A Distributed Inflection Model for Translating into Morphologically Rich Languages

Tran, K.; Bisazza, A.; Monz, C.

Publication date
2015

Document Version
Final published version

Published in
Proceedings of MT Summit XV. - Vol. 1

License
CC BY-NC-ND

Citation for published version (APA):
A Distributed Inflection Model for Translating into Morphologically Rich Languages

Ke Tran
m.k.tran@uva.nl

Arianna Bisazza
a.bisazza@uva.nl

Christof Monz
c.monz@uva.nl

Informatics Institute, University of Amsterdam,
Science Park 904, 1098 XH Amsterdam, The Netherlands

Abstract
Lexical sparsity is a major challenge for machine translation into morphologically rich languages. We address this problem by modeling sequences of fine-grained morphological tags in a bilingual context. To overcome the issue of ambiguous word analyses, we introduce soft tags, which are under-specified representations retaining all possible morphological attributes of a word. In order to learn distributed representations for the soft tags and their interactions we adopt a neural network approach. This approach allows for the combination of source and target side information to model a wide range of inflection phenomena. Our re-inflection experiments show a substantial increase in accuracy compared to a model trained on morphologically disambiguated data. Integrated into an SMT decoder and evaluated for English-Italian and English-Russian translation, our model yields improvements of up to 1.0 BLEU over a competitive baseline.

1 Introduction
In morphologically rich languages (MRLs), words can have many different surface forms depending on the grammatical context. When translating into MRLs, standard statistical machine translation (SMT) models such as phrase translation models and n-gram language models (LMs) often fail to select the right surface form due to the sparsity of observed word sequences (Minkov et al., 2007; Green and DeNero, 2012). While neural LMs (Bengio et al., 2003; Schwenk, 2007) address lexical sparsity to a certain degree by projecting word sequences to distributed vector representations, they still suffer from the problem of rare words which is particularly exacerbated in MRLs (Botha and Blunsom, 2014; Jean et al., 2015; Luong et al., 2015).

A potential solution to overcome data sparsity in MRLs, is to use word representations that separate the grammatical aspects of a word, i.e. inflection, from the lexical ones. Such word representations already exist for many languages in the form of morphological analyzers or lexicons. However, using these resources for statistical language modeling is far from trivial due to the issue of ambiguous word analyses. Table 1 illustrates this problem in Italian, for which a fine-grained morphological lexicon but no sizable disambiguated corpus exists. These morphological analyses1 clearly contain information that is useful to encourage grammatical agreement and, in this case, detect the highlighted error. Unfortunately, though, the needed

1In this work we use the terms analysis and tag interchangeably to denote fine-grained word annotations provided by a morphological analyzer or lexicon.
Table 1: Example of morphological error in Italian SMT output: the verb form should be plural (circolano) and not singular (circola) to agree in number with the subject. Most of the words have multiple analyses according to our morphological lexicon of reference (Zanchetta and Baroni, 2005). The correct one in context is highlighted.
Considerably less work has focused on MRLs where disambiguated data does not exist, with few exceptions where ambiguity is solved by randomly selecting one analysis per word type (Minkov et al., 2007; Toutanova et al., 2008; Jeong et al., 2010).

As for how inflection models are integrated into the STM system, different strategies have been proposed. Minkov et al. (2007); Toutanova et al. (2008); Fraser et al. (2012) treat inflection as a post-processing task: the SMT model is trained to produce lemmatized target sentences (possibly enhanced with some form of morphological annotation) and afterwards the best surface form for each lemma is chosen by separate inflection models. Some work has focused on the generation of new inflected phrases given the input sentence (Chahuneau et al., 2013) or given the bilingual context during decoding (Koehn and Hoang, 2007; Subotin, 2011). Other inflection models have been integrated to SMT as additional feature functions: e.g. as an additional lexical translation score (Jeong et al., 2010; Tran et al., 2014) or as an additional target language model score (Green and DeNero, 2012). We follow this last strategy, rather than generating new inflections, motivated by previous observations that, when translating into MRLs, a large number of reference inflections are already available in the SMT models but are not selected for Viterbi translation (Green and DeNero, 2012; Tran et al., 2014).

More in general, our work is related to class-based language modeling (Brown et al., 1992) with the major difference that we also condition on source-side context and that we use explicit morphological representations instead of data-driven word clusters (Uszkoreit and Brants, 2008), word suffixes (Müller et al., 2012; Bisazza and Monz, 2014) or coarse-grained part-of-speech tags (Koehn et al., 2008).

Modeling morphology using neural networks has recently shown promising results: in the context of monolingual neural language modeling, Luong et al. (2013); Botha and Blunsom (2014) obtain the vectorial representation of a word by composing the representations of its morphemes. Tran et al. (2014) model translation stem and suffix selection in SMT with a bilingual neural network. Soricut and Och (2015) discover morphological transformation rules from word embeddings learned by a shallow network. We are not aware of work that leveraged fine-grained morphological tags for neural language or translation modeling.

3 A Distributed Inflection Model

In MRLs, the surface form of a word is heavily determined by its grammatical features, such as number, case, tense etc. Choosing the right target word form during translation is a complex problem since some of these features depend on the source context while others depend on the target context (agreement phenomena). We model target language inflection by a Markov process generating a sequence of abstract word representations based on source and target context. This complements previous work focusing on either the former (Avramidis and Koehn, 2008; Chahuneau et al., 2013; Tran et al., 2014) or the latter (Green and DeNero, 2012; Fraser et al., 2012; Botha and Blunsom, 2014; Bisazza and Monz, 2014).

3.1 Soft Morphological Representations

As previously stated, it is common for words in MRLs to admit multiple morphological analyses out of context. Rather than trying to disambiguate the analyses in context using for instance conditional random fields (Green and DeNero, 2012; Fraser et al., 2012), we modify the tagging scheme so that each word corresponds to only one tag. To also avoid the loss of useful information incurred when arbitrarily selecting one analysis per word type (Minkov et al., 2007; Jeong et al., 2010), we introduce soft morphological representations, or simply soft tags.

Assume that a morphological analysis μ is a set of morphological attributes $S(\mu)$ such as masculine or plural. Given a word w, a morphological analyzer or lexicon LEX returns a list
of possible analyses of that word \(A_w = \{ \mu : (w, \mu) \in \text{LEX} \} \). Then, we can map word \(w \) to a unique soft tag \(r_w \) by simply taking the union of all its possible morphological attributes, that is:

\[r_w = \bigcup_{\mu_k \in A_w} S(\mu_k) \]

For instance, the Italian word “ribelle” has four analyses: \(\text{adj:pos+f+s}, \text{adj:pos+m+s}, \text{noun-f:s}, \) and \(\text{noun-m:s} \). Its corresponding soft tag is \(\text{adj:pos|adj:f|adj:s|adj:m|noun-f:s|noun-m:s} \). Hence, soft tags maintain all morphological attributes of a word to denote its grammatical dimension while ignoring the lexical content. This new representation scheme compromises between sparsity and ambiguity, and allows for an efficient integration of our model directly into the decoder as no additional cost is incurred for the local tagging search.

Soft tags can also be seen as the marginalization of \(\mu \) when predicting a surface word \(w_i \) given a lemma \(l_i \) and its context \(C_i \) (i.e. variables that influence \(w_i \), such as \(w_i \) and \(w_{i-1} \)):

\[
p(w_i|l_i, C_i) = \sum_{\mu_k \in A_{w_i}} p(w_i|\mu_k, l_i, C_i) p(\mu_k|l_i, C_i)
= \sum_{\mu_k \in A_{w_i}} p(\mu_k|l_i, C_i)
\]

assuming that any lemma-analysis pair \((l, \mu) \) corresponds to at most one inflected form \(w \). Using soft tags, Equation 1 can be approximated by \(p(r_w|l_i, C_i) \).

3.2 Inflection Neural Network

Our inflection model\(^3\), Inf-NN, is trained on word-aligned bilingual data to predict sequences of target soft tags given a fixed-size target history and the input source sentence (see Figure 1). We adopt a neural LM approach as learning distributed representations for the soft tags can help to share statistical information among overlapping tags (i.e. tags that share some morphological attributes). Moreover, compared to Maximum Entropy models that use lexical features, neural networks can better exploit sparse input features such as lexicalized source context and target lemma features, as well as their interactions, in high dimensional spaces.

We learn distributed representations for both source words and target soft tags. The source word representations are initialized from pre-trained embeddings, which has been shown to encode certain morphological regularities (Soricut and Och, 2015), whereas target tag representations are initialized randomly.

Inf-NN is a feed-forward neural network whose output is a conditional probability distribution over a set of morphological tags given target history and source context. Formally, let \(h_i = (r_{i-1}, \ldots, r_{i-n+1}) \) be the \(n-1 \) tag history of the target word \(w_i \), and \(c_j = (s_{j-k}, \ldots, s_{j+k}) \) the source context centering at the word \(s_j \) aligned to \(w_i \) by an automatic aligner. We use simple heuristics similar to the approach by Devlin et al. (2014) to handle null and multiple alignments so that each target word \(w_i \) can be mapped to exactly one source word \(s_j \). Let \(s_j \in \mathbb{R}^D \) and \(r_i \in \mathbb{R}^D \) denote the distributed representations of source \(s_j \) and target tag \(r_i \) respectively. Then, the conditional probability \(\text{P}_{\text{Inf-NN}}(r_i|h_i, c_j) \) is computed at the output layer \(y \) of the network as follows:

\[
\begin{align*}
z_i &= \phi(W^c c_j + W^b h_i + b_y) \\
y &= \text{softmax}(W^m z_i + b_y)
\end{align*}
\]

\(^3\)The implementation is available at https://bitbucket.org/ketran/soft-tags
Figure 1: Graphical representation of the Inf-NN model: the current target word’s soft tag, r_i, is predicted based on a fixed-size target tag history and a source side context centered around s_j, the translation of w_i. Each target word w_i can be deterministically mapped to a soft tag r_i.

where W^c, W^h, and W^m are weight matrices, c_j and h_i are shorthands for $[s_{j-k}; \ldots; s_{j+k}]$ and $[r_{i-1}; \ldots; r_{i-n+1}]$ respectively, $[v; v']$ denotes vector concatenation, and ϕ is a non-linear transfer prelu. As ϕ, we use in all experiments the channel-shared parametric rectified linear unit (PReLU) introduced by He et al. (2015). PReLU $\phi(x)$ is defined as:

$$
\phi(x) = \begin{cases}
 x & \text{if } x > 0 \\
 ax & \text{otherwise}
\end{cases}
$$

where a is a parameter learned during training. To speed up decoding, we train the Inf-NN model with a self-normalized objective (Devlin et al., 2014; Andreas and Klein, 2015). More specifically, we adopt the objective function proposed by Andreas and Klein (2015):

$$
\ell(\theta) = - \mathbb{E} \left[\ln p(r_i | h_i, c_j) \right] + \eta \| \theta \|_2^2 \\
+ \frac{\gamma}{p} \mathbb{E} \left[\ln^2 Z(h_i, c_j) | (h_i, c_j) \in \mathcal{H} \right]
$$

where \mathcal{H} is a set of random samples on which self-normalization is performed, $\theta = \{\{s_j\}, \{r_i\}, W^c, W^h, W^m, b_z, a\}$ are the parameters of the networks, and $Z(h_i, c_j)$ is the partition function of the input (h_i, c_j). In practice, we obtain \mathcal{H} by sampling from a Bernoulli distribution Bern(p). This is equivalent to applying dropout (Srivastava et al., 2014) on the loss gradient $1 \in \mathbb{R}^m$ of self-normalization term, where m is the size of a mini-batch. We regularize the networks with ℓ_2 norm.

4 Experimental Setup

We evaluate our approach on two related tasks: re-inflecting reference translations and end-to-end translation from English into MRLs. With the first task, we test the effectiveness of soft morphological representations against (i) a model that randomly assigns one tag per word type (among its possible tags) and (ii) a model that admits multiple tags per word and requires a pre-disambiguated corpus to be trained. With the second task, we measure translation quality when our inflection model is integrated into a state-of-the-art phrase-based SMT decoder, showing its applicability to languages where no disambiguated data exists.
4.1 Data

As target languages, we choose two MRLs belonging to different language families and displaying different inflectional patterns: Russian has very rich nominal, adjectival and verbal inflection, while Italian has moderate nominal and adjectival inflection, but extremely rich verbal inflection. Experiments are performed on the following tasks:

- English-Russian WMT (Bojar et al., 2013): translation of news commentaries with large-scale training data.
- English-Italian IWSLT (Cettolo et al., 2014): translation of speeches with either small-scale training data (TED talks only) or large-scale training data (TED talks and European proceedings).

SMT training data statistics are reported in Table 2. The Russian Inf-NN model is trained on a 1M-sentence subset of the bilingual data, while the Italian one is trained on all the data available in each setting. For each data set, we create automatic word alignments using GIZA++ (Och and Ney, 2003).

<table>
<thead>
<tr>
<th>Language</th>
<th>#tags</th>
<th>#soft-tags</th>
<th>$E_w[t]$</th>
<th>$E_l[w]$</th>
<th>$E_l[t]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian</td>
<td>892</td>
<td>4431</td>
<td>3.8</td>
<td>7.2</td>
<td>27.4</td>
</tr>
<tr>
<td>Italian</td>
<td>450</td>
<td>901</td>
<td>1.9</td>
<td>12.7</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Table 2: Training corpora statistics.

The ambiguous morphological analyses are obtained from the Russian OpenCorpora lexicon\(^4\) (Bocharov et al., 2013) and from the Italian Morph-it!\(^5\) lexicon (Zanchetta and Baroni, 2005). Table 3 shows the number of tags and soft tags occurring in our training data, as well as the expected counts of analyses per word $E_w[t]$, words per lemma $E_l[w]$ and analyses per lemma $E_l[t]$.

\(^4\)opencorpora.org
\(^5\)sslmitdev-online.sslmit.unibo.it/linguistics/morph-it.php

We find that the Russian tag set and, consequently, the soft tag set are considerably larger than the Italian ones. The average morphological ambiguity is also larger in Russian (3.8 versus...
1.9 tags per word). However, somewhat surprisingly, morphological richness is higher in Italian (12.7 versus 7.2 words per lemma). At a closer inspection, we find that most of this richness is due to verbal inflection which goes up to 50 forms for frequently observed verbs.

4.2 Neural network training

The Inf-NN models are trained on a history of 4 target tags and source context of 7 words with the following configuration: Embedding size is set to 200 and the number of hidden units to 768. Target word and soft-tag embeddings are initialized randomly from a Gaussian distribution with mean zero and standard deviation 0.01. Source word embeddings are initialized from pre-trained Glove vectors (Pennington et al., 2014) and rescaled by a factor of 0.1. Weight matrices of linear layers are initialized from a zero-mean Gaussian distribution with standard deviation \(\sqrt{2/n_i} \) where \(n_i \) is the number of input units (He et al., 2015). We set self-normalization strength \(\gamma = 0.02 \), Bernoulli parameter \(p = 0.1 \), and regularization parameter \(\eta = 10^{-4} \). All models are trained with a mini-batch size of 128 for 30 epochs. Our stochastic objective functions are optimized using the first-order gradient-based optimizer Adam (Kingma and Ba, 2015). We use the default settings suggested by the authors: \(\alpha = 0.001 \), \(\beta_1 = 0.9 \), \(\beta_2 = 0.999 \), \(\epsilon = 10^{-8} \) and \(\lambda = 10^{-8} \).

5 Re-inflection Experiments

The purpose of this experiment is to simulate the behavior of the inflection model during SMT decoding: Given a reference translation and its corresponding source sentence, we re-inflect the former using a simple beam search and count how many times the model recovers the correct surface word form on a 10K-sentence held-out data set.

Since we do not assume the availability of a disambiguator, we also have to deal with lemma ambiguity. While this issue does not affect the definition and training of our Inf-NN, we do need lemmas to determine the set of candidate surface forms \(I_w \) for each word \(w \) that is being re-inflected. As a solution, we define \(I_w \) as the union of the surface forms of each possible lemma of \(w \) or, more formally, as:

\[
I_w = \{ w_i | \text{lem}(w_i) \cap \text{lem}(w) \neq \emptyset \}
\]

where \(\text{lem}(w) \) denotes the set of lemmas returned by the lexicon for word \(w \). For example, the Italian form \(baci \) has two possible lemmas: \(bacio \) (noun: kiss) and \(baciare \) (verb: to kiss). Its candidate set \(I_w \) will then include all the forms of the noun \(bacio \) and all the forms of the verb \(baciare \): that is, \(bacio, baci, baciamo, baciate, baciano, etc. \)

We compare the proposed soft-tag Inf-NN against an Inf-NN trained on randomly assigned tag per type and to another one trained on tag sequences disambiguated by TreeTagger (Schmid, 1994; Sharoff et al., 2008). The latter model must search through a much larger space of morphological tag sequences. Therefore, to allow for a fair comparison, we set a higher beam size when re-inflecting with this model. As another difference from the other models, the TreeTagger-based inflection model relies on the lemmatization performed by TreeTagger to define the candidate set \(I_w \).

To validate the effectiveness of the neural network approach, we also compare Inf-NN to a simpler MaxEnt model trained on a similar configuration. Finally, we evaluate the importance of source-side context features by experimenting with a series of Inf-NN models that are only conditioned on the target tag history.

Since no morphological disambiguator is available for Italian, we perform this experiment only for Russian. As shown in Table 4, soft tags perform best in all settings and become even more effective when moving from MaxEnt to neural network, demonstrating the impor-
Table 4: Token-level re-inflection accuracy (%) on a 10K-sentence English-Russian held-out set. The last column indicates the beam size used when searching for the optimal re-inflected sequence.

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Accuracy</th>
<th>Accuracy</th>
<th>Accuracy</th>
<th>Beam Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree-Tagger: all analyses</td>
<td>56.33</td>
<td>61.19</td>
<td>69.68</td>
<td>200</td>
</tr>
<tr>
<td>Random: 1 analysis per word</td>
<td>66.08</td>
<td>72.32</td>
<td>79.92</td>
<td>5</td>
</tr>
<tr>
<td>Soft-Reps: 1 soft tag per word</td>
<td>66.95</td>
<td>75.43</td>
<td>81.93</td>
<td>5</td>
</tr>
</tbody>
</table>

The model using soft-tags, which capture all possible morphological attributes of words, performs the best. Even without using source context features, our Inf-NN outperforms the MaxEnt model by 8.5% absolute because of the high dimensional space used to capture complex morphological regularities. By adding source context, we further increase accuracy by 6.5%, leading to an overall gain of 15% over the MaxEnt baseline.

Next, we investigate the impact of our most accurate re-inflection model (Soft-Reps Inf-NN) in an end-to-end SMT setting without relying on any disambiguated data.

6 End-to-end SMT Experiments

We integrated our Inf-NN model into a phrase-based SMT decoder similar to Moses (Koehn et al., 2007) as an additional log-probability feature function ($\log p_{\text{Inf-NN}}$).

When a new target phrase \tilde{w} is produced by the decoder, the Inf-NN model returns a probability for each word w_i that composes it, given the previously translated words’ soft tags and the source context centered around the source word s_j aligned to w_i. To detect s_j, we store phrase-internal word alignments in the phrase table and use simple heuristics to map each target index i to exactly one source index j, as done for the Inf-NN training (Section 3.2). Since every target word corresponds to one soft tag, obtaining the representation of w_i is trivial (by lookup in a word-tag map) and so is maintaining the target tag history. This crucially differs from previous approaches that distinguish between hypotheses with equal surface forms but different morphological analyses (Koehn et al., 2007), thereby introducing spurious ambiguity into what is already a huge search space.\(^6\) As a result, the integration of our Inf-NN does not affect decoding speed.

\(^6\)Green and DeNero (2012) also tag each target phrase in context as it is produced. However, they avoid the spurious ambiguity problem by only preserving the most probable tag sequence for each phrase (incremental greedy decoding).
6.1 Baseline

Our SMT baseline is a competitive phrase-based SMT system including hierarchical lexicalized reordering models (Galley and Manning, 2008) and a 5-gram target LM trained with modified Kneser-Ney smoothing (Chen and Goodman, 1999). Since the large English-Italian data comes from very different sources (TED talks and European proceedings), we construct phrase table and reordering models for this experiment using the fillup technique (Bisazza et al., 2011). Note that our baseline does not include previously proposed inflection models because the main goal of our experiment is to demonstrate the effectiveness of the proposed approach for languages where no sizable disambiguated data exists, which is indeed the case for Italian.

Feature weights are tuned with pairwise ranking optimization (Hopkins and May, 2011) on the union of IWSLT’s dev10 and test10 in Italian, and on the first 2000 lines of wmt12 benchmark in Russian (Callison-Burch et al., 2012). During tuning, 14 PRO parameter estimation runs are performed in parallel on different samples of the n-best list after each decoder iteration. The weights of the individual PRO runs are then averaged and passed on to the next decoding iteration. Performing weight estimation independently for a number of samples corrects for some of the instability that can be caused by individual samples.

6.2 Results

Translation quality is measured by case-insensitive BLEU (Papineni et al., 2002) on IWSLT’s test12 and test14 in Italian, and on wmt13 and wmt14 for Russian, all provided with one reference translation. To see whether the differences between the approaches we compared in our experiments are statistically significant, we apply approximate randomization (Noreen, 1989).

<table>
<thead>
<tr>
<th>Data</th>
<th>Test</th>
<th>Baseline</th>
<th>Inf-NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>en→ru</td>
<td>large</td>
<td>wmt13</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wmt14</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>small</td>
<td>iws1t12</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iws1t14</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td>large</td>
<td>iws1t12</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iws1t14</td>
<td>20.9</td>
</tr>
</tbody>
</table>

Table 5: Impact on translation quality of the Inf-NN model. * marks significance level \(p < .01 \).

Results are presented in Table 5. Our Inf-NN model consistently leads to significant improvements over a competitive baseline, for both language pairs and all test sets, without affecting decoding speed. By comparing the two data conditions in English-Italian, we see that most of the BLEU gain is preserved even after adding a large amount of parallel training data. This suggests that morphological phenomena are not sufficiently captured by phrases and stresses the importance of specifically modeling word inflection. It is possible that adding even more training data would reduce the impact of our inflection model, but currently we do not have access to other data sets that would be relevant to our translation tasks.

To put these results into perspective, our improvements are comparable to those achieved by previous work that generated new phrase inflections using a morphological disambiguator (Chahuneau et al., 2013) on the same large-scale English-Russian task.

\(^7\)Riezler and Maxwell (2005) have shown that approximate randomization is less sensitive to Type-I errors, i.e. less likely to falsely reject the null hypothesis, than bootstrap resampling (Koehn, 2004) in the context of SMT.
Table 6: Examples of SMT output drawn from IWSLT English-Italian test12 showing the effect of our inflection model on lexical selection.

6.3 Examples

As previously mentioned, most previous approaches to inflection modeling for SMT may not be applied to Italian due to the lack of morphological disambiguated data. It is then particularly interesting to analyze how our model affects baseline translations. Table 6 presents a number of English-Italian SMT output examples where the use of our soft-tag Inf-NN either resulted in a better inflection choice (1-3) or not (4-5). Out of the ‘good’ examples, only (1) resulted in a complete match with the reference translation, while in (2) and (3) the system preferred an equally appropriate lexical choice, showing that automatically evaluating inflection models in an SMT setting is far from trivial.

The usefulness of source-side features is demonstrated by example (3): here, the translation of broken should agree in gender with the subject he but the baseline system chose instead a feminine form (infranta). Since the subject pronoun can be dropped in Italian, this error cannot be detected by the target language model and may only be fixed by translating the sequence ‘he died broken’ as a single phrase, which was never observed in the training data. By contrast, Inf-NN successfully exploited the source-side context and preferred a masculine form (devastato).

Next are two unsuccessful examples: in (4) Inf-NN encouraged the system to translate the whole phrase ‘the classic asian student’ as masculine whereas the baseline translation used
an incoherent mix of masculine and feminine. Unfortunately, though, the student in question, i.e., the speaker, happened to be a woman, but this could not be inferred in any way from this sentence. In (5) Inf-NN failed to fix the agreement between adjective and subject pronoun. By inspecting the parallel data we found that the word *enmeshed* always occurred with plural forms of Italian adjectives. This example shows that improving the scoring of the existing translation options is not always sufficient. While we do not address generation of new inflected forms in this work, this is an interesting direction for future work.

7 Conclusions

We have proposed a novel morphological representation scheme combined with a neural network for modeling translation into morphologically rich languages (MRLs). Our approach successfully circumvents the problem of ambiguous word analyses and makes it possible to improve translation into MRLs where morphological lexica but no manually disambiguated corpora exist.

Evaluated in a re-inflection task, the proposed soft tags achieve significantly higher accuracy than (i) a model using standard tags and trained on morphologically disambiguated data and (ii) a Maximum Entropy model that does not learn distributed representations for source words and target tags. When integrated into a state-of-the-art SMT decoder, our inflection model significantly improves translation quality in two different language pairs, without having to disambiguate during decoding. In particular, our positive English-Italian results under both small- and large-scale data conditions demonstrate the applicability of our approach to languages where no disambiguator exists.

As future work, we will consider learning distributed morphology representation directly from the corpus jointly with the inflection model as well as generating unseen word inflections during translation.

Acknowledgments

This research was funded in part by the Netherlands Organization for Scientific Research (NWO) under project numbers 639.022.213 and 612.001.218.

References

