Photo- and thermal isomerization of (TP)Fe(CO)Cl-2 [TP = Bis(2-diphenylphosphinophenyl)phenylphosphine]

Li, P.; de Bruin, B.; Reek, J.N.H.; Dzik, W.I.

DOI
10.1021/acs.organomet.5b00644

Publication date
2015

Document Version
Final published version

Published in
Organometallics

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Photo- and Thermal Isomerization of (TP)Fe(CO)Cl₂ [TP = Bis(2-diphenylphosphinophenyl)phenylphosphine]

Ping Li, Bas de Bruin, Joost N. H. Reek, and Wojciech I. Dzik*

Homogeneous, Supramolecular and Bio-Inspired Catalysis, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Supporting Information

ABSTRACT: The title complex displayed structural flexibility via photo- and thermal-isomerization reactions between three isomers: (mer-TP)Fe(CO)Cl₂ (A), unsym-(fac-TP)Fe(CO)Cl₂ (B), and sym-(fac-TP)Fe(CO)Cl₂ (C). Irradiation of A at RT with 525 nm light selectively produces B, while at 0 °C isomer C is formed with the intermediacy of B. UV–vis spectroscopy combined with TD-DFT calculations revealed the nature of the photoisomerization process. Kinetics of the thermal isomerization of C to B and B to A have been studied with ³¹P NMR spectroscopy in CD₂Cl₂, and activation parameters were determined. Isomers A and B have been isolated and crystallographically characterized.

INTRODUCTION

The ability of molecules to change their shape upon external stimuli opens a variety of potential applications as molecular switches or machines. In particular, the use of light as the switching factor has recently gained much interest in broad contexts spanning from biological applications to material science.

In coordination chemistry, much attention has been focused on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent

RESULTS AND DISCUSSION

Synthesis and Characterization of (TP)Fe(CO)Cl₂ Complexes. (mer-TP)Fe(CO)Cl₂ (A) was synthesized in 92% yield by treating FeCl₂·4H₂O with a stoichiometric amount of TP in a mixture of CH₂Cl₂ and MeOH under an atmosphere of carbon monoxide in the dark. Spectroscopic analysis of A revealed the presence of a single carbonyl ligand, as evidenced by the IR absorption band at 1972 cm⁻¹, and a C₁ symmetric orientation of the TP ligand evidenced by two ³¹P NMR resonances in CD₂Cl₂: a triplet at 115.64 (Jₚₚ = 32.4 Hz) and a doublet at 65.11 ppm (Jₚₚ = 32.4 Hz), with an integral ratio of 1:2.

When a solution of A in CH₂Cl₂ was brought into ambient light, a slow color change from orange to dark red was observed. This is accompanied by changes in the ³¹P NMR spectrum, which displayed a set of three resonances: a doublet of doublets at 111.55 (Jₚₚ = 32.4 Hz, Jₚₚ = 47.0 Hz); a doublet of doublets at 77.60 (Jₚₚ = 32.0 Hz, Jₚₚ = 47.0 Hz), and a triplet at 53.60 ppm (Jₚₚ = 47.0 Hz), with an integral ratio of 1:1:1. The spectrum represents the formation of new species B with a C₁ symmetry indicative of an unsym-(fac-TP)Fe(CO)Cl₂ structure. The IR carbonyl stretch of 2008 cm⁻¹ is indicative of weakening of π-back-donation from the iron center.

Received: July 9, 2015
Published: October 2, 2015

DOI: 10.1021/acs.organomet.5b00644
Organometallics 2015, 34, 5009–5014
Solid-state structures of species A and B were obtained by single-crystal X-ray diffraction (Figure 1). In both structures, each iron center is coordinated to a TP ligand, one carbonyl ligand, and two chlorides and adopts a slightly distorted octahedral configuration. The TP ligand coordinates to the Fe center in a meridional fashion in isomer A and a facial fashion in isomer B. The meridional coordination mode of the TP ligand in A is remarkable, as none of the previously reported mononuclear complexes of TP reveal such a binding mode. As such, isomer A is the first metal complex that features TP as a PPP pincer-type ligand. This behavior is, however, in accord with the expected binding mode of three phosphine donors to an octahedral monocarbonyl iron(II) species. The two terminal phosphorus atoms P2 and P3 in isomer A (Figure 1) are trans to each other with similar bond distances to the iron center (2.2212(6) Å for Fe1−P2 and 2.2422(9) Å for Fe1−P3), while the Fe1−P1 bond distance 2.1852(10) Å is significantly shorter. In contrast, the bond distance for Fe1−P3 (2.3369(6) Å) in isomer B is significantly longer than that for Fe1−P2 (2.2212(6) Å) due to the stronger trans influence of the carbonyl ligand compared to the chloride.

When a solution of B in CH2Cl2 was kept in the dark, isomer A was fully recovered within 2 days, as indicated by 31P NMR. The isomerization of B to A in CH2Cl2 was also monitored using IR and UV–vis spectroscopy, as shown in Figure 2. The stretching frequency of the carbonyl ν(CO) displayed a red shift from 2008 cm−1 in B to 1972 cm−1 in A. This observation is consistent with the single-crystal structures showing significantly shorter bond distance of Fe−Cl (trans to a π-donating chloride) in isomer A (1.743(4) Å) than that in isomer B (1.790(2) Å), reflecting stronger back-donating ability from Fe to CO in isomer A. The UV–vis spectra displayed three clear isosbestic points at 419, 447, and 532 nm. The intense visible absorption shifted from 566 nm in B to 482 nm in A, which is in agreement with the color change from dark red to orange.

The ability of iron(II) carbonyl compounds to undergo photochemical isomerization followed by thermal rearrangement to the initial state is well established. Depending on the wavelength the photorearrangement can proceed via either CO loss or halide dissociation, and in principle both pathways could also be operational during the isomerization of A to B triggered by visible light. The UV–vis spectrum of A reveals two separate bands with peak maxima at λ = 366 and 482 nm. In most cases, the lowest (singlet) excited state is most relevant to explain the photoactivity of a compound, and indeed selective irradiation of the lowest energy band of A using a S25 nm LED lamp leads to clean formation of B in CD2Cl2 with a quantum yield of Φ = 0.72.

Figure 1. X-ray structures of isomers A (left) and B (right). Hydrogen atoms and cocRYSTALized CH2Cl2 solvent molecules are omitted for clarity. Selected bond lengths (Å) and angles (deg) for: A: Fe1−P1 2.1852(10), Fe1−P2 2.2547(9), Fe1−P3 2.2422(9), Fe1−Cl1 2.3410(10), Fe1−Cl2 2.3523(9), Fe1−Cl3 1.743(4), Cl1−O1 1.139(3); P1−Fe1−P2 86.49(4), P2−Fe1−P3 169.17(4). For: B: Fe1−P1 2.1639(6), Fe1−P2 2.2121(6), Fe1−P3 2.3369(6), Fe1−Cl1 2.3308(6), Fe1−Cl2 2.3499(6), Fe1−Cl3 1.790(2), Cl1−O1 1.139(3); P1−Fe1−P2 88.13(2) P1−Fe1−P3 86.91(2) P2−Fe1−P3 101.08(2).

Figure 2. IR (left) and UV–vis (right) spectral change during the thermal isomerization of B to A in CH2Cl2 in the dark at 298 K.

Figure 3. Thermal isomerization of B to A in CD2Cl2 in the dark. (a) 31P{1H} NMR spectra at 298 K. (b) Kinetic curves obtained from 31P{1H} NMR integrations for B (green) and A (blue) at 298 K. k = (2.91 ± 0.02) × 10−5 s−1. (c) Eyring plot of the thermal isomerization of B to A: ΔH⧧ = 16.23 ± 0.73 kcal mol−1, ΔS⧧ = −24.74 ± 2.70 cal mol−1 K−1, ΔG⧧(298 K) = 23.60 kcal mol−1.
Over the period of 20 h, the conversion of B to A reached more than 90% in CD2Cl2 at 298 K. The kinetic profile in Figure 2b could be fitted with a first-order reaction \(\frac{d[B]}{dt} = -k(B) \), giving the reaction rate constant \(k = (2.91 \pm 0.02) \times 10^{-5} \) s\(^{-1}\). The reaction rate constant for isomerization of B to A was measured at various temperatures in the range between 288 and 308 K (Scheme S1 and Figures S8--S12). Plotting \(\ln(k/T) \) as a function of \(1/T \) gave a linear Eyring profile (Figure 3c). The linear fitting parameters afforded the activation parameters for the thermal isomerization of B to A in CD2Cl2 as \(\Delta H^\ddagger = 16.23 \pm 0.73 \) kcal mol\(^{-1}\), \(\Delta S^\ddagger = -24.74 \pm 2.70 \) cal mol\(^{-1}\) K\(^{-1}\), and \(\Delta G^\ddagger(298 K) = 23.60 \) kcal mol\(^{-1}\).

Interestingly, when irradiation of A was conducted at 0 °C, a third species in addition to isomers A and B was detected. IR spectroscopy revealed a monocarbonyl species with \(\nu_{CO} = 1988 \) cm\(^{-1}\) (Figure S1). The \(^{31}P\{^1H\} \) NMR spectrum of this species (bottom curve in Figure 4a) displayed a triplet at 108.07 ppm.

\(\nu_{PP} = 43.7 \) Hz) and a doublet at 77.41 ppm (2 \(^1H \)) of photoproduct C can be extended from 90 s at 298 K to 1.74 h at 273 K (Figure S18), which enabled us to study the photoisomerization process in a relatively short time with little interference from the decay of C to B (Figure S19). Following the irradiation at 273 K in time with \(^{31}P \) NMR revealed full conversion of A to a mixture of B and C within 3 min, followed...
by full conversion of residual B to C within the next 7 min. Isomer B can thus be regarded as a structural intermediate during both the light-induced isomerization of A to C and also the backward decay from C to A, as shown in Scheme 1.

Mechanistic Considerations. As discussed above, based on TD-DFT calculations the proposed photoisomerization mechanism involved photodissociation of a chlorine atom, followed by TP ligand rearrangement and recapture of the chlorine atom. In regard to the mechanisms of the thermal isomerization reactions, the dissociation of one of the coordinating groups (P, Cl, or CO) might be the initial step before the rearrangement of the geometry around the iron center.10 Thermal decay from B to A is significantly slowed down in the presence of 1 atm of CO, which had little effect on the isomerization from C to B (see the SI, Figures S20 and S21, respectively). Carbonyl dissociation could thus be proposed as the initial step for the thermal isomerization of B to A but not for C to B. However, the highly negative entropy of activation for the thermal isomerization of B to A is not in accord with a dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for mer-to-fac isomerization of MnBr(CO)(bpy) in THF (bpy′ = 4,4′-dimethyl-2,2′-bipyridine), and an ionic mechanism (halide dissociation) was proposed.10 In that case the decrease of entropy would be caused by electrostriction of the solvent resulting from formation of charged species. This appears to be the case here as well. Addition of methanol, which can stabilize the dissociated Cl− ion to the freshly prepared solution of B in DCM, led to instantaneous disappearance of the 13P signals of B, accompanied by clean formation of A within 1 h.17

We used DFT to investigate whether the initial dissociation of the chlorido ligand from B could lead to the formation of species A. On the singlet surface, dissociation of a chlorido ligand leads to the formation of a square pyramidal species 1B−(Cl−), in which CO and the remaining chlorido ligand are coordinated in the basal positions. This species easily isomerizes over a transition state that has an energy 2.6 kcal/mol higher than 1B−(Cl−) to a lower energy (ΔESCF = −1.5 kcal/mol) square pyramidal 1A′(−Cl−) species with the CO ligand coordinated at the apical position. Recoordination of the chlorido ligand to the latter species would lead to the formation of species A. Remarkably, on the triplet surface, only 1A′(−Cl−) could be located as a minimum (ΔETSCF = +1.2 kcal/mol vs 1B−(Cl−)). These calculations show that dissociation of a chlorido from B should lead to facile formation of A regardless of the spin state of the putative five-coordinate intermediate (Scheme 2), which is in accord with the observed acceleration of isomerization in the presence of methanol.

The positive activation entropy of the thermal isomerization of C to B points to a transition state with a dissociated phosphine arm. The thus formed high-spin pentacoordinate intermediate could subsequently isomerize, for example, via a Berry-pseudorotation pathway and yield B after recoordination of the phosphine arm. Quantum chemical modeling of possible dissociative thermal-isomerization pathways would require a detailed treatment of both singlet and triplet surfaces, which is beyond the scope of this study.

CONCLUSION

In conclusion, we show that a tridentate phosphine ligand coordinated to an iron(II) carbonyl center can undergo photodissociated mer- to fac-isomerization with the reverse process occurring thermally. This is a rare example of a photoswitch operating via the change of geometry of a coordinated ligand triggered by a photosevent within the coordination sphere of a first-row transition metal.

EXPERIMENTAL SECTION

General Considerations. All experiments and manipulations were carried out under a dry and oxygen-free atmosphere of nitrogen or argon using standard Schlenk techniques unless otherwise specified. Solvents were dried and distilled over an appropriate drying agent under an atmosphere of nitrogen. All commercially available reagents were used as received. Bis(2-diphenylphosphinophenyl)phenylphosphine16 was prepared according to a modified procedure based on a literature report. The 1H, 13C, and 31P NMR spectra were collected with a Varian Mercury 300 MHz or Bruker AVANCE 400 MHz spectrometer. Infrared spectra were recorded with a Nicolet Nexus FT-IR spectrometer. UV−vis absorption spectra were recorded with an HP G1103A spectrometer. trans-4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran was used as a reference to determine the quantum yield.18 High-resolution mass spectra (HRMS) were recorded with an AccuTOF GC × GC, JMS-T100GCV mass spectrometer. Elemental analyses were performed by Mikronalytisches Labor Kolbe, Mulheim, Germany.

Synthesis of Bis[2-(diphenylphosphino)phenyl]phenylphosphine. To a solution of (2-bromophenyl)-diphenylphosphine (2.60 g, 7.62 mmol) in ether (30 mL) cooled at −40 °C was added dropwise a solution of nBuLi (1.6 M in hexane, 5 mL, 8.0 mmol) under stirring. The cold solution was stirred for 10 min at −40 °C and another 2 h from −40 °C to room temperature. A solution of PhPCl2 (682 mg, 3.81 mmol) in ether (10 mL) was added dropwise under stirring. After being stirred overnight at room temperature, the solution was filtered. The thus-obtained white solid was washed with ether (10 mL × 2) and dried in vacuo. The white powder was extracted with CH2Cl2 (60 mL × 3). The crude product was obtained by solvent evaporation under reduced pressure. Analytically pure product was obtained after flash column chromatography on silica gel (60−200 μm) using a mixture of CH2Cl2 and hexane (1:1, v/v) as eluent. Yield: 0.86 g, 36%.1H NMR (400 MHz, CD2Cl2, 298 K): δ 7.26−6.86 (m, 33H) ppm. 31P (162 MHz, CD2Cl2, 298 K): δ 14.87 (d[AB]) 2JPP = 175 Hz, 1P), 14.95 (d[AB]) 2JPP = 125 Hz, 1P), 17.89 (d[AB]) 2JPP = 175 Hz, 1P). 13C NMR (101 MHz, CD2Cl2, 298 K): δ 137.57 (s), 137.45 (s), 137.34 (s), 137.12 (m), 134.30 (s), 134.24 (s), 134.18 (s), 134.12 (s), 134.04 (s), 133.64 (s), 133.54 (s), 133.44 (s), 128.34 (s), 128.89 (s), 128.60 (s).
Synthesis of (mer-TP)Fe(CO)Cl2 (A). Under an atmosphere of carbon monoxide, a solution of TP (473 mg, 0.75 mmol) in CH2Cl2 (30 mL) was added to a solution of FeCl2·2H2O (150 mg 0.75 mmol) in MeOH (5 mL) under stirring at room temperature. A red solution was formed immediately and turned to bright red after being stirred for another 30 min in the dark under an atmosphere of carbon monoxide. Solvent was removed under reduced pressure, and the resulting orange powder was washed with MeOH (10 mL × 2) and ether (10 mL × 2), respectively. The isomer A·1.2CH2Cl2 was isolated as an orange powder. Yield: 43 mg (0.052 mmol, 93%). 1H NMR (400 MHz, CH2Cl2, δ = 4.80 ppm. 13P (162 MHz, CH2Cl2, δ = 127.65 (s), 127.53 (s), 127.44 (s), 127.22 (s), 127.14 (s), 126.63 (s), 126.53 ppm (s). 13C (101 MHz, CD2Cl2, δ = 126.53 ppm (s). 13C NMR spectrum was recorded at 298 K) δ = 81.64 (t, δPP = 32.4 Hz, 1P), 53.60 (t, δPP = 43.7 Hz, 1P). 77.41 (δ = 43.9 Hz, 2P) ppm. IR (CH2Cl2, cm⁻¹): ν(C≡O) 1988 (s).

Synthesis of unsym-(fac-TP)Fe(CO)Cl2 (B). A Schlenk tube containing a solution of (mer-TP)Fe(CO)Cl2 (A)·1.2CH2Cl2 (50 mg, 0.056 mmol) in CH2Cl2 (4 mL) was placed in a fume hood with the light on. The color of the solution changed to dark red in several hours. Single crystals suitable for X-ray diffraction were collected after the slow evaporation of solvent as the isomer B·0.5CH2Cl2. Yield: 43 mg (0.052 mmol, 93%). 1H NMR (400 MHz, CD2Cl2, 298 K) δ: 8.14 (t, δ = 8.5 Hz, 2H), 7.91 (dt, δ = 15.7, 7.5 Hz, 2H), 7.60–7.61 (m, 3H), 7.50–7.37 (m, 10H), 7.33 (d, δ = 9.1 Hz, 4H), 7.22–7.16 (m, 1H), 6.99 (t, δ = 7.3 Hz, 2H), 6.89 (t, δ = 7.5 Hz, 1H), 6.57 (t, δ = 7.6 Hz, 2H), 6.46 (t, δ = 8.6 Hz, 2H). 13C NMR (101 MHz, CD2Cl2, 223 K) δ: 134.33 (δ = 8.48 Hz, 1H, 131.64 (s), 131.54 (s), 130.92 (s), 130.27 (s), 130.18 (s), 130.06 (s), 129.71 (s), 129.59 (s), 129.32 (s), 128.24 (s), 128.14 (s), 128.05 (s), 127.65 (s), 127.53 (s), 127.44 (s), 127.22 (s), 127.14 (s), 126.63 (s), 126.53 ppm (s). 13C NMR spectrum was recorded at ~50 °C to slow down the decay process.

X-ray Single-Crystal Determination. Data were collected on a Bruker D8 Quest Eco Diffractometer, equipped with a TRIUMPH monochromator and a CMOS PHOTON 50 detector, using Mo Kα radiation (λ = 0.71073 Å). All experiments were conducted at 150(2) K. The intensity data were integrated with the Bruker APEX2 software.

Absorption correction and scaling were performed with SADABS.20 The structures were solved with SHELXS-97.21 Least-squares refinement was performed with SHELXL-2013 19 against F2 of all reflections. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were located at calculated positions using a riding model. Details of the X-ray crystal structures are listed in the SI (Table S1).

Computational Methods. Density functional theory (DFT) calculations were carried out with the TurboMole 6.5 program package using the BP86 functional with def2-TZVP basis sets and resolution of identity approximation. Vibrational analysis of calculated and experimental vibrational frequencies revealed no negative eigenvalues for minima and one negative eigenvalue for the transition state. The UV–vis transitions of complexes A, B, and C were calculated with TD-DFT (nroots = 50; maxdamp = 600; triplets = false) as implemented in the ORCA package at the b3-lyp level (RJJCOSX2) using the def2-TZVP basis set. ZORA scalar relativistic Hamiltonians (Spin-GridAtoms = 27, SpinGridIntAcc = 7) and COSMO solvent corrections (ε = 8.93; CH2Cl2) were included. The coordinates from the structures optimized in TurboMole were used as input for these ORCA TD-DFT calculations.

(14) Neese, F. ORCA—an ab Initio, Density Functional and Semiempirical Program Package, version 3.0.2; Max-Planck-Institut für Bioanorganische Chemie: Mühlheim an der Ruhr, 2009.

