the localization task is based on classifying a limited number of boxes in each frame using deep learning features. The boxes are proposed by an improved version of selective search. At the core of our multimedia event detection system is an Inception-style deep convolutional neural network that is trained on the full ImageNet hierarchy with 22k categories. We propose several operations that combine and generalize the ImageNet categories to form a desirable set of (super-)categories, while still being able to train a reliable model. The 2015 edition of the TRECVID benchmark has been a fruitful participation for our team, resulting in the best overall result for concept detection, object localization and event detection.

1 Task I: Concept Detection

Up to 2014 the best video concept detection systems in TRECVID combined traditional encodings with deep convolutional neural networks [16, 17], this year we present our system entry that is based on deep learning only. We start from the very deep networks that excelled in the ImageNet 2014 competition [13] and redesign them for the purpose of video recognition. Each of our runs was a mixture of Inception Style [18] and VGG Style networks [15]. The input for each network is raw pixel data, the output are concept scores. The networks are trained using error back propagation. However, in contrast to ImageNet, there are too few labeled examples in the TRECVID SIN 2015 set [1] for deep learning to be effective. To improve the results, we took networks that had already been trained on ImageNet and re-trained them for the 60 TRECVID 2015 SIN concepts. We train a network and apply it on the keyframe and six additional frames per shot, we take the maximum response as the score per shot.

1.1 Submitted Runs

We submitted four runs in the SIN task, which we summarize in Figure 1. Our Gargantua run uses a non-weighted fusion of all available models. It scores an MAP of 0.360 and is the best performer for 7 out of 30 concepts. The Mann run uses a weighted fusion of all models per category. This run obtains an MAP of 0.359 and is the best performer for 6 concepts. Our other runs are based on fewer models, selected based on their validation set performance. The Edmunds run is a non-weighted fusion of 32 models and scores 0.349 MAP (best for 3 concepts). Our Miller run uses only 7 models and obtains the best overall MAP of 0.362, with the highest score for 12 out of 30 concepts. In this run the internal validation set was also added during learning, without verifying its effectiveness at training time. Taken together our runs are the best performer for 20 out of 30 concepts,
2 Task II: Object Localization

Up to 2014 the best video object localization systems in TRECVID combined box proposals [19] with traditional encodings and deep convolutional neural networks [16,17,20], this year we present our system entry that is based on box proposals encoded with deep learning only.

Deep learning features for boxes The deep learning features are extracted using two of the Inception deep neural networks from the SIN taks submission. Compared to a standard AlexNet (29.9 MAP on our validations set), the use of an Inception network brings us an extra 7.4% MAP (37.3 MAP). One network is trained to recognize 2,048 ImageNet categories deemed relevant to TRECVID, the other to recognize 4,096 categories. Compared to a more standard 1,000 ImageNet category network (37.3 MAP), these obtain 39.8/40.3 MAP on our internal validation set of box-annotated TRECVID keyframes. When combined, the two features give us a 43.7 MAP. This is a significant improvement over last years Fisher with FLAIR features [16, 20], which scored 26.5 MAP on our internal validation set.

Box proposals Our entry in the TRECVID 2015 localization task is based on classifying a limited number of boxes
Figure 3: Comparison of Qualcomm Research video object localization experiments with other localization approaches in the TRECVID 2015 Object Localization task.

Table 2: Overview of Qualcomm Research object localization runs on our internal validation set.

<table>
<thead>
<tr>
<th>Run</th>
<th>Threshold</th>
<th>Max boxes</th>
<th>Recall</th>
<th>Precision</th>
<th>F-scores</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamora</td>
<td>0.5</td>
<td>1</td>
<td>34%</td>
<td>55%</td>
<td>0.42</td>
<td>30.9</td>
</tr>
<tr>
<td>Rocket</td>
<td>0.0</td>
<td>1</td>
<td>41%</td>
<td>42%</td>
<td>0.41</td>
<td>35.0</td>
</tr>
<tr>
<td>Starlord</td>
<td>-0.5</td>
<td>1</td>
<td>47%</td>
<td>24%</td>
<td>0.32</td>
<td>38.1</td>
</tr>
<tr>
<td>Groot</td>
<td>-1.1</td>
<td>3</td>
<td>64%</td>
<td>7%</td>
<td>0.12</td>
<td>43.5</td>
</tr>
</tbody>
</table>

2.1 Submitted Runs

All our runs are based on the same set of boxes and confidences (those from the setting which achieved 45.3 MAP), with different thresholds and limits on the number of boxes applied. The different choices aim to optimize either precision or recall, or to strike a balance between both. The different runs are listed in Table 2 with their characteristics on our internal validation set. The results for the 10 object categories evaluated over 6 different measures is shown in Figure 3.

The Groot run is aimed at high recall: it predicts up to 3 boxes per image, to account for multiple object instances. However, this run has a worse pixel recall than those that predict only a single box (Starlord run). In the evaluation only one box is annotated by NIST, and there is a penalty for predicting 3 boxes if there is only one instance. Even though this run will find more object instances, it does not outweigh the penalty for two ‘false positives’. In terms of iframe recall, it does score better than Starlord. Our Gamora run aims at high precision. It obtains the highest score in 19 out of 60 cases, especially in iframe precision, pixel precision, pixel recall and pixel fscore. Our Rocket run is in between Gamora and Starlord in terms of the threshold. It is meant to balance precision and recall, but is almost always outperformed by Gamora (on precision/fscore) or Starlord (on recall). Overall, given the 10 objects and 6 different measures, we have one run with the highest scores in 19 cases, and a total of 23 best scores when considering

Localization system training For training an SVM model to classify boxes, we obtain positive object boxes through human annotation. The negative examples are picked randomly and then we follow the commonly used hard negative mining approach to collect extra negative examples [19, 20]. With the trained SVM models, we classify the box proposals generated by selective search. This forms a localization system that for each frame outputs a number of boxes together with confidence scores per box.
3 Task III: Event Recognition

Last year, our event recognition system was founded on a VideoStory embedding [3]. Rather than relying on predefined concept detectors, and annotations, for the video representation [4,7,9], VideoStory learns a representation from web-harvested video clips and their descriptions. This year our event detection efforts focus on deep learning. The network, Google’s Inception network [18], is trained on a large personalized selection of ImageNet concepts [13] and applied to the frames of the event videos. Below, we outline how the deep network is used in all submissions and fused with other modalities.

Event detection without examples For the event detection submission without using any video training examples, we employ a semantic embedding space to translate video-level concept probabilities into event-specific concepts, as also suggested in [2,6]. The probabilities are computed by averaging frame-level scores from the probability layer of the deep network. The event-specific concepts are taken as the top-ranking terms from the event kit, based on tf-idf. The embedding space is a word2vec model [11]. The score of a test video is calculated as the maximum concept score across the event-specific concepts. To improve performance, we apply a transformation that re-weights concepts based on concept inter-relatedness. This creates a higher prior for the concepts integral to the event. We use the similarity in the word2vec space to generate these weights.

Event detection with ten examples For the event detection submission based on ten examples, we consider two runs. A run using only the deep learning features and a fusion run with several other modalities. For the deep learning features, we compute frame representations twice per second at both the pool5 layer and the probability layer. For both layers, the features are averaged per video and then normalized. A histogram intersection kernel SVM model is trained on the representations from both layers and the scores for a test video are summed. For the fusion, we combine the two deep learning features with two additional modalities. The first modality is based on motion features. MBH and HOG descriptors are computed along improved dense trajectories for each video [21]. The motion descriptors are then aggregated into a video representation using Fisher Vectors [14] and classified using a linear SVM. The second modality is based on audio features. MFCC coefficients and their first and second order derivatives are computed in each video and again aggregated using Fisher Vectors. Here, a histogram intersection kernel SVM model is trained on the audio representations. All four models are fused by summing the scores.

Event detection with hundred examples For the event detection submission based on hundred examples, we also consider a run based on deep learning features only and a fusion run. The deep learning run is identical to the ten example run. For the fusion, we use the four representations as explained above, along with a fifth representation based on the bag-of-fragments model [10]. The bag-of-fragments model re-uses the pool5 layer for the frame representations. For each event, the most discriminative video fragments are discovered from the hundred training examples and these fragments are max-pooled over a video to obtain the fragment-based video representation.
3.1 Submitted Runs

For event detection without examples, our system yields an inferred Average Precision score of 0.039 on the full test set. The main results for ten and hundred examples are shown in Figure 4 using the Mean Inferred AP score. For both the ad-hoc and pre-specified runs, our system is the top performer. For the ten ad hoc examples, our system yields a score of 0.425. For the ten pre-specified examples, our fusion run yields the best overall result, while the run using only the deep learning features is competitive. Finally, for event detection with hundred pre-specified examples, our fusion run is the top performer and the run based on deep learning features only is the runner-up, further indicating its effectiveness.

Acknowledgments

The authors are grateful to NIST and the TRECVID coordinators for the benchmark organization effort. The University of Amsterdam acknowledges support by the STW STORY project and the Dutch national program COMMIT.

References

