Towards an understanding of the side effects of anti-HIV drugs using Caenorhabditis elegans

Smith, R.L.

Citation for published version (APA):
Towards an understanding of the side effects of anti-HIV drugs using *Caenorhabditis elegans*

Reuben L. Smith
Towards an understanding of the side effects of anti-HIV drugs using *Caenorhabditis elegans*

Reuben Luke Smith
Towards an understanding of the side effects of anti-HIV drugs using Caenorhabditis elegans

All right reserved. No part of this publication may be reprinted, reproduced or utilized in any form by electronic, mechanical or other means, now known or hereafter invented, without permission from the author, or where appropriate of the publisher involved.

The research described in this thesis was carried out in the group of Molecular Biology and Microbial Food Safety at the Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, The Netherlands.

The research was funded by MacGillavry fellowship at the University of Amsterdam. The financial support of the Hercules Foundation (AUGE/013) and the Belgian Research Fund (B/11599/17) are gratefully acknowledged.

The publication of this doctoral thesis received financial assistance from the University of Amsterdam.

Cover: An adaptation by the author of the ‘Flammarion engraving’; a wood engraving by an unknown artist, so named because its first documented appearance is in Camille Flammarion’s 1888 book L’atmosphère: météorologie populaire (“The Atmosphere: Popular Meteorology”). It has been used to represent a supposedly medieval cosmology, including a flat earth bounded by a solid and opaque sky, or firmament, and also as a metaphorical illustration of either the scientific or the mystical quests for knowledge.
Towards an understanding of the side effects of anti-HIV drugs using *Caenorhabditis elegans*

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D. C. van den Boom
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel
op vrijdag 12 februari 2016, te 14:00 uur

door

Reuben Luke Smith

geboren te Taunton, Verenigd Koninkrijk
Promotiecommissie:

Promotor: prof. dr. S. Brul. Universiteit van Amsterdam

Co-promotor: dr. J. C. van der Spek. Universiteit van Amsterdam

Overige leden: prof. dr. P. Reiss. Universiteit van Amsterdam
 prof. dr. H.V. Westerhoff. Universiteit van Amsterdam
 dr. Y. Budovskaya. Universiteit van Amsterdam
 dr. R.H.L. Houtkooper. Universiteit van Amsterdam
 prof. dr. B.P. Braeckman. University of Ghent
 prof. dr. W.H. De Vos. University of Antwerp

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Table of Contents

Abbreviations
1

Chapter 1

- General introduction ... 5
- 1. HIV infection and AIDS .. 7
- 2. Highly Active Anti-Retroviral Therapy (HAART) 10
- 3. The antiretroviral drug burden .. 14
- 4. Outlook & Thesis outline .. 30

Chapter 2

Caenorhabditis elegans as a model system to study drug induced mitochondrial toxicity 33
- 1. Introduction .. 35
- 2. Results .. 37
- 3. Discussion .. 41
- 4. Materials and Methods ... 44
- 5. Supporting Information .. 48

Chapter 3

HIV-1 Nucleoside Reverse Transcription Inhibitors inhibit mitochondrial respiratory chain function and induce a mitohormesis like prolonged longevity in *C. elegans* .. 49
- 1. Introduction .. 51
- 2. Results .. 53
- 3. Discussion .. 71
- 4. Materials and Methods ... 80
- 5. Supporting Information .. 84

Chapter 4

A RNAseq genome wide analysis of antiretroviral thymidine analog effects in *C. elegans* 91
- 1. Introduction .. 94
- 2. Results & Discussion ... 97
- 3. Conclusion ... 128
- 4. Materials & Methods .. 130

Chapter 5

Protease Inhibitor HIV-1 antiretroviral therapy causes immediate mitochondrial respiratory chain dysfunction that can be attenuated by antioxidants .. 133
- 1. Introduction .. 135
- 2. Results .. 137
- 3. Discussion .. 148
- 4. Materials and Methods ... 153

Chapter 6

Analysis of Nucleoside Reverse Transcription Inhibitor and Protease Inhibitor combination therapy in *C. elegans* .. 159
- 1. Introduction .. 161
- 2. Results .. 163
Abbreviations

$\Delta \Psi_{mt}$ Mitochondrial membrane potential

2DNAGE two-dimensional neutral/neutral agarose gel-electrophoresis

ADP Adenosine 5’-diphosphate

AIDS Acquired immunodeficiency syndrome

ALCAR Acetyl-L-carnitine

AOX Anti-oxidant

ApoB Apolipoprotein B

ART Antiretroviral therapy

ATP Adenosine 5’-triphosphate

AZT Zidovudine

CD4$^+$ Cluster of differentiation-4 positive cells

C. elegans Caenorhabditis elegans

Complex I NADH dehydrogenase

Complex II Succinate dehydrogenase

Complex III CoQH$_2$-cytochrome c reductase

Complex IV Cytochrome c oxidase

Complex V F_0F_1-ATPase

CoQ Coenzyme Q

COX Cytochrome c oxidase

CYP Cytochrome P450

d4T Stavudine

ddC Zalcitabine

ddi Didanosine

ddNTP Dideoxynucleoside analogue triphosphates

DEG (Statistically) differentially expressed gene

dH$_2$O Distilled water

DMSO Dimethylsulfoxide

DNA Deoxyribonucleic acid

DNC Deoxynucleotide carrier

dNTP Deoxy-nucleotidetriphosphate
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>Diphosphate</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EI</td>
<td>Entry inhibitor</td>
</tr>
<tr>
<td>ENT</td>
<td>Equilibrative nucleoside transporter</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>FAD(H)</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. food and drug administration</td>
</tr>
<tr>
<td>FLT</td>
<td>Alovudine</td>
</tr>
<tr>
<td>FUdR</td>
<td>5-Fluoro-2'-deoxyuridine</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GO</td>
<td>Gene ontology</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-S-transferase</td>
</tr>
<tr>
<td>H$_2$DCFDA</td>
<td>2',7'-Dichlorofluorescein</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HAART</td>
<td>Highly active antiretroviral therapy</td>
</tr>
<tr>
<td>HEK293T</td>
<td>Human Embryonic Kidney 293 cell line</td>
</tr>
<tr>
<td>HepG2</td>
<td>Human liver carcinoma cell line</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>IDV</td>
<td>Indinavir</td>
</tr>
<tr>
<td>II</td>
<td>Integrase inhibitor</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto Encyclopedia of Genes and Genomes</td>
</tr>
<tr>
<td>L1</td>
<td>Nematode larval stage 1</td>
</tr>
<tr>
<td>L4</td>
<td>Nematode larval stage 4</td>
</tr>
<tr>
<td>LAA</td>
<td>L-ascorbic Acid</td>
</tr>
<tr>
<td>M9</td>
<td>Buffer for C. elegans</td>
</tr>
<tr>
<td>MI</td>
<td>Maturation inhibitor</td>
</tr>
<tr>
<td>MP</td>
<td>Monophosphate</td>
</tr>
<tr>
<td>MRC</td>
<td>Mitochondrial respiratory chain (a.k.a. electron transport chain)</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MRP</td>
<td>Multidrug resistance-related protein</td>
</tr>
</tbody>
</table>
Abbreviations

mtDNA Mitochondrial DNA
NAC N-acetyl cysteine
NAD(H) Nicotinamide adenine dinucleotide
nDNA Nuclear DNA
NFV Nelfinavir
NGM Nematode growth medium
NNRTI Non-nucleoside reverse transcriptase inhibitor
NRTI Nucleoside reverse transcriptase inhibitor
OCR Oxygen consumption rate
PBMC Human peripheral blood mononuclear cells
PCA Principal component analysis
PCR Polymerase chain reaction
PI Protease inhibitor
PQ Paraquat
RNAi RNA interference
RNAseq RNA sequencing
ROS Reactive oxygen species; In this thesis ROS is taken to encompass the initial species generated by reduction of oxygen (superoxide or hydrogen peroxide) as well as their secondary reactive products
RTV Ritonavir
S.E.M. Standard error of the mean
SIV Simian immunodeficiency virus
SOD Superoxide dismutase
SQV Saquinavir
TK Thymidine kinase
TP Triphosphate
Trolox 6-hydroxy-2, 5, 7, 8-tetramethylchromane-2-carboxylic acid (α-tocopherol derivative)
UPRx Endoplasmic reticulum unfolded protein response
UPRmt Mitochondrial unfolded protein response
UPS Ubiquitin proteasome system