7Be solar neutrino measurement with KamLAND

Gando, A.; et al., [Unknown]; Decowski, M.P.

DOI
10.1103/PhysRevC.92.055808

Publication date
2015

Document Version
Final published version

Published in
Physical Review C

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
We report a measurement of the neutrino-electron elastic scattering rate of 862 keV \(^7\)Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is \(582 \pm 26 \text{ events} \times 10^9 \text{ cm}^{-2} \text{s}^{-1}\), assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a \(\nu_e\) survival probability of \(0.66 \pm 0.15\) is determined from the KamLAND data. Utilizing a global three-flavor oscillation analysis, we obtain a total \(\nu_e\) survival probability of \((5.82 \pm 1.02) \times 10^{-1}\), which is consistent with the standard solar model predictions.

DOI: 10.1103/PhysRevC.92.055808
I. INTRODUCTION

During the past 40 years, solar neutrino flux measurements have been obtained through the use of a wide range of detection techniques and neutrino interactions [1–8]. This research tested the validity of the solar fusion model and provided compelling evidence for matter-induced neutrino flavor conversion within the solar interior, called the MSW effect [9,10]. The observation of antineutrino flavor oscillations by the KamLAND experiment [11], having mixing parameters consistent with those needed to explain the solar data, showed neutrino mixing to be responsible for what had been known as the Solar Neutrino Problem.

The most recent solar neutrino experiments are liquid scintillator based [12,13]. The low-energy threshold possible with such detectors allows for real-time detection of the low-energy 7Be solar neutrinos. Neutrinos from 7Be electron capture (EC) inside the Sun are monoenergetic (862 keV) and dominate the solar neutrino spectrum above the energies of $p p$ neutrinos (<420 keV). The flux of 7Be solar neutrinos has been previously measured by the Borexino experiment [12]. In this article, we report a measurement of the 7Be solar neutrino flux with KamLAND, thereby providing the first independent cross check of this important quantity.

As in Borexino, solar neutrinos are detected via neutrino-electron elastic scattering, $\nu + e \rightarrow \nu + e$ (ES), which has a well understood cross section. In the standard three-flavor mixing scheme, electron neutrinos (ν_e) produced inside the Sun can transform into mu or tau neutrinos (ν_{μ} or ν_{τ}) during flight at a rate determined by the neutrino oscillation parameters and the electron density of the solar interior; the total active neutrino flux ($\nu_e + \nu_{\mu} + \nu_{\tau}$) is conserved. At the energy of 7Be solar neutrinos, the ES cross section of ν_e is about five times larger than that of ν_{μ} or ν_{τ}.

The expected 7Be neutrino flux at the Earth’s surface, given by the GS98 solar model [14], is 5.00×10^9 cm$^{-2}$ s$^{-1}$ [15]. The necessity of a large detector is evident considering the small ES cross section, which gives, for the KamLAND scintillator, an expected interaction rate of 500 (kt d)$^{-1}$ including neutrino flavor conversion. The ES-induced recoil electrons have to be measured without the benefit of a convenient event tag. Here lies the main difficulty of these experiments: the low-energy backgrounds of a kiloton-size detector have to be sufficiently suppressed to allow the observation of a signal composed of only few events, a nontrivial task. In the current work this is achieved by comparing detector background models with and without a solar recoil signal to the data.

II. DETECTOR AND CALIBRATION

The KamLAND detector (Fig. 1) consists of 1 kton of liquid scintillator (LS) contained in a thin plastic-film balloon of 13 m diameter. The scintillation light is viewed by an array of 1879 photomultiplier tubes (PMTs) mounted on the inner surface of an 18-m-diameter stainless-steel sphere (SSS). The space between the SSS and the balloon is filled with purified mineral oil, which shields the LS from external radiation. The SSS and its content, denoted the inner detector (ID), is contained within a cylindrical, 3.2-kton water-Cherenkov outer detector (OD). All detector materials and components were selected to have low radioactivity content to maintain the option of a low background phase.

The KamLAND detector started collecting data for the reactor antineutrino phase in March 2002. Owing to the delayed coincidence structure (a prompt positron followed by a delayed neutron capture) with which antineutrinos can be tagged, the background was low enough for their detection. However, the analysis of low-energy singles data (composed of events not benefitting from a delayed coincidence) showed that the LS contained $883 \pm 20 \mu$Bq/kg of 85Kr and $58.4 \pm 1.1 \mu$Bq/kg of 210Pb, the latter inferred from the decay rates of its unstable daughters 210Bi and 210Po. The resulting total decay rate of 8.1×10^7 (kt d)$^{-1}$ made the detection of about 500 (kt d)$^{-1}$ 7Be solar neutrino-induced recoil electrons impossible.

To enable a low-energy physics program with KamLAND, the collaboration developed methods for the efficient removal of Kr and Pb from the LS [16]. Based on extensive small-scale laboratory studies, large scintillator distillation and nitrogen purge systems were constructed underground. Two purification campaigns were performed in 2007 and 2008–2009. During the purification campaigns the old LS was drained from the detector and simultaneously filled with recycled, purified LS such that the LS mass supported by the balloon remained constant. To maximize the efficiency of purification, the temperature and density of the purified LS was carefully controlled.
to maintain a boundary between the old and the purified LS. By the end of both campaigns more than five detector volume exchanges were performed, resulting in a substantial reduction of the background-creating impurities. The overall reduction factors for rates of 85Kr, 210Bi, and 210Po were about 6×10^{-6}, 8×10^{-4}, and 5×10^{-2}, respectively. This dramatic reduction allowed the primary trigger threshold to be lowered from 180 PMT hits to 70 PMT hits (the latter value corresponds to a threshold of \sim0.4 MeV) and thus extended KamLAND’s scientific reach into the detection of low-energy solar neutrinos. To allow more detailed study of low-energy backgrounds, the threshold is lowered once per second to \sim0.2 MeV for a duration of 1 ms. The data presented were collected in 616 days between April 7, 2009, and June 21, 2011.

The event position and energy are reconstructed based on the time and charge of photon hits recorded by the PMTs. The KamLAND coordinate system utilizes the horizontal equatorial plane as its xy plane; the z axis points up. The reconstruction is calibrated using γ sources deployed periodically in the detector, namely 7Be (0.478 MeV), 60Co (2.506 MeV), 68Ge (1.022 MeV), 85Sr (0.514 MeV), 137Cs (0.662 MeV), and 203Hg (0.279 MeV). The effects of scintillation quenching, Cherenkov light production, and PMT dark hits on the energy scale nonlinearity are determined from this calibration data. They are corrected for in the spectral analysis discussed later. The observed vertex resolution is \sim13 cm/$\sqrt{E$(MeV)$)$, and the energy resolution (σ_E/E) is (6.9 \pm 0.1)%/$\sqrt{E$(MeV)$)$.

The deviation of the position-dependent energy from the center of the detector is evaluated as $+0.3\%$ to -1.5% inside of the $-4.5 \text{ m} < z < 4.5 \text{ m}$ region shown in Fig. 2. The majority of the calibrations were performed by moving the sources to specific points along the central vertical detector axis using the deployment system described in Ref. [17]. To constrain deviations from rotational symmetry after scintillator purification, a full three-dimensional (3D) calibration was performed using an off-axis system described in Ref. [18].

III. EVENT SELECTION

Candidate events are selected according to the following requirements.

(i) The radial position of event vertices must be less than 4.5 m. An additional volume selection, defined in cylindrical coordinates and motivated by the data classification described in the next section, is also applied. The combined volume selection defines the fiducial volume (FV), which corresponds to 268.6 tons of LS.

(ii) Cosmic-ray muons [identified by a total PMT charge of larger than 10 000 photoelectrons (p.e.) or more than 5 PMT hits in the OD] and all events within 2 ms after muons are rejected to reduce background events due to muon spallation products and electronics noise. In addition, noise events within 100 μs after high-energy events (a total PMT charge of larger than 1000 p.e.) are rejected.

(iii) Two successive events within 1 μs are rejected to avoid the possible cross-talk effect between two events owing to the finite time spread of scintillation photons.

(iv) Coincidence events occurring within 1.2 ms of each other are eliminated to remove 214Bi, 214Po and 212Bi-212Po sequential decays.

(v) Candidates must pass a vertex-time-charge (VTQ) fit quality test to eliminate noise events mainly produced by two-event pileup in a one-event time window (\sim200 ns). The VTQ cut is tuned using calibration data. The reduction of the neutrino event selection efficiency is found to be negligible in the analysis energy range.

IV. DATA CLASSIFICATION

After the introduction of purified LS into KamLAND, there were time periods of thermal instability owing to slight variations in the temperature gradient of the detector. It was further found that the containment balloon acts as a 210Pb reservoir, slowly releasing 210Bi into the scintillator. The result of these thermal gradients was convection in the LS FV and a nonuniformly distributed 210Bi concentration; thus some regions of the FV were much cleaner than others. Choosing to only analyze regions of the FV that contain low concentrations of 210Bi could introduce a selection bias. Thus, a procedure for analyzing all the data regardless of the local 210Bi concentration was developed. The procedure used in this analysis is as follows.

(1) From the perspective of a ρ^2 vs z distribution in cylindrical coordinates, where $\rho^2 = x^2 + y^2$, the FV...
TABLE I. Listing of the ranks defined according to the estimated 210Bi rate in $(0.5 \text{ MeV} < E < 0.8 \text{ MeV})$ and the total exposure for each rank.

<table>
<thead>
<tr>
<th>Rank</th>
<th>210Bi rate $10^{-6} \text{ (m}^3\text{s}^{-1})$</th>
<th>Exposure (kt d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><5</td>
<td>26.52</td>
</tr>
<tr>
<td>2</td>
<td>5–10</td>
<td>34.42</td>
</tr>
<tr>
<td>3</td>
<td>10–15</td>
<td>27.06</td>
</tr>
<tr>
<td>4</td>
<td>15–20</td>
<td>17.81</td>
</tr>
<tr>
<td>5</td>
<td>20–25</td>
<td>11.35</td>
</tr>
<tr>
<td>6</td>
<td>25–30</td>
<td>7.63</td>
</tr>
<tr>
<td>7</td>
<td>>30</td>
<td>40.63</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>165.43</td>
</tr>
</tbody>
</table>

The procedure just outlined allows identification of low-210Bi regions within the detector without complex and arbitrary FV cuts. However, each partition will have some volume bias owing to vertex resolution and position-dependent vertex reconstruction. This bias is corrected in the spectral fit using the fact that the following event rates, produced from cosmogenic or astrophysical sources, must be distributed uniformly in the LS: 11C, 10C, 7Be, and 7Be solar neutrinos. Using the prescribed rank classification, a simultaneous spectral fit is performed over the data from every rank to obtain one common 7Be solar neutrino rate.

V. BACKGROUND ESTIMATION

Accurate modeling of the energy distributions of background sources inside and outside the detector is necessary to determine the 7Be solar neutrino flux with KamLAND. These energy distributions are based on a phenomenological detector response function. They derive their validity from the fact that they describe the data well (a) before purification when radioimpurity concentrations were high and (b) in areas of high rate after purification. For some subdominant components, that cannot be verified in this way, Monte Carlo-generated spectra are used instead. The contributions of the various background components are summed with freely varying normalizations, although some normalizations are constrained by other independent KamLAND data. A fit to the candidate event spectrum then determines the partial contributions.

This section describes how the background model is constructed and what is known about its constituents. Background sources are classified into three categories: radioactive impurities in the LS, spallation products, and radioactivity in the surrounding materials.

A. Radioactive impurities in the liquid scintillator

The abundance of 232Th and 238U and their daughters in the LS is constrained by KamLAND data. The decay rates of the 222Rn-210Pb subchain of the 238U series and the 228Th-208Pb subchain of the 232Th series can be measured, almost background free, using 214Bi-214Po and 212Bi-212Po β-α delayed coincidences, with 94.8% and 31.9% selection efficiencies, respectively. The inferred 238U and 232Th concentrations assuming secular equilibrium are $(5.0 \pm 0.2) \times 10^{-18} \text{ g/g}$ and $(93 \pm 4 \text{ nBq/m}^3)$ and $(1.3 \pm 0.1) \times 10^{-17} \text{ g/g}$ and $(59 \pm 4 \text{ nBq/m}^3)$, respectively. Some radioactive decay chains are found to be out of secular equilibrium. A fit to the prominent 210Po α peak, quenched to about 0.3 MeV visible energy in Fig. 4, yields spatially varying activities ranging from 2.4 to 4.8 mBq/m3, depending on the rank of the analyzed volume. However, as discussed in the following section, this background component is not considered in the fit because it falls below the analysis threshold. The higher-mass members of the decay chains above 228Th and 228Rn are determined by a spectral fit and are found to be unimportant.

Below 1 MeV, the background is dominated by daughters of 210Pb, namely 210Bi and 210Po. 210Bi, the most important
Each data-set rank, exhibiting different 210Bi rates. All data sets are
∼ balloon film is contaminated with 210Bi supplied from the balloon surface
in addition, its decay rate in the FV fluctuates in time. This is attributed to 210Bi supplied from the balloon surface
with a common rate normalization. The location of the major background
sources are labeled and the theoretical electron recoil spectrum of
862-keV 7Be solar neutrinos, whose rate is based on the standard
central model by Serenelli [15], is shown for comparison.

The concentration of 40K is measured to be (7.3 ± 1.2) × 10^{-17} g/g from the energy spectrum fit. Owing to the
fluid circulation during LS purification, 238U, 235Th, and
40K may have nonuniform spatial distributions. The long-
lived radioactive noble gas, 85Kr, was the major source of
low-energy background prior to scintillator purification. The present background model includes this component to deal
with any left over activity. 39Ar is included as a potential
source in the background model, its abundance constrained
by the ratio of 85Kr and 39Ar found in the atmosphere. From
the spectral fit we find that its contribution to the background is
negligible. This is consistent with the preparation spectral
analysis results. For volume ranks 1 through 6 the 85Kr
specific activity varies between 4.1 and 19.2 μBq/m³. For

The 2700 mwe of rock overburden of the Kamioka Underground Laboratory suppresses the rate of cosmic ray
muons traversing the KamLAND LS to 0.198 ± 0.014 s^{-1}
[21]. The surviving muons can produce unstable light nuclei
by spallation of carbon, whose decays result in background. The
dominant cosmogenic background between 1 and 2 MeV
is due to decays of 11C (β⁺, τ = 29.4 min, Q = 1.98 MeV). Owing to its relatively long half-life, these decays cannot be
tagged without incurring large dead time. Its decay rate has
early been estimated to be 1106 ± 178 (kt d)^{-1} [21]. The
background contribution of 11C is constrained by this value.

Another spallation source of interest is 7Be [EC decay,
τ = 76.8 days, Q = 0.862 MeV]. While its production rate by
muon spallation in the LS is estimated to be small [21,22], there
is the possibility of a higher-than-steady-state production yield
owing to the introduction of fresh, surface-exposed LS during
the scintillator purification. Therefore, to be conservative, the
rate of 7Be decays is unconstrained.

C. Radioactivity in the surrounding material

The background from external γ rays is mainly caused by
40K, 232Th, and 238U contained in the surrounding rock,
stainless steel, PMT glass, balloon film, and Kevlar suspension
ropes. The energy distributions resulting from these radiation
sources were modeled by means of a Monte Carlo simulation.
The simulation was tuned with source calibration data to
reproduce the vertex distribution as well. The γ-ray attenuation
in the radial direction in the simulation is consistent with that
in the real data. External backgrounds dominate the energy
distribution for radial positions larger than 4.5 m. These
data were used to fit the relative background contributions.
The Monte Carlo simulation was then used to extrapolate
the background for R < 4.5 m. Based on this fit, it was
concluded that external γ rays do not significantly impact
the FV background below 1 MeV.
As discussed before, the balloon surface is a source of electrons from 210Bi decays and α particles from 210Po decays. While the FV cut effectively suppresses these backgrounds, accidental pileup of two external events can lead to a vertex and energy displacement, moving external events into the analysis volume. Owing to the high 210Po decay rate, resulting in a pronounced peak at ~ 0.3 MeV in the energy spectrum (see Fig. 4), most of the pileup events are concentrated in the high-energy tail of this peak. Although the absolute rate of tail events is not small, the fraction of pileup events to observed events above 0.5 MeV is $< 1\%$. To eliminate this background and the systematic bias it would introduce into the measurement of the 7Be solar neutrinos, the energy threshold was set to 0.5 MeV in the present analysis.

VI. SYSTEMATIC UNCERTAINTY

The leading contributions to the systematic uncertainty of the 7Be solar neutrino flux measurement are listed in Table II. The measured neutrino-electron scattering rate is converted into a solar neutrino flux, the accuracy of this conversion is given by the uncertainty of the interaction cross section. Based on the evaluation of Ref. [23], a value of 1% is assigned to this error. The determination of the flux further requires knowledge of the number of electrons contained in the FV. The LS density is measured to be 0.780 g/cm^3 with an uncertainty of 0.025% at 11.5 $^\circ$C. The uncertainty of the dependence of the number of electrons on the temperature within the FV is estimated at 0.1%. We estimate that 9.21×10^{31} electrons are contained in the 344.3 m3 FV. Data collected with the full volume calibration system showed vertex reconstruction deviations of less than 5 cm. This corresponds to a FV uncertainty of 3.4%. The FV event selection inefficiency owing to vertex misreconstruction was established with source calibrations and is less than 0.5% in the analysis energy region.

Other systematic uncertainties, related to the modeling of the detector response, are determined through the spectral fit procedure, which is presented in the following section. The correction for the nonlinearity of the energy scale for each particle type (γ, e^-, and e^+) is performed by varying the energy response parameters in the χ^2 fit. The fit model, on which the solar neutrino analysis is based, uses free-floating energy scales with constraints from calibration data in the form of penalty terms. As such, the fit uncertainty already includes the energy scale uncertainty. To quantify the contribution of the energy scale uncertainty as a separate item in the error budget, we repeat the fit with the energy scale parameters fixed. The energy scale error is stated as the quadratic difference between the errors obtained from free-floating and fixed parameter fits. This method implies a 7.9% uncertainty on the best-fit 7Be rate owing to the uncertainty of the energy scale. To check the possibility of the energy scale varying with the rank, we compared the fit result for two extreme cases, namely fully correlated and fully independent energy scale between ranks. We adopt the deviation of the best-fit 7Be as an estimate of the associated systematic uncertainty. To propagate the 0.1%/\sqrt{E(\text{MeV})} uncertainty of the energy resolution, we repeat the analysis varying the detector resolution within this uncertainty. We find that this causes the best-fit 7Be rate to vary by 3.4%.

The definition of rank boundaries (Table I) and their effect on the best-fit 7Be rate was also studied. It is important to note that the fit sensitivity to the solar signal comes from ranks 1 and 2, where the signal-to-background is largest; hence, changing the boundary definitions of the other ranks has negligible effect. The fitting procedure was repeated while varying the boundary between ranks 1 and 2 from 3×10^{-6} to 7×10^{-6} events/(m3 s). The choice of 5×10^{-6} events/(m3 s) as the boundary was found to have the highest fit probability, quantified by $\chi^2/n.d.f.$ (where n.d.f. stands for number of degrees of freedom), and is used in the final analysis presented here. Furthermore, we find the best-fit rate for all rank boundaries considered were consistent with each other to within 5% and conclude that the choice of boundary does not bias the result. The largest background contribution, 210Bi first forbidden β decay, has an additional uncertainty related to its shape correction. Using our data, mainly rank 7 where the background rate is highest, we derived a phenomenological fourth-order polynomial correction to the shape factor published in Ref. [24] to better model the 210Bi shape. The parameters of this correction polynomial (a_n) are $a_0 = 1$, $a_1 = 41.4 \pm 0.8$, $a_2 = -101.2 \pm 1.4$, $a_3 = 102.9 \pm 3.5$, and $a_4 = -37.9 \pm 2.0$ in units of MeV$^{-n}$. Within the analysis energy window, deviations of the spectral shape from that of Ref. [24] were small.

Position-dependent biases in vertex reconstruction could introduce an artificial nonuniformity in the distribution of 7Be solar neutrinos within the FV, resulting in a systematic error on the simultaneous fit to different rank data. The effects of the nonuniformity are parameterized and constrained for each rank spectrum to obtain uniformly distributed 11C events.

The systematic uncertainties owing to the 238U and 232Th series and other solar neutrinos are evaluated by the deviation of the 7Be solar neutrino rate on varying their rates within $\pm 1\sigma$.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section</td>
<td>1.0</td>
</tr>
<tr>
<td>No. of target electrons</td>
<td>0.10</td>
</tr>
<tr>
<td>Fiducial volume</td>
<td>3.4</td>
</tr>
<tr>
<td>Vertex misreconstruction</td>
<td>0.5</td>
</tr>
<tr>
<td>Energy scale</td>
<td>7.9</td>
</tr>
<tr>
<td>Rank-dependent energy scale</td>
<td>2.9</td>
</tr>
<tr>
<td>Energy resolution</td>
<td>3.4</td>
</tr>
<tr>
<td>Background from 238U series (222Rn-210Pb)</td>
<td>1.7</td>
</tr>
<tr>
<td>Background from 232Th series (228Th-208Pb)</td>
<td>1.8</td>
</tr>
<tr>
<td>Background from other solar neutrinos</td>
<td>1.9</td>
</tr>
<tr>
<td>Systematic total</td>
<td>10.2</td>
</tr>
<tr>
<td>Statistics</td>
<td>12.4</td>
</tr>
<tr>
<td>Total</td>
<td>16.1</td>
</tr>
</tbody>
</table>
TABLE III. Summary of signal and background in the FV. The best-fit signal and background rates in the whole energy range (w/o \(E \) cut) and the \(^{7}\)Be solar neutrino energy range (0.5 MeV < \(E \) < 0.8 MeV) are shown.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Event rate w/o (E) cut</th>
<th>Event rate in 0.5–0.8 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All ranks ((kt\cdot d)^{-1})</td>
<td>Rank 1 ((kt\cdot d)^{-1})</td>
</tr>
<tr>
<td>(^{7})Be (\nu)</td>
<td>582 ± 94</td>
<td>117 ± 19</td>
</tr>
<tr>
<td>Other (\nu)</td>
<td>1443</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive impurities in the LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{210})Bi</td>
<td>23974 ± 883</td>
<td>3955 ± 238</td>
</tr>
<tr>
<td>(^{85})Kr</td>
<td>858 ± 59</td>
<td>453 ± 102</td>
</tr>
<tr>
<td>(^{39})Ar</td>
<td>3 ± 3</td>
<td>2 ± 3</td>
</tr>
<tr>
<td>(^{40})K</td>
<td>181 ± 29</td>
<td>3 ± 38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spallation products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{7})Be</td>
<td>167 ± 173</td>
<td>2 ± 2</td>
</tr>
<tr>
<td>(^{11})C</td>
<td>973 ± 10</td>
<td>3.55 ± 0.04</td>
</tr>
<tr>
<td>Other</td>
<td>173</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External (\gamma)</td>
<td>—</td>
<td>2.4 ± 0.4</td>
</tr>
<tr>
<td>Pileup</td>
<td>—</td>
<td>10 ± 1</td>
</tr>
</tbody>
</table>

VII. RESULT

The \(^{7}\)Be solar neutrino rate is estimated by a likelihood fit to the binned energy spectra of candidate events with visible energy between 0.5 and 1.4 MeV. The background contributions from \(^{210}\)Bi, \(^{85}\)Kr, \(^{40}\)K, and \(^{7}\)Be EC are free parameters and their normalizations are left unconstrained in the fit. The contributions from the \(^{222}\)Rn–\(^{210}\)Pb and \(^{228}\)Th–\(^{208}\)Pb chains and \(^{11}\)C are allowed to vary, but their normalizations are constrained by independent KamLAND measurements, as outlined in Sec. V. Distributions with different background rank are fitted simultaneously. The background rates, derived from the fit normalizations, are summarized in Table III. The background rates from external \(\gamma\) rays, and pileup events are constrained by the MC study. The model parameters of the detector response are also constrained, as discussed in Sec. VI.

Figure 5 shows the result of this procedure: the best-fit spectrum for the rank 1 data set which is lowest in background and, therefore, most sensitive to the solar neutrino signal. The inset shows the background-subtracted energy distribution, which exhibits the shape of the best-fit \(^{7}\)Be neutrino signal extracted from the analysis. The backscattering edge is visible and located at the correct energy. The \(\chi^2/\text{n.d.f.}\) comparing the binned data and the best-fit model is found to be 635.3/589 using data of all ranks. The \(\chi^2/\text{n.d.f.}\) of the lowest background rank 1 data is 80.1/90. As can be seen from the data in Table III the signal-to-background ratio is estimated to be 1:5.5 for rank 1 data (0.5 < \(E \) < 0.8 MeV). This relatively low signal-to-background ratio naturally invites the question of whether a statistically significant \(^{7}\)Be solar neutrino signal is really present in the data. The fit to the data was also performed assuming the absence of a solar neutrino signal, but minimizing all other background components within their constraints as before. The observed increase in the fit \(\chi^2\) leads us to reject the no-solar signal hypothesis at 8.2\(\sigma\) CL. To understand whether the solar recoil signal, preferred by the data and shown in the inset of Fig. 5, is a unique solution or whether other continuous distributions yield equally good fits, the neutrino energy (assuming a monoenergetic source) and interaction rates were floated and the fit \(\chi^2\) profile determined under their variation. The result of this procedure is shown in Fig. 6. The KamLAND data clearly prefer the presence of an edge at an energy that coincides with that expected for solar \(^{7}\)Be neutrino-induced electron recoils. Assuming that the edge is indeed solar neutrino induced, we determine the solar neutrino energy to be \(E_\nu = 862 \pm 16\) keV. This is the first direct spectroscopic determination of the solar \(^{7}\)Be neutrino energy.

The fit to the KamLAND data gives a solar neutrino interaction rate of \(R_{KL} = 582 \pm 94\) (kt d\(^{-1}\)). The quoted error corresponds to the quadratic sum of the statistical and
to a survival probability, P_{ee}, with the latest interaction rate reported by the Borexino experiment: $R_B = 460^{+28}_{-22}$ (kt d)$^{-1}$ [12]. The rate difference ($R_{KL} - R_B$) deviates by 1.3σ from zero. Differences in the chemical composition of the LSs used in both experiments result in a 3.6% difference of the rates. Assuming that the ES interactions detected by KamLAND are due to a pure electron flavor flux, KamLAND’s interaction rate corresponds to a 862-keV 7Be solar neutrino flux of $(3.26 \pm 0.52) \times 10^6$ cm$^{-2}$ s$^{-1}$. The standard solar model (SSM) by Serenelli et al. [15] gives two 7Be solar neutrino flux values, depending whether the older Grevesse and Sauval (GS98) [14] or the Asplund (AGSS09) [25] solar abundances are utilized. When the GS98 solar abundances are assumed, the SSM flux value is $(5.00 \pm 0.35) \times 10^6$ cm$^{-2}$ s$^{-1}$. The flux reduces to $(4.56 \pm 0.32) \times 10^6$ cm$^{-2}$ s$^{-1}$ under the assumption of the AGSS09 solar abundances. Assuming that the ν_e mix with ν_μ, the KamLAND flux measurement corresponds to a survival probability, $P_{ee} = 0.66 \pm 0.15$. This value was obtained taking into account the cross section difference for these neutrino flavors.

Using KamLAND’s 2013 best-fit neutrino oscillation parameters [11], based on a global oscillation analysis under the assumption of CPT invariance, the survival probability is better constrained. In this case, we obtain a total 7Be neutrino flux of $(5.82 \pm 1.02) \times 10^6$ cm$^{-2}$ s$^{-1}$. This result is consistent with the flux determination provided by Borexino: $(4.75^{+0.29}_{-0.22}) \times 10^6$ cm$^{-2}$ s$^{-1}$ [12], and while it somewhat favors the GS98 model flux, the KamLAND data are not precise enough to discriminate between the two solar model fluxes.

VIII. CONCLUSION

The KamLAND collaboration reports a new measurement of the 7Be solar neutrino interaction rate in a liquid scintillator. Performing this difficult measurement required an extensive purification campaign, reducing the scintillator’s radioimpurity content by several orders of magnitude. The measured 7Be solar neutrino rate in KamLAND is $R_{KL} = 582 \pm 94$ (kt d)$^{-1}$, which corresponds to a flux of $(5.82 \pm 1.02) \times 10^6$ cm$^{-2}$ s$^{-1}$ under the assumption of KamLAND’s 2013 best-fit oscillation parameters.

The statistical significance of this signal is estimated to be 8.2σ and provides the first independent verification of the only prior measurement of this quantity, performed by Borexino. The solar neutrino flux derived from the KamLAND data agrees with the solar model values, but is not accurate enough to shed light on the question of solar metallicity.

ACKNOWLEDGMENTS

The KamLAND experiment is supported by the Grant-in-Aid for Specially Promoted Research under Grants No. 16002002 and No. 21000001 of the Japanese Ministry of Education, Culture, Sports, Science and Technology; the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Stichting FOM in the Netherlands; and under the US Department of Energy (DOE) Grants No. DE-AC02-05CH11231 and No. DE-FG02-01ER41166, as well as other DOE grants to individual institutions. The Kamioka Mining and Smelting Company has provided service for activities in the mine.