Low-valent iron: an Fe(I) ate compound as a building block for a linear trinuclear Fe cluster

DOI
10.1039/c5cc04908c

Publication date
2015

Document Version
Final published version

Published in
Chemical Communications

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Showcasing research by C. Lichtenberg, H. Grützmacher et al., Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland

Low-valent iron: an Fe(I) ate compound as a building block for a linear trinuclear Fe cluster

The trinuclear low-valent iron cluster \([\text{Fe}_3\text{(trop2dad)}_2]\) was rationally synthesized using a well-defined Fe(I) precursor. The cluster is based on a redox-active diazadiene-diolefin ligand. Its electronic structure was evaluated. The modular synthetic approach opens up possibilities for expansion of this compound family.

A low-valent trinuclear iron complex with an unusual linear Fe(I)–Fe(0)–Fe(I) unit is presented. It is accessed in a rational approach using a salt metathesis reaction between a new anionic Fe(I) containing heterocycle and FeCl₂. Its electronic structure was studied by single crystal XRD analysis, EPR and Mössbauer spectroscopy, and magnetic susceptibility measurements.

The cluster structure of polynuclear iron compounds can determine the characteristics of (multi-)redox processes, enable cooperative reactivity, and allow the precise adjustability of magnetic properties. While the synthesis of well-defined polynuclear compounds with iron in its more common oxidation states 0, +2, and +3 is rather well-developed, Fe(I) species are scarce and their rational synthesis and detailed characterization remain challenging.

Synthetic difficulties under strongly reducing conditions include ligand dissociation (formation of Fe⁰), ligand decomposition, or disproportionation of Fe⁰, ligand decomposition, or disproportionation reactions.

Here we report on a well-established concept for the syntheses of polynuclear sandwich complexes as an approach to low-valent Fe clusters, namely reacting anionic unsaturated building blocks with metals salts. To this end, we prepared a new mononuclear, anionic Fe(ii) diazadiene (dad) diolefin complex, which can be described as a ferradiaza-cyclopentenide, as building block for the preparation of a trinuclear low-valent iron cluster with an unusual linear Fe₃ unit.

Low-valent iron: an Fe(i) ate compound as a building block for a linear trinuclear Fe cluster†

C. Lichtenberg,*a L. Viciu,a M. Vogt,a R. E. Rodriguez-Lugo,a M. Adelhardt,b J. Sutter,b M. M. Khusniyarov,b K. Meyer,b B. de Bruin,c E. Billd and H. Grützmacher*ab

The cluster structure of polynuclear iron compounds can determine the characteristics of (multi-)redox processes, enable cooperative reactivity, and allow the precise adjustability of magnetic properties. While the synthesis of well-defined polynuclear compounds with iron in its more common oxidation states 0, +2, and +3 is rather well-developed, Fe(i) species are scarce and their rational synthesis and detailed characterization remain challenging. Synthetic difficulties under strongly reducing conditions include ligand dissociation (formation of Fe⁰), ligand decomposition, or disproportionation reactions.

Here we report on a well-established concept for the syntheses of polynuclear sandwich complexes as an approach to low-valent Fe clusters, namely reacting anionic unsaturated building blocks with metals salts. To this end, we prepared a new mononuclear, anionic Fe(ii) diazadiene (dad) diolefin complex, which can be described as a ferradiaza-cyclopentenide, as building block for the preparation of a trinuclear low-valent iron cluster with an unusual linear Fe₃ unit.

* Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Switzerland. E-mail: lichtenberg@inorg.chem.ethz.ch, hgregutzmacher@ethz.ch
† Department of Chemistry & Pharmacy, Friedrich-Alexander University, Erlangen – Nuremberg (FAU), Egerlandstr. 1, D-91058 Erlangen, Germany
a Universiteit van Amsterdam, Faculty of Science, Postbus 94720, 1090 GS Amsterdam, The Netherlands
b Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University, 510275 Guangzhou, China
‡ Electronic supplementary information (ESI) available: Experimental and computational details. CCDC 1045323-1045329. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5cc04908c

Reaction of [FeBr₂(thf)₃] with trop₂dad (trop = 5H-dibenzo-[a,d]cyclo-hepten-5-yl, dad = diazadiene) gave [FeBr₂(trop₂dad)] (1) in quantitative yield (Scheme 1a). The effective magnetic moment of 1 amounts to μₑff = 4.7 μB (Evans’ method) indicating a d⁶ hs electron configuration at the Fe center. ¹H NMR spectroscopic analysis revealed apparent Cs symmetry in solution. Analysis of the molecular structure, using single crystal X-ray diffraction, shows a distorted tetrahedral coordination geometry around the metal center and the structural parameters indicate a neutral dad ligand coordinated to Fe(i) with free unbound olefin units (ESI).⁶,⁷

Reduction of 1 with excess Na or NaH led to formation of the iron(i) compound 2, which was isolated in 73% yield as dark brown single crystalline needles (Scheme 1a). X-ray diffraction analysis of a single crystal showed that complex 2 forms a contact ion pair in the solid state (Fig. 1). The trop₂dad acts as tetradentate ligand.

The dad fragment and the Fe atom form an almost planar FeN₃C₃ heterocycle with Fe(i) deviating by only 0.12 Å from the N–C–C–N plane. The sodium counter ion interacts asymmetrically with the diazadiene backbone (Na1–N1/2, 2.739(2)/2.982(2) Å). The C31–C32 bond in the dad unit is short (1.368(3) Å) while the two C31–C32–N1 bond distances (1.384(3) Å/1.375(3) Å) correspond to C–N single bonds indicating that the ligand has adopted its fully reduced bis-amido ethene state, (trop₂dad)⁺, with two negatively charged amido groups.⁷ The distorted square planar coordination geometry (angle sum around Fe: 367°) is unusual for Fe(i) compounds, but has recently been observed for the complex [NaFe(trop₂dae)(thf)] with a non-redox-active, saturated (NC₂H₄N) ligand backbone, which is formally related to 2 by addition/extrusion of H₂.⁶,⁷ Whereas the average Fe–N distances in 2 are in the same range as observed for [NaFe(trop₂dae)(thf)], the Fe–olefin distances are shortened by 0.03 Å suggesting stronger π-back-bonding in compound 2. This is also reflected in the rather long coordinated C–Ctrop bonds [C4–C5, 1.449(3); C19–C20, 1.448(2) Å]. The spectrum is characteristic for an S = 1/2 species. The experimental g-values (gₓ = 2.010, gᵧ = 2.095, g𝑧 = 2.199) are in reasonable agreement with those predicted by DFT calculations and indicate a higher g-anisotropy for 2 than for...
the related species [NaFe(trop$_2$dad)(thf)$_3$]. DFT calculations show that 2 is an Fe-centered radical species (spin density at Fe: 1.33) with substantial spin polarization to the coordinating N- and C-atoms (ESI†). Magnetic susceptibility data recorded with powder samples of 2 are fully consistent with the EPR spectrum. An effective magnetic moment, μ_{eff} of 1.88 μ_B is obtained, which is field independent (0.01–1 T) and as expected for $S = 1/2$ – almost invariant in the temperature range of 3–300 K (ESI†).

The effective magnetic moment in solution is 1.9(1) μ_B at 298 K (Evans’ method). Both values are close to the spin only value for one unpaired electron (1.82 μ_B for $g_{\text{average}} = 2.10$). The zero field Mössbauer spectrum of solid 2 recorded at 77 K shows a quadrupole doublet with a low isomer shift $\delta = 0.21(1)$ mm s$^{-1}$ and a large quadrupole splitting $|\Delta E_Q| = 2.45(1)$ mm s$^{-1}$ (ESI†). The parameters are consistent with the expected d7 low-spin electron configuration at the Fe(i) center in 2 with its distorted square planar coordination geometry. The quadrupole splitting is moderately decreased compared to [NaFe(trop$_2$dad)(thf)$_3$], reflecting the more symmetrical coordination geometry in 2. The isomer shift is within limits of error identical with that observed for [NaFe(trop$_2$dad)(thf)$_3$], which is low compared to other Fe(i) species and again indicates significant Fe \rightarrow C(–C$_{\text{sp}}$) back donation.9 Cyclic voltammetry revealed two quasi-reversible redox waves for compound 2 with half potentials $E_{1/2}$ of -1.02 V and -2.40 V vs. Fe/C$_{\text{Fc}}$ (ESI†).

In order to investigate its ability to serve as building block, 2 was reacted with [FeCl$_2$(thf)$_3$] in a 2:1 stoichiometry (Scheme 1b). Indeed, the trinuclear complex compound [Fe$_3$(trop$_2$dad)$_2$] (3) could be isolated from this metathesis reaction (exchange of two Na(thf)$_3$ cations for one Fe$^{2+}$) as a deep red-brown single crystalline material in 82% yield. In low yield, 3 was also isolated in an attempt to oxidize [NaFe(trop$_2$dad)(thf)$_3$] (2) with Ph$_3$CCl (ESI†). This suggests that the mechanism leading to 3 may be more complex than Scheme 1b implies.

The structure of 3 was determined by single crystal X-ray diffraction (Fig. 2). It shows an almost linear array of three iron centers (Fe1–Fe2–Fe3, 171.06(3)$^\circ$) with Fe2+) as a deep red-brown single crystalline material in 82% yield. In low yield, 3 was also isolated in an attempt to oxidize [NaFe(trop$_2$dad)(thf)$_3$] (2) with Ph$_3$CCl (ESI†). This suggests that the mechanism leading to 3 may be more complex than Scheme 1b implies.
A linear Fe³⁺–Fe³⁺–Fe³⁺ array has been investigated in detail, but the due to less significant Fe termligand back donation in Fe₃ atoms in the more intense signal, corresponding to the terminal Fe1 and Fe2, isochromat shift, however, being below the value reported for a three Fe³ atoms in
correlate high-spin isomer shift, however, being below the value reported for a three Fe³ atoms in

The spin state of the all-ferric compounds, A and B, with their linear Fe³⁺–Fe³⁺–Fe³⁺ array has been investigated in detail, but the coupling patterns and spin states of comparable compounds, like E, F, containing low-valent iron are presently unknown. Zero-field Mössbauer spectroscopy at 77 K gave a spectrum of 3 with two quadrupole doublets with an intensity ratio of 2:1 (ESI†). Both, the high isomer shift (δ = 0.92(1) mm s⁻¹) and the moderately large quadrupole splitting (|ΔEQ| = 1.88(1) mm s⁻¹) of the less intense signal assigned to the central Fe2 ion are characteristic of a high-spin Fe(II) electron configuration. The Mössbauer parameters of the more intense signal, corresponding to the terminal Fe1 and Fe3 atoms in 3, amount to δ = 0.37(1) mm s⁻¹ and |ΔEQ| = 1.09(1) mm s⁻¹. These values are within the broad range of isomer shifts (0.20–1.09 mm s⁻¹) and quadrupole splittings (|ΔEQ| = 0.89–3.48 mm s⁻¹) reported for Fe(i) species.⁹,¹⁶ The low isomer shift, however, being below the value reported for a three coordinate high-spin β-diketiminato Fe(i) compound with an alkyne ligand (δ = 0.44 mm s⁻¹) hints at a low-spin electron configuration of the terminal Fe(i) ions in 3 (local spin states SFe1 = SFe3 = 1/2). Compared to compound 2, the terminal Fe atoms in 3 show a higher isomer shift, indicating a lower s-electron density at the Fe nucleus due to less significant Fe-terminal → ligand back donation in 3, which is in agreement with the observed elongated Fe-terminal–ligand bonds in 3 (vide supra).

SQUID magnetic susceptibility measurements with microcrystalline 3 reveal μeff = 5.8 μB (300 K, 1 T) (Fig. 3 top and ESI†). Above ca. 200 K, μeff is almost constant, whereas below it gradually decreases reaching 2.01 μB at 2 K. This reveals rather weak total exchange splitting of the spin system in the energy interval kT for temperatures up to ca. 200 K. Data analysis with a spin coupling model for a spin triad of isosceles topology with SFe1 = SFe3 = 1/2, SFe2 = 2, according to local Is-Fe(i)-hs-Fe(ii)-Is-Fe(i) electron configurations reveals antiferromagnetic interactions between all three Fe nuclei.¹⁸ The best fit was obtained with exchange coupling constants JFe1/Fe3 = −10.0 cm⁻¹, JFe1/Fe2 = −23.0 cm⁻¹ and local zero field splitting (ZFS) parameters |D| = 46 cm⁻¹ and E/D = 0.3 for the central ferrous ion, Fe2.¹⁹ The absolute values of the coupling constants are approximately one order of magnitude smaller than those observed in the sulfur bridged all-ferric trinuclear compound A.¹º The competition of moderately strong all-antiferromagnetic spin coupling and the local ZFS of SFe2 = 2 leads to a large number of close-lying magnetic sublevels, in accord with the gradual slope of μeff(T). The twenty eigenstates (μFe1, μFe2, μFe3) of the coupled spin system are spread out in an extremely narrow energy range of <300 cm⁻¹ (<0.86 kcal mol⁻¹) without showing any structure of isolated total spin manifolds. As can be seen from the energy level plots in Fig. 3.

![Fig. 2](image-url) Molecular structure of [Fe₃(trop²dad)₂][] in the solid state.⁶ Hydrogen atoms, annelated C₅H₄ groups, and solvent molecules in the lattice are omitted for clarity. Displacement ellipsoids are shown at the 50% probability level; carbon atoms not interacting with Fe centers are drawn as wireframe. Selected bond lengths [Å] and angles [°]: Fe1–Fe2, 2.640(8); Fe2–Fe3, 2.6340(8); Fe1–N1, 1.976(3); Fe1–N2, 1.984(4); Fe1–C31, 2.104(4); Fe1–C32, 2.111(4); Fe1–(C4–C5), 1.939(4); Fe1–(C19–C20), 1.949(4); Fe2–N1, 2.052(3); Fe2–N2, 2.027(3); N1–C31, 1.393(6); C31–C32, 1.365(6); N2–C32, 1.391(5); C4–C5, 1.437(6); C19–C20, 1.428(7); Fe1–Fe2–Fe3, 1.7106(3); dad1–Fe1–Fe3–dad2, 67.8.

![Fig. 3](image-url) Top: Plots of molar magnetic susceptibility (circles) and effective magnetic moment (triangles) of solid [Fe₃(trop²dad)₂][] vs. temperature [K]. Bottom: Energy plot of the magnetic eigenstates for 3 vs. fields applied in x, y, z-directions with respect to the magnetic axes defined by the zero field splitting tensor of Fe2.
The values for J_{ff} and $|D|$ obtained from parameter optimization are not unique. Other solutions with similar goodness can be obtained with D values in the range $|D| = 40 \pm 20 \text{ cm}^{-1}$ in conjunction with negative J_{ff} values ranging from -8 to -26 cm^{-1} (see ESI† for error plots).

Variable-field magnetic measurements could not solve the ambiguities because at base temperatures, where the field effects are significant, the measurements are obscured by additional intermolecular interactions (Fig. S9, ESI†). In any case, however, competition between different antiferromagnetic exchange pathways in the spin trimer and the local ZFS at Fe2 leads to strong spin mixing such that a well-separated ground state with a physically meaningful total spin does not exist for 3.

The effective magnetic moment of 3 in solution was determined with the Evans' method and gives $\mu_{eff} = 5.4(2) \mu_B$ at 298 K, which is slightly lower than that determined in the solid state.20 Compound 3, dissolved in toluene, is EPR silent at 20 K and at 298 K.21 Solutions of the tri-iron cluster 3 are not particularly stable. After 4 d, workup of a solution of in situ generated 3 afforded compound 4 in 22% isolated yield (Scheme 1b). Formally, 3 is transformed into 4 by extrusion of two Fe(0) atoms. Compound 4 was independently and rationally synthesized (Scheme 1b) and fully characterized (ESI†).

This complex – with a distorted tetragonal structure and an $S = 1$ spin-state, is best described as a hs-Fe(u) center, antiferromagnetically coupled to two mononanoic radical ligands (trop2dad)$^{-}$ as previously reported for other [Fe(u)(dad$^{2-}$)] complexes.22 Compound 4 is a potential precursor for trinuclear clusters as it contains four olefinic trop units that can act as strong field ligands towards electron rich transition metal centers.

A new heterobimetallic complex [NaFe(trop2dad)(thf)$_3$] (2) was obtained, which contains the redox-active (“non-innocent”) diaza-diene ligand as (trop2dad)$^{-}$. The spin density of the unpaired electron is located on the low-spin d4 valence electron configured iron center. As a building block, 2 can be utilized for the synthesis of the first thoroughly investigated paramagnetic low-valent trinuclear iron cluster with an unusual linear Fe$_3$ unit, [Fe$_3$(trop2dad)$_3$] (3). Compound 3 has a J-Fe(3)-hs-Fe(u)-ls-Fe(u) electronic structure with a large number of magnetic sublevels close to the ground state. Eventually, the detailed spectroscopic features obtained here with well-defined molecular Fe(i) complexes will help to better characterize supposedly low-valent iron centers in metallo-enzymes and heterogeneous catalysts.23

The authors thank Dr Inés Rubio Garcia for helpful discussions on EPR spectroscopy. C. L. is grateful for a Feodor Lynen fellowship generously hosted by Prof. François Diederich.

Notes and references

8. Dashed lines between Fe atoms in 3 are guides to the eye.
11. Chemical transformation from the saturated to the unsaturated ligand bond was observed in a Ru complex under catalytic conditions in the conversion of MeOH/water mixtures to CO$_2$ and H$_2$: E. Rodriguez-Lugo, M. Trincado, M. Vogt, F. Tesew, G. Santiso-Quinones and H. Gritzmacher, Nat. Chem., 2013, 5, 342.
12. In a competing reaction pathway, addition of the radical [CPh$_3$] to the ligand backbone was also observed (ESI†).
14. There are a neutral counterpart of C and two coordination isomers of F.
18. Theoretical models for spin coupled trinuclear compounds with local spin states $S_{k_1} = S_{k_2} = 3/2$, $S_{k_3} = 2$ were not in agreement with the experimental data (ESI†).
19. The sign of D does not have much physical meaning here, because the rhombicity parameter is at its maximum.
20. Possible reasons are (i) a slight field dependency of the effective magnetic moment of 3 (cf. ESI†), (ii) the relatively poor solubility of 3 (albeit filtration of samples used for the Evans’ method did not leave visible amounts of solid residue) and (iii) slightly different J, D, and E/D values for 3 in solution.
21. Samples of 3 gave an X-band EPR signal, which is characteristic for small magnetic particles, which are present as minor impurities or form during decomposition of 3 (ESI†).