Photo- and thermal isomerization of (TP)Fe(CO)Cl-2 [TP = Bis(2-diphenylphosphinophenyl)phenylphosphine]

Li, P.; de Bruin, B.; Reek, J.N.H.; Dzik, W.I.

DOI
10.1021/acs.organomet.5b00644

Publication date
2015

Document Version
Final published version

Published in
Organometallics

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
Photo- and Thermal Isomerization of (TP)Fe(CO)Cl₂ [TP = Bis(2-diphenylphosphinophenyl)phenylphosphine]

Ping Li, Bas de Bruin, Joost N. H. Reek, and Wojciech I. Dzik*

Homogeneous, Supramolecular and Bio-Inspired Catalysis, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Supporting Information

ABSTRACT: The title complex displayed structural flexibility via photo- and thermal-isomerization reactions between three isomers: (mer-TP)Fe(CO)Cl₂ (A), unsym-(fac-TP)Fe(CO)Cl₂ (B), and sym-(fac-TP)Fe(CO)Cl₂ (C). Irradiation of A at RT with 525 nm light selectively produces B, while at 0 °C isomer C is formed with the intermediacy of B. UV–vis spectroscopy combined with TD-DFT calculations revealed the nature of the photoisomerization process. Kinetics of the thermal isomerization of C to B and B to A have been studied with 31P NMR spectroscopy in CD₂Cl₂, and activation parameters were determined. Isomers A and B have been isolated and crystallographically characterized.

INTRODUCTION

The ability of molecules to change their shape upon external stimuli opens a variety of potential applications as molecular switches or machines. In particular, the use of light as the switching factor has recently gained much interest in broad contexts spanning from biological applications to material science.

In coordination chemistry, much attention has been focused on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive substituent appended to the ligand. In this way properties such as spin state of the metal can be tuned. The opposite situation in which the photoevent dictates conformational change of the ligand proceeded on steering the properties of the transition metal by switching the conformation of a photoactive subst...
Solid-state structures of species A and B were obtained by single-crystal X-ray diffraction (Figure 1). In both structures, each iron center is coordinated to a TP ligand, one carbonyl ligand, and two chlorides and adopts a slightly distorted octahedral configuration. The TP ligand coordinates to the Fe center in a meridional fashion in isomer A and a facial fashion in isomer B. The meridional coordination mode of the TP ligand in A is remarkable, as none of the previously reported mononuclear complexes of TP reveal such a binding mode. As such, isomer A is the first metal complex that features TP as a PPP pincer-type ligand. This behavior is, however, in accord with the expected binding mode of three phosphine donors to an octahedral monocarbonyl iron(II) species. The two terminal phosphorus atoms P2 and P3 in isomer A (Figure 1) are trans to each other with similar bond distances to the iron center (2.2547(9) Å for Fe1–P2 and 2.2422(9) Å for Fe1–P3), while the Fe1–P1 bond distance 2.1852(10) Å is significantly shorter. In contrast, the bond distance for Fe1–P3 (2.3523(9) Å) in isomer B is significantly longer than that for Fe1–P2 (2.2212(6) Å) due to the stronger trans influence of the carbonyl ligand compared to the chloride.

When a solution of B in CH2Cl2 was kept in the dark, isomer A was fully recovered within 2 days, as indicated by 31P NMR. The isomerization of B to A in CH2Cl2 was also monitored using IR and UV–vis spectroscopy, as shown in Figure 2. The stretching frequency of the carbonyl ν(CO) displayed a red shift from 2008 cm⁻¹ in B to 1972 cm⁻¹ in A. This observation is consistent with the single-crystal structures showing significantly shorter bond distance of Fe–Cl (trans to a π-donating chloride) in isomer A (1.743(4) Å) than that in isomer B (1.790(2) Å), reflecting stronger back-donating ability from Fe to CO in isomer A. The UV–vis spectra displayed three clear isosbestic points at 419, 447, and 532 nm. The intense visible absorption shifted from 566 nm in B to 482 nm in A, which is in agreement with the color change from dark red to orange.

The ability of iron(II) carbonyl compounds to undergo photochemical isomerization followed by thermal rearrangement to the initial state is well established. Depending on the wavelength the photorearrangement can proceed via either CO loss or halide dissociation, and in principle both pathways could also be operational during the isomerization of A to B triggered by visible light. The UV–vis spectrum of A reveals two separate bands with peak maxima at λ = 366 and 482 nm. In most cases, the lowest (singlet) excited state is most relevant to explain the photoactivity of a compound, and indeed selective irradiation of the lowest energy band of A using a 525 nm LED lamp leads to clean formation of B in CD2Cl2 with a quantum yield of Φ = 0.72.

TD-DFT calculations reveal that the 482 nm band of A (484 nm in DFT) is a mixed excitation consisting of HOMO → LUMO and HOMO → LUMO+1 transitions. Excitation of this band is associated with a Fe–Cl π*-antibonding orbital, the photochemical reaction of A to B mostly seems to involve photodissociation of a chlorine atom. Complex B can only be selectively converted back to A thermally. Attempts to convert B back to A in a photochemical reaction were only partly successful. When the 566 nm band of B was irradiated with 590 nm LED light, a steady-state mixture of A and B was obtained (presumably due to overlap of the bands of A and B).

Kinetic Studies. To get insight on the thermal back-isomerization of B to A, we conducted kinetic measurements using variable-temperature 31P NMR spectroscopy (Figure 3).
Organometallics

Over the period of 20 h, the conversion of B to A reached more than 90% in CD2Cl2 at 298 K. The kinetic profile in Figure 2b could be fitted with a first-order reaction \(\frac{d[B]}{dt} = -k[B] \), giving the reaction rate constant \(k = (2.91 \pm 0.02) \times 10^{-5} \) s\(^{-1}\). The reaction rate constant for isomerization of B to A was measured at various temperatures in the range between 288 and 308 K (Scheme S1 and Figures S8–S12). Plotting \(\ln(k/T) \) as a function of \(1/T \) gave a linear Eyring profile (Figure 3c).

The linear fitting parameters afforded the activation parameters for the thermal isomerization of B to A in CD2Cl2 as \(\Delta H^\ddagger = 16.23 \pm 0.73 \) kcal mol\(^{-1}\), \(\Delta S^\ddagger = -24.74 \pm 2.70 \) cal mol\(^{-1}\) K\(^{-1}\), and \(\Delta G^\ddagger (298 \text{K}) = 23.60 \) kcal mol\(^{-1}\).

Interestingly, when irradiation of A was conducted at 0 °C, a third species in addition to isomers A and B was detected. IR spectroscopy revealed a monocarbonyl species with \(\nu \text{CO} = 1988 \) cm\(^{-1}\) (Figure 5). For a D complex in which the carbonyl ligand is trans to the P1 donor; a mer complex D in which the chlorides are trans to the P1 donor; and a mer-complex E, which is the conformational isomer of A in which the phenyl ring is pointing toward the chloride instead of the carbonyl (Figure 5). For a mer coordination mode of the species formed at low temperature one would expect the \(^{31}\text{P} \) chemical shift of phosphines P2 and P3 to be close to 65 ppm as it is in A. The value of 77.41 suggests that both phosphines are coordinated trans to chlorides, thus rendering isomer C the most plausible structure for this intermediate. Unfortunately, all attempts to crystallize this species under irradiation failed, preventing us from establishing the structure of C in the solid state. DFT (BP86/def2-TZVP) was used to calculate the relative energies of all the possible octahedral isomers of (TP)Fe(CO)Cl2 (A–E, Figure 5). In agreement with the experiment, the dark isomer A has the lowest energy. Isomer B is 6.7 kcal/mol higher in energy. The configuration of sym-(fac-TP)Fe(CO)Cl2 (C) that was proposed as the species formed at 0 °C has higher (5 kcal mol\(^{-1}\)) energy than isomer B, which is consistent with the thermal decay of C to B in solution, as discussed below. Species D and E are both calculated to be higher in energy than species B and are thus not expected to re-form thermally to B. The assignment of isomer C was also supported by the DFT-calculated IR spectra. In accord with the experiments, the carbonyl stretching frequency of structure C lies in between the values of A and B (Figure 5 and Table S3).

The \(^{31}\text{P} \) NMR spectra shown in Figure 4a display the spectral changes during the decay of C in solution in the dark at 270 K. The isomerization reaction of C to B was accompanied by the formation of some A. The global fit (Scheme S2 and equations S3–5) of the reaction profile in Figure 4b suggested that the decay of C afforded only B, while a small amount of A was formed by subsequent thermal decay of B. Activation parameters for the isomerization of C to B were obtained from the Eyring plot (Figure 4b) as \(\Delta H^\ddagger = 26.85 \pm 0.86 \) kcal mol\(^{-1}\), \(\Delta S^\ddagger = 21.90 \pm 0.99 \) cal mol\(^{-1}\) K\(^{-1}\), and \(\Delta G^\ddagger (270 \text{K}) = 20.94 \) kcal mol\(^{-1}\). The decay of C to B is much faster than the decay of B to A at the same temperature (Figure 6). The half-life (\(\tau_{1/2} \)) of photoproduct C can be extended from 90 s at 298 K to 1.74 h at 273 K (Figure S18), which enabled us to study the photoisomerization process in a relatively short time with little interference from the decay of C to B (Figure S19). Following the irradiation at 273 K in time with \(^{31}\text{P} \) NMR revealed full conversion of A to a mixture of B and C within 3 min, followed

Figure 4. Thermal isomerization of C to B in CD2Cl2 in the dark. (a) \(^{31}\text{P} \) NMR spectra at 270 K. (b) Kinetic curves obtained from \(^{31}\text{P} \) NMR integrations for isomers C (red), B (green), and A (blue) at 270 K. (c) Eyring plot of the isomerization of C to B. \(\Delta H^\ddagger = 26.85 \pm 0.86 \) kcal mol\(^{-1}\), \(\Delta S^\ddagger = 21.90 \pm 0.99 \) cal mol\(^{-1}\) K\(^{-1}\), \(\Delta G^\ddagger (270 \text{K}) = 20.94 \) kcal mol\(^{-1}\).

Figure 5. DFT (BP86/def2-TZVP)-calculated energy levels for all possible octahedral isomers of (TP)Fe(CO)Cl2.

Figure 6. Reaction rate constant of thermal isomerization reactions of C to B and A to B in CD2Cl2 measured by \(^{31}\text{P} \) NMR.
by full conversion of residual B to C within the next 7 min. Isomer B can thus be regarded as a structural intermediate during both the light-induced isomerization of A to C and also the backward decay from C to A, as shown in Scheme 1.

Scheme 1. Stepwise Photo- and Thermal Isomerization Reactions

Mechanistic Considerations. As discussed above, based on TD-DFT calculations the proposed photoisomerization mechanism involved photoinduced dissociation of a chlorine atom, followed by TP ligand rearrangement and recapture of the chlorine atom. In regard to the mechanisms of the thermal isomerization reactions, the dissociation of one of the coordinating groups (P, Cl, or CO) might be the initial step before the rearrangement of the geometry around the iron center.15 Thermal decay from B to A is significantly slowed down in the presence of 1 atm of CO, which had little effect on the isomerization from C to B (see the SI, Figures S20 and S21, respectively). Carbonyl dissociation could thus be proposed as the initial step for the thermal isomerization of B to A but not for C to B. However, the highly negative entropy of activation for the thermal isomerization of B to A is not in accord with a dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for

\[
\text{Reactions}
\]

Mechanistic Considerations. As discussed above, based on TD-DFT calculations the proposed photoisomerization mechanism involved photoinduced dissociation of a chlorine atom, followed by TP ligand rearrangement and recapture of the chlorine atom. In regard to the mechanisms of the thermal isomerization reactions, the dissociation of one of the coordinating groups (P, Cl, or CO) might be the initial step before the rearrangement of the geometry around the iron center.15 Thermal decay from B to A is significantly slowed down in the presence of 1 atm of CO, which had little effect on the isomerization from C to B (see the SI, Figures S20 and S21, respectively). Carbonyl dissociation could thus be proposed as the initial step for the thermal isomerization of B to A but not for C to B. However, the highly negative entropy of activation for the thermal isomerization of B to A is not in accord with a dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for

\[
\text{Reactions}
\]

Mechanistic Considerations. As discussed above, based on TD-DFT calculations the proposed photoisomerization mechanism involved photoinduced dissociation of a chlorine atom, followed by TP ligand rearrangement and recapture of the chlorine atom. In regard to the mechanisms of the thermal isomerization reactions, the dissociation of one of the coordinating groups (P, Cl, or CO) might be the initial step before the rearrangement of the geometry around the iron center.15 Thermal decay from B to A is significantly slowed down in the presence of 1 atm of CO, which had little effect on the isomerization from C to B (see the SI, Figures S20 and S21, respectively). Carbonyl dissociation could thus be proposed as the initial step for the thermal isomerization of B to A but not for C to B. However, the highly negative entropy of activation for the thermal isomerization of B to A is not in accord with a dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for

\[
\text{Reactions}
\]

Mechanistic Considerations. As discussed above, based on TD-DFT calculations the proposed photoisomerization mechanism involved photoinduced dissociation of a chlorine atom, followed by TP ligand rearrangement and recapture of the chlorine atom. In regard to the mechanisms of the thermal isomerization reactions, the dissociation of one of the coordinating groups (P, Cl, or CO) might be the initial step before the rearrangement of the geometry around the iron center.15 Thermal decay from B to A is significantly slowed down in the presence of 1 atm of CO, which had little effect on the isomerization from C to B (see the SI, Figures S20 and S21, respectively). Carbonyl dissociation could thus be proposed as the initial step for the thermal isomerization of B to A but not for C to B. However, the highly negative entropy of activation for the thermal isomerization of B to A is not in accord with a dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for

\[
\text{Reactions}
\]

Mechanistic Considerations. As discussed above, based on TD-DFT calculations the proposed photoisomerization mechanism involved photoinduced dissociation of a chlorine atom, followed by TP ligand rearrangement and recapture of the chlorine atom. In regard to the mechanisms of the thermal isomerization reactions, the dissociation of one of the coordinating groups (P, Cl, or CO) might be the initial step before the rearrangement of the geometry around the iron center.15 Thermal decay from B to A is significantly slowed down in the presence of 1 atm of CO, which had little effect on the isomerization from C to B (see the SI, Figures S20 and S21, respectively). Carbonyl dissociation could thus be proposed as the initial step for the thermal isomerization of B to A but not for C to B. However, the highly negative entropy of activation for the thermal isomerization of B to A is not in accord with a dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for dissociative process of an L-type ligand. A similar negative entropy of activation value has been reported for
Synthesis of (mer-TP)Fe(CO)Cl₂ (A). Under an atmosphere of carbon monoxide, a solution of TP (473 mg, 0.75 mmol) in CH₂Cl₂ (30 mL) was added to a solution of FeCl₂·2H₂O (150 mg 0.75 mmol) in MeOH (5 mL) under stirring at room temperature. A red solution was formed immediately and turned to bright red after being stirred for another 30 min in the dark under an atmosphere of carbon monoxide. Solvent was removed under reduced pressure, and the resulting orange powder was washed with MeOH (10 mL x 2), respectively. The isomer A.1.2CH₂Cl₂ was isolated as an orange powder. Yield: 540 mg (0.61 mmol, 93%). 1H NMR (400 MHz, CD₂Cl₂, 298 K): δ 8.14 (t, J = 7.3 Hz, 2H), 7.94 (m, 4H), 7.83 (m, 2H), 7.73 (m, 4H), 7.66 (m, 4H), 7.44 (m, 3H), 7.36 (m, 8H), 7.03 (t, J = 7.2 Hz, 2H) 6.82 (dt, J = 2.4 Hz, J = 7.2 Hz, 2H) 6.39 (m, 2H) ppm. 13C NMR (100 MHz, CDCl₃, 298 K): δ 136.62 (t, J = 4.4 Hz) 135.88 (s), 135.73 (s), 133.05 (s, J = 5.15 Hz), 132.42 (t, J = 6.16) 131.76 (s), 131.65 (s), 131.40 (m), 130.60 (s), 130.53 (s), 128.55 (s, 4.4 Hz), 128.33 (s, 28.23 s), 127.75 (t, J = 4.80) ppm. 31P (162 MHz, CD₂Cl₂, 298 K): δ 115.64 (d, J = 37.7 Hz, 1P), 65.11 (d, J = 37.2 Hz, 2P) ppm. IR (CH₂Cl₂, cm⁻¹): ν(CO) = 1960, 1930, 1900, 1870. HRMS (FD+) m/z: [M – CO]⁺ calcd for C₃₈H₃₁P₂FeCl₂P₂ 756.05216, found 756.05831. Anal. Calc. C₃₈H₃₁P₂FeCl₂P₂: C, 63.34; H, 4.55. Note: 13C NMR spectrum of isomer B was not available due to its decay to isomer A. The 13C NMR spectrum of isomer A was recorded at −50 °C to slow down the decay process.

Synthesis of unsym-(fac-TP)Fe(CO)Cl₂ (B). A Schlenk tube containing a solution of (mer-TP)Fe(CO)Cl₂ (A) 1.2CH₂Cl₂ (50 mg, 0.065 mmol) in CH₂Cl₂ (4 mL) was placed in a fume hood with the light on. The color of the solution changed to bright red in several hours. Single crystals suitable for X-ray diffraction were collected after the slow evaporation of solvent as the isomer A. 1.2CH₂Cl₂: C, 63.11; H, 4.14. Found: C, 63.34; H, 4.55. Note: 13C NMR spectrum of isomer B was not available due to its decay to isomer A. The 13C NMR spectrum of isomer A was recorded at −50 °C to slow down the decay process.

(17) Neese, F. ORCA—an ab Initio, Density Functional and Semiempirical Program Package, version 3.0.2; Max-Planck-Institut für Bioanorganische Chemie: Mühlheim an der Ruhr, Zwickau, 2009.

(19) Calculations were performed using the Turbomole functional b3-lp, which is not fully identical to the Gaussian B3LYP functional.

