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Perturbing Open Cavities: Anomalous Resonance Frequency Shifts
in a Hybrid Cavity-Nanoantenna System
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The influence of a small perturbation on a cavity mode plays an important role in fields like optical
sensing, cavity quantum electrodynamics, and cavity optomechanics. Typically, the resulting cavity
frequency shift directly relates to the polarizability of the perturbation. Here, we demonstrate that particles
perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the
effects based on the particles’ polarizability. A full electrodynamic theory reveals that these anomalous
results rely on a nontrivial phase relation between cavity and nanoparticle radiation, allowing backaction
via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that
relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to
benefit the understanding and engineering of a wide class of systems.
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The fact that a small perturbation of a potential can
influence the distribution of a systems energy levels is a
well-known principle permeating various branches of phys-
ics. In quantum mechanics, for example, the effect of a
perturbingpotentialH0 onaneigenstate jψ0i is that itmodifies
its unperturbed energy U0 by an amount δU ¼ hψ0jH0jψi,
where jψi is the new eigenstate, and we assume hψ0jψi ≈ 1.
In electrodynamics, a local change of potential (i.e., permit-
tivity) can impact the frequencyof a resonant cavity.This is at
the basis of many applications that use the influence of a
perturbing atom, molecule, or dielectric body to establish an
interaction that can be exploited for optical sensing or
control [1–8]. The shift of a mode’s complex eigenfrequency
ω ¼ ωc − iκ=2, with cavity resonance frequency ωc
and linewidth κ, due to a local permittivity perturbation
Δϵ contained in a volume ΔV is given by δω=ω
¼ −

R
ΔV dV½ϵ0ΔϵE�

0 · Ep�=4U0. Here, E0 and U0 represent
the field and total energy of the unperturbed cavity
mode, respectively, and Ep is the perturbed field [9,10]. In
particular, if ΔV is small enough such that the perturbing
particle can be described in the dipole approximation, the
complex frequency shift is directly related to the particle
polarizability α, reading δω=ω ¼ −αjE0j2=4U0 [9].
However, this widely employed result of Bethe-Schwinger
perturbation theory [10] is strictly only valid when radiation
to the far field is negligible. In several recent developments,
radiation loss proved decisive in determining a system’s
eigenmode, e.g., for so-called “states bound in the con-
tinuum” [11–13] and in describing complex plasmonic
resonators [14,15]. In that context, the question arises to
what extent the conventional paradigm to determine per-
turbed cavity frequencies holds in practical, open, systems.

Here, we study the eigenfrequencies of a radiating
optical cavity as it is perturbed by carefully designed

resonant plasmonic nanoparticles. For a resonant perturba-
tion with center frequency ωa and linewidth γ, the value of
α strongly depends on the detuning Δ ¼ ωc − ωa. In
absence of radiation, the cavity mode thus redshifts (blue-
shifts) at negative (positive) values of Δ, and the linewidth
broadens near Δ ¼ 0, in direct response to Re½α� and Im½α�,
respectively, [Fig. 1(a)]. Tuning ωa by varying the length of
the (plasmonic) resonators allows us to systematically
study the induced cavity response as a function of detuning.
Importantly, our experiment is designed such that radiation
losses from the cavity mode and plasmonic resonators
overlap. This, as we will show, leads to a strong additional
contribution to δω which is not captured by α. We study this
“radiation interaction”, as we will call the effect, in detail
and show that it can induce strong eigenfrequency shifts
that are opposite to, and even exceed, the effects based on
the particles’ polarizability.

A sketch of the system is shown in Fig. 1(b). The
experiments are performed using a fundamental cavity
mode (194.4 THz, Q ∼ 6.5 × 106, TE polarized) of a
toroidal silica microcavity fabricated on the edge of a
silicon chip [≈36 μm diameter, Fig. 1(c)] [16,17]. The
cavity is perturbed by gold nanoantennas deposited on a
glass substrate [Fig. 1(d)], which are controllably placed in
the evanescent field of the cavity. The antennas (nanorods
of length L, width 120 nm and thickness 40 nm) are aligned
with their (long) principal dipole axis to the polarization of
the cavity mode. A frequency-swept narrow band laser
source (∼0.7 μW) is coupled into a tapered fiber that is
brought close to the cavity. The transmission spectrum
through the fiber shows a Lorentzian dip around the cavity
resonance frequency [Fig. 1(e)], from which we determine
the (perturbed) resonance frequency ωc and linewidth
κ of the cavity mode. Independent normal-incidence
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transmission measurements [Fig. 1(f)] on the fabricated
antenna arrays, in absence of the cavity, yield the normal-
ized cavity-antenna detuning Δ=γ. Notably, the presence of
the glass substrate allows the cavity mode to radiate into the
glass at a well-defined angle just beyond the critical angle
and, similarly, allows scattering of antenna radiation into
the substrate [18]. As the antennas are coherently excited
by the cavity field, from which also the cavity radiation
originates, the zeroth-order diffraction by the array is
expected to overlap with the cavity radiation.

To measure the change of the complex cavity resonance
frequency due to the nanoantennas, we compare the
frequency and linewidth of the cavity mode with and
without the antenna array placed in the near field of the
cavity. Our measurement procedure [19] ensures that in
both cases the sample is positioned at the same distance to
the cavity. Figure 2(a) shows the results for two different
arrays of nanoantennas: In the top figure, an antenna array

[L ¼ 360, pitch 800 (900) nm along the long (short) axes of
the antennas] is seen to induce a broadening of the cavity
linewidth, together with a blueshift of the frequency. The
latter is clearly surprising, given the fact that Δ ≈ −1.2γ for
this sample [19], where one expects a redshift if one only
considers the resonant particle’s polarizability [Fig. 1(a)].
The bottom panel in Fig. 2(a) shows that for another array
[L ¼ 400, pitch 800 (1100) nm] with slightly positive
detuning (Δ ≈ 0.8γ) again a blueshift is observed, but this
time accompanied by narrowing of the cavity mode. Such a
reduction of damping can obviously not be ascribed to the
particle’s polarizability alone, as its imaginary part is
necessarily positive [Fig. 1(a)].

To systematically study these effects, we gradually tune
the resonance frequency ωa by varying the length of the
antennas [Fig. 1(f)]. The array pitch is kept fixed at 800
(1500) nm along the long (short) antenna axes, chosen such
that interantenna coupling is negligible. Moreover, in all
examples we show, Bragg scattering between clockwise
and counterclockwise modes [21] is small enough such that
mode splitting induced by the nanoantennas is smaller than
the cavity linewidth. Figure 2(b) shows the resulting cavity
frequency and linewidth changes, normalized to the cavity
linewidth on glass to allow averaging multiple scans [19],
as a function of Δ=γ. For these negative detunings, a
consistent increase of the resonance frequency (i.e., blue-
shift) is observed that slightly rises as the antenna

FIG. 2 (color online). (a) Depending on Δ, antenna arrays
induce linewidth broadening (top) and narrowing (bottom), while
simultaneously inducing the cavity resonance frequency to
blueshift. The blue and red horizontal bars represent the line-
widths of fitted Lorentzian line shapes (black lines). (b) Shift in
resonance frequency and linewidth of the cavity mode, normal-
ized to its linewidth in absence of the antennas [19], due to
perturbation by antenna arrays with a constant pitch size and
varying antenna length. Top: For all detunings, a blueshift of
cavity resonance frequency is observed. Bottom: Approaching
Δ ¼ 0 induces linewidth narrowing. Both the blueshift and
linewidth narrowing are contrary to the expectation based on
the particles’ polarizability [Fig. 1(a)]. Error bars depict standard
deviation, vertical error bars fall within the plot markers. The
solid lines represent a coupled mode theory fit.

FIG. 1 (color online). (a) Cavity frequency and linewidth
change due to perturbation by a small resonator, considering
only the resonator polarizability. Dashed lines indicate the real
(top) and imaginary (bottom) part of the polarizability as a
function of Δ=γ. (b) An array of perturbing gold nanoantennas is
placed in the near field of a toroidal microcavity. Light trans-
mission through the tapered fiber is detected to determine the
cavity eigenfrequency shift. (c) Scanning electron microscopy
(SEM) image of a high-Q silica microtoroid at the edge of a chip.
(d) SEM image of gold nanoantennas on a glass substrate.
(e) Transmittance through the tapered fiber around a cavity
mode resonance. A Lorentzian fit (black solid line) is used to
determine the optical linewidth (≈30 MHz) and frequency of the
cavity. The sidebands result from a 150-MHz phase modulation
used to calibrate the frequency axis. (f) Normal-incidence trans-
mission spectra of gold nanoantenna (design length L) arrays.
Lorentzian fits (sold lines) give the antenna resonance frequency
and linewidth. The dashed line indicates the cavity frequency.
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frequency approaches that of the cavity. As such, both
the sign and the trend of δωc are incongruous with
the expectation based on the polarizability [Fig. 1(a)].
Moreover, the broadening of the cavity, observed for a
detuning of Δ ≈ −0.6γ, quickly reduces as the—strongly
scattering—antennas are tuned closer to the cavity reso-
nance. We note that these trends are consistently observed
also at other periodicities [19] and that the shifts cannot be
explained by thermal heating, negligible at the employed
powers.

To explore the origin of these surprising results, it is
necessary to consider the complete Bethe-Schwinger cavity
perturbation equation [10], derived without neglecting
radiation:

δω ¼ −ω
αjE0j2
4U0

−
i

4U0

Z
δV

dA½ðδE × H�
0Þ · n̂ þ ðE�

0 × δHÞ · n̂�: ð1Þ

This full expression, which is also valid in any open, non-
Hermitian system [19], contains an additional integral term
involving radiated fields at a surface δV (with normal unit
vector n̂), enclosing the same volume that was used to
evaluate the total energy U0. Here, δE and δH are the
difference between the fields in the presence (Ep, Hp) and
absence (E0, H0) of the perturbation, and can as such be
associated with the field scattered by the perturbation.
Thus, the cavity eigenfrequency is additionally modified by
an energy flux that is evaluated by combining the fields of
the perturbed and unperturbed eigenmodes, i.e., an overlap
of scattering by the perturbation and direct cavity radiation.
Remarkably, the integral is independent of the distance at
which δV is chosen, consistent with the fact that it can be
associated with radiation of the system. To date, this far-
field contribution has been omitted in practically all
analyses of cavity perturbation. In a select number of
experiments, a reduction of cavity linewidth was observed
[22–24] and tentatively attributed to interference of radi-
ation of the cavity and scattering by the perturbation.
Importantly, the integral suggests that, in principle, also the
resonance frequency (i.e., the real part of δω) can be
affected by the same mechanism, if the phase difference
between cavity and scattered radiation in the far field
(captured in E0 and δE, respectively) differs from 0 or π. So
far, the frequency has been expected to rely only on the
local variation of the applied potential [3,18,24–27] as it is
contained in the first term of Eq. (1).

To verify the importance of radiation in a complete
description of the induced cavity response, we perform
finite-element method eigenfrequency studies with and
without antenna [19] in a similar two-dimensional system
[Fig. 3(a)], from which we extract the fields E0, H0, δE,
and δH. This allows the calculation of the individual terms
of Eq. (1), displayed as a function of detuning in Fig. 3(b).

The first term (black crosses, “A”), contributes to δω
according to the expected behavior for a perturbing
resonator sketched in Fig. 1(a): it produces a dispersive
detuning dependence of δωc and a dissipative trend for δκ.
This immediately disqualifies this term as an explanation
for the measured changes in cavity resonance and line-
width. The second term, i.e., the contribution to the change
in eigenfrequency related to the radiation interaction (green
stars, “B”), shows a dramatically different behavior: it
causes distinct blueshifts and linewidth narrowing around
Δ=γ ¼ 0. Surprisingly, the magnitude of the blueshifts
induced by this term can even exceed the contribution due
to α. This is a key point of our observation, stressing the
importance of this new contribution in a model system. The
sum of both terms (blue circles, A þ B) yields the complete
eigenfrequency shift of the perturbed cavity, which now
qualitatively matches our experimental results, blueshifts
and linewidth narrowing around Δ=γ ¼ 0. These calcula-
tions thus confirm that radiation interactions in open
systems can lead to both cavity blueshifts and linewidth
narrowing and importantly, that this effect can even
dominate the total change in eigenfrequency of a cav-
ity mode.

It is essential to realize that a modification of the cavity
resonance frequency (in contrast to the alteration of the
linewidth) due to backaction via the radiation continuum
only occurs when the phase δϕ between cavity and antenna
radiation is different from 0 or π [Fig. 4(a)]. The exact
strength of this backaction, and as such the sum of direct

FIG. 3 (color online). (a) Electric field profile in a simulated
system containing cavity, antenna and substrate. Both antenna
and cavity radiate into the glass under approximately the same
angle, resulting in a radiation interaction. The contribution of this
interaction is calculated on the dashed black line [integral of
Eq. (1)]. The arrow points to the position of the antenna. (b) Top
(bottom): the change in resonance frequency (linewidth) calcu-
lated using Eq. (1). Black crosses (“A”) show the contribution
of the polarizability to the eigenfrequency shift δω, which
resembles the line shape as we expect it from a resonant particle
[Fig. 1(a)]. The radiative contribution (green stars, “B”) shows
distinct blueshifts and linewidth narrowing near Δ=γ ¼ 0. Adding
both terms (blue circles, “A þ B”) yields the complete cavity
eigenfrequency shift, which matches the experimental trends.
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(i.e., due to α) and indirect (i.e., via the radiation con-
tinuum) coupling between cavity and antenna, will depend
on the overlap between their radiation profiles and on the
value of δϕ.

This phase difference and its physical connection to
backaction can be captured in a simple model [Fig. 4(b)]
based on temporal coupled-mode theory [28]. Let us
assume for now that the cavity and antenna are coupled
with complex coupling rate ~gc ¼ gceiϕc and can both interact
with the environment (glass) with coupling rates ~gκ ¼ gκeiϕκ

and ~gγ ¼ gγeiϕγ , respectively. We treat the joint environment
as a separate mode to allow backaction, taking the limit of
large decay rate ζ to mimic a broadband continuum. The
cavity and antenna, considered separately, each decay via
this continuum at a rate κ1 ¼ 4j~gκj2=ζ and γ1 ¼ 4j~gγj2=ζ,
respectively. This is distinguished from decay into all
other, nonoverlapping, modes at rates κ0 and γ0, such that
κ0 þ κ1 ¼ κ and γ0 þ γ1 ¼ γ. Importantly, the phase differ-
ence between cavity radiation [blue path, Fig. 4(b)] and
antenna scattering [orange path, Fig. 4(b)] in this model
now directly relates to δϕ via δϕ ¼ π þ � − arg½Δ þ iγ=2�,
where � ¼ ϕc þ ϕκ þ ϕγ , and arg½Δ þ iγ=2� is the phase
response of the antennas [19]. The natural mode of interest,
with complex frequency ω, of this hybrid system can be
found by equating the determinant of the coupling
matrix [19]

M ¼

0
B@

ω − ωc þ iκ0=2 ~g�
c ~gκ

~gc Δ þ iγ0=2 ~g�
γ

~g�
κ ~gγ iζ=2

1
CA ð2Þ

to zero. Solving for complex ω yields

δωc − iδκ=2 ¼ g2
c − κ1γ1=4 þ igc

ffiffiffiffiffiffiffiffiffi
κ1γ1

p
cos �

Δ þ iγ=2
; ð3Þ

which depends on the radiation overlap κ1γ1, (constant)
phase �, and the coupling rate gc. Because the overlap and
phase � cannot be independently chosen, it is impossible to
directly fit Eq. (3) to the experimental data. Therefore, we
retrieve δϕ from the finite element simulation and, using
the relation between δϕ and �, obtain � ¼ 3.76 × 10−4π.
Note that this value of � implies that δϕ ≈ π=2 at Δ ¼ 0,
completely opposite to the conventionally assumed case
where destructive interference (δϕ ¼ π) only contributes to
the linewidth of the cavity mode. Fixing � at this value and
constraining the experimentally found values of κ, Δ and γ
(retrieved from independent spectroscopic measurements,
Fig. 1), a fit of Eq. (3) yields excellent correspondence to
our data in Fig. 2(b) (solid lines), resulting in an overlap of
κ1γ1=κγ ¼ 0.68 and coupling rate gc=2π ¼ 21.6 GHz.

Concluding, we have shown how coupling through
the radiation continuum leads to cavity blueshifts and
linewidth narrowing in a coupled cavity-antenna system.
Surprisingly, the nonlocal, radiative effect on the cavity is
larger than the induced cavity response due to local
perturbations, and is not just an artifact of large radiation
losses but can even manifest itself in a high-Q cavity
such as studied here. Therefore, similar effects are expected
in many other systems where cavity and perturbation
can radiate into the same channels, such as photonic
crystals [22–24,29] and Fabry-Perot etalons [30–32]. In
addition, it was shown that there is a direct link between the
phase δϕ in the Bethe-Schwinger equation and the con-
tributions to backaction in a coupled-mode model.

Interestingly, these results could also shed new light on
radiative interactions in strongly radiating systems such as
metamaterials and complex plasmonic resonators. In [14],
it was postulated that radiation can be included in the
coupling between two resonators by using a complex
coupling rate, while in [33], a complex coupling rate
was argued to originate from a complex-valued extinction
cross section. In fact, such a complex coupling rate between
two resonators is easily derived from the coupled-
mode model presented in this Letter [19]. Furthermore,
it will be interesting to see how the concepts and theory
established here relate to recently developed methods
that rely on the normalization of leaky modes to describe
the response of complex photonic systems [34,35]. In a
different context, recent advances in optomechanics using
simultaneous dispersive and dissipative (i.e., radiative)
coupling [36–38] have been reported to enable on reso-
nance cooling [36] and sensitive readout of nanomechan-
ical motion [37]. As such, we expect our work to be directly
important to the design of novel optical devices such as

FIG. 4 (color online). (a) The cavity and antenna are coupled
with rate gc, which is the near-field interaction scaling with the
polarizability of the antenna, and can radiate into the continuum
with a certain delay (δϕ) with respect to each other. The
interference between both radiation profiles and the overlap with
the cavity mode results in a backaction effect (single-headed
dashed arrow) on the cavity mode. (b) Coupled-mode theory. The
cavity and antenna are coupled with rate ~gc and couple to the
continuum with complex rates ~gκ ¼ gκeiϕκ and ~gγ ¼ gγeiϕγ ,
respectively. The difference between ϕκ and ϕγ , summed with
the phase response of the antenna, is now equal to the phase
difference δϕ. κ0 and γ0 are the losses of cavity and antenna into
noncoupled channels. The environment is modeled as an oscil-
lator with decay rate ζ.
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sensors, for example, and benefit the understanding of the
physics of open systems in optics and beyond.
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which is part of the Netherlands Organisation for Scientic
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