S2 File. Estimating dry shell mass from shell length

Allometric relations are classically estimated as power functions of the form $Y = aX^b$ [1]. When this method is applied to the relation between shell length and shell dry mass ($D_{\text{M,shell}}$) in *Loripes* and *Dosinia*, $D_{\text{M,shell}}$ of individuals between 8 and 10 mm are underestimated (see Fig. S2.1). The exponent of the allometric equation appears to rise after 8 mm of length. This appears to be a general tendency in bivalves [2-4]. Therefore, we expect the inflected curve to be a consequence of the ontogeny of bivalves. Fitting a loess function instead of a power function accounts for the changing exponent [4].

![Figure S2.1. Dry shell mass ($D_{\text{M,shell}}$) as a function of length for *Loripes* (A) and *Dosinia* (B). Fitting a power curve (dashed line) gives an overestimation of $D_{\text{M,shell}}$ in medium sized (8-10 mm) individuals, in both prey species. Fitting a loess curve (span = 0.6) solves this issue (solid line). Note the different scalings of the axes.](image)
References

