The prospects for Small Hydropower in Colombia

Arias-Gaviria, J.; van der Zwaan, B.; Kober, T.; Arango-Aramburo, S.

Published in:
Renewable Energy

DOI:
10.1016/j.renene.2017.01.054

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
The prospects for Small Hydropower in Colombia

Jessica Arias-Gaviria a, *, Bob van der Zwaan b, c, d, Tom Kober b, e, Santiago Arango-Aramburo a

a Universidad Nacional de Colombia, Decision Sciences Group, Facultad de Minas, Medellin, Colombia
b Energy Research Centre of the Netherlands, Policy Studies, Amsterdam, Netherlands
c Johns Hopkins University, School of Advanced International Studies, Bologna, Italy
d University of Amsterdam, Faculty of Science, Amsterdam, Netherlands
e Paul Scherrer Institut, Laboratory for Energy Systems Analysis, Energy Economics Group, Villigen, Switzerland

A R T I C L E I N F O

Article history:
Received 12 January 2016
Received in revised form
21 January 2017
Accepted 23 January 2017
Available online 26 January 2017

Keywords:
Hydropower
Climate policy
Investment costs
Learning-by-doing
Economies-of-scale
Colombia

A B S T R A C T

Small hydropower (SHP) has existed for more than a century in Colombia, and is gaining reserved interest as an option to mitigating climate change. In this paper we investigate the prospects for SHP in Colombia based on an analysis of economies-of-scale and learning-by-doing effects. We created an inventory of SHP plants realized in Colombia between 1900 and 2013, and focused on grid-connected SHP stations only. In the economies-of-scale part of our analysis we considered all SHP plants with a capacity lower than 20 MW. However, we exclude plants with a capacity lower than 0.1 MW from the learning-by-doing analysis, given that their cumulative capacity is still too small for a meaningful learning curve estimation. We used an Ordinary Least Squares analysis for estimating the parameters of our economies-of-scale and learning-by-doing models, and observed that infrastructure costs and total costs are mainly driven by economies-of-scale, while equipment costs can also be influenced by learning-by-doing. Our findings suggest that equipment costs for SHP plants with capacities between 0.1 and 20 MW have declined at an average learning rate of 21%. We conclude that both the public and private sectors can benefit from scaling effects for hydropower plants.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As reported by the recently published Working Group II contribution to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), the impacts of global climate change are becoming increasingly evident [1]. Meanwhile, the Working Group III contribution to IPCC AR5 shows that anthropogenic emissions of greenhouse gases (GHG) grew by 81% between 1970 and 2010, while 34% of these additional emissions came from the energy sector, mainly through the combustion of fossil fuels [2]. If mankind wants to limit the global average temperature increase to well below 2 °C, low-carbon energy options should come to provide the majority of energy supply over the next several decades [2]. Among the main GHG mitigation options for the energy sector are renewable energy technologies (RET). The Sustainable Energy for All Program (SE4All) of the United Nations has set three critical objectives for 2030: ensuring universal access to modern energy services, doubling the global rate of improvement in energy efficiency, and doubling the share of RET in the global energy mix. These objectives are essential to reach the Millennium Development Goals [3]. Small hydropower (SHP) is a RET that in many regions could substantially contribute to yielding access to electricity. SHP is especially attractive for developing nations, as in several of these countries there are large hydropower potentials, and SHP generates smaller social and environmental effects than large hydropower plants. Colombia is a good example in case, since it has the second largest hydropower potential in Latin America, after Brazil [4]. In this article we investigate the prospects for SHP in Colombia, based on a cost analysis of past deployment activities for this technology.

With a share of 16% of global electricity production and an estimated global technical potential of 3.72 TW, which is four times the currently installed capacity, hydropower is currently the main source of RET [5]. The International Energy Agency (IEA) concludes that hydropower will remain economically competitive, given its low operational costs advantage and long lifespan [5]. However, large hydropower projects have considerable constraints, as they
Organic material deposited in the dam reservoirs can lead to GHG emissions and affect the local ecosystem,
resulting in a larger environmental footprint, because reservoirs modify a river’s ecosystem and
ancestral land use, among other factors. This suggests that large hydropower plants are an attractive
alternative for developing countries, since they can be exploited with usually much smaller social
and economic costs in Colombia, because they can be constructed with less capital investment than
large hydro power plants [4].

In 2015, Colombia had a total installed electricity generation capacity of 16.4 GW, with a share of 62.1% of large hydropower (plants with an installed capacity bigger than 100 MW), 4.2% of medium hydropower (20–100 MW), and 3.7% of SHP (<20 MW) [9]. The remaining 30% corresponded mainly to thermal generation, as shown in Fig. 1. The hydropower dominance is the result of both low costs and high hydro potential in the country. In Colombia, a technical potential of about 93 GW for all hydropower combined is estimated [4]. There are no studies dedicated to the feasible potentials for SHP only in Colombia. However, the bank energy projects of the Mining and Energy Planning Unit (UPME) shows that the country can reach an SHP installed capacity of 1.8 GW by 2020 and 2.1 GW by 2030, if all current projects materialize [10]. Efforts to build new plants and properly exploit the large hydropower potential are increasing, not only from the government, but also from the private sector. Thus, it is expected that installed capacity gradually increases in the long term, as economic and technical gaps are filled.

Since hydropower is a mature technology, future cost reductions are expected to be less significant than those still realizable for other RET, such as solar and wind power [5]. Even so, continuing to stimulate the diffusion of SHP in Colombia is attractive, because, on the one hand, SHP presents an opportunity to make power production technically feasible at reasonable costs in many different locations, and, on the other hand, the performance of both new and existing projects can still be improved. In order to support the stimulus process, both the public and private sectors can benefit from an analysis of the drivers of cost reductions for SHP deployment in Colombia, including effects like economies-of-scale (EOS), learning-by-doing (LBD), research and development (R&D) and directed policy instruments. Such analysis is particularly pertinent in the context of the growing interest today for new SHP investments in Colombia, given its large hydropower potential and the attractiveness of this technology for supplying electricity to non-connected areas.

In this paper we present a study based on an inspection of both EOS and LBD for SHP in Colombia, particularly for plants with capacities between 0.1 and 20 MW. Section 2 of this article presents the historical evolution of SHP in Colombia. An assessment of SHP costs in Colombia is presented in section 3. Sections 4 and 5 present our EOS and LBD analysis. Discussion and conclusions, as well as a presentation of the limitations of our analysis, are provided in section 6.

2. Evolution of Small Hydropower in Colombia

The exploitation of Colombian hydro potential dates back to 1900, when a power plant of 1.86 MW was built to supply electricity to Bogotá, the largest city and Capital of Colombia [11]. Since then, more than 200 SHP plants have been built to electrify different regions in the country. A timeline for SHP in Colombia is presented in Fig. 2. By 1930, the installed capacity of SHP in Colombia had reached almost 35 MW and it continued increasing until the late 1960s. During the 1970’s only few plants were built and some old ones were decommissioned, mainly due to lack of maintenance and the start of the roll-out of grid-connected large hydro [12]. Delays in construction of large plants while demand was rapidly growing, however, led to an energy crisis in the late 70s, and a blackout in 1983 [12]. Hence, the government started to promote the use of non-conventional energy and the recovery of old hydro plants in 1985. By the end of the 1980s, the cumulative installed capacity of the country was about 320 MW of SHP, but only about 50% was in operation.

In the early 1990s, hydropower plants represented 80% of the total installed capacity which made the Colombian electricity sector highly vulnerable to sufficient water availability. Low levels of rain caused by El Niño which causes in Colombia more extreme and longer dry seasons than usual, reduced the country’s total water reservoirs below 40% in 1992, and led to another energy crisis. This situation, and mismanagement in the power sector, resulted in major blackouts between 1992 and 1993 (for further information see Ref. [13]). The lack of the government financing of the required expansion of the electricity system, and the ambition

1 The Mining and Energy Planning Unit (UPME) is the Colombian entity responsible for planning the exploitation and development of the energy and mining resources.

2 El Niño and La Niña are opposite phases of what is known as the El Niño Southern Oscillation (ENSO). El Niño is characterized by unusually warm ocean temperatures in the Equatorial Pacific, as opposed to La Niña, which is characterized by unusually cold ocean temperatures in the Equatorial Pacific [37].

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Parameter of cost reduction by learning-by-doing</td>
</tr>
<tr>
<td>λ</td>
<td>Parameter of cost reduction by economies-of-scale</td>
</tr>
<tr>
<td>C</td>
<td>Specific cost</td>
</tr>
<tr>
<td>Cx</td>
<td>Specific cost for a plant of capacity x</td>
</tr>
<tr>
<td>Cx*</td>
<td>Specific cost corrected for economies-of-scale to a reference capacity x*</td>
</tr>
<tr>
<td>C0</td>
<td>Specific cost at initial time</td>
</tr>
<tr>
<td>Ct</td>
<td>Specific cost at time t</td>
</tr>
<tr>
<td>LR</td>
<td>Learning rate of the technology</td>
</tr>
<tr>
<td>PR</td>
<td>Progress rate of the technology</td>
</tr>
<tr>
<td>x</td>
<td>Plant capacity</td>
</tr>
<tr>
<td>X</td>
<td>Reference plant capacity</td>
</tr>
<tr>
<td>Xtotal</td>
<td>Total installed capacity of SHP in Colombia</td>
</tr>
<tr>
<td>Xcum</td>
<td>Cumulative installed capacity in Colombia</td>
</tr>
<tr>
<td>Xcum.0</td>
<td>Cumulative installed capacity at initial time</td>
</tr>
<tr>
<td>Xcum.t</td>
<td>Cumulative installed capacity at time t</td>
</tr>
</tbody>
</table>

Fig. 1. Composition of installed electricity generation capacity in Colombia in 2015. Based on [9].
to increase the efficiency of the power sector were important driving forces for the deregulation of the power system and the establishment of a liberalized electricity market in 1994 [14]. The new electricity market was introduced with the Electric Law in 1994 [15], by which the private sector started to participate in the electricity market, and different funds for rural electrification were created. As a consequence, programs for installation of SHP in both grid and non-grid connected areas have been developed, which led to an increasing interest in SHP with 363 MW being newly installed during the last three decades, reaching a total cumulative installed capacity of SHP of 683 MW in 2014, from which 620 MW are in operation, and 530 MW are connected to the national grid.

The definition of SHP varies widely across different sources in the literature: the upper limit for the plant capacity ranges between 1.5 and 100 MW [16]. In Colombia, the UPME has adopted the IEA definition of SHP, that involves a plant capacity less than or equal to 20 MW [17] and that operates at run-off-river, with no water storage. From a market integration perspective, current Colombian rules do not require plants under 20 MW to participate in the trading process of the Colombian electricity market. Operators of these SHP can choose to sell energy at the market's pool price or at a bilaterally agreed price with a buyer. In order to consider a more detailed differentiation of SHP in this study we classify SHP into three further categories according to the size of the plant, as shown in Table 1.

For the purpose of this study we have established a database containing historic data of SHP plants in Colombia. Different sources were consulted such as documentations of governmental SHP programs, records of private electricity generation companies, academic master thesis and PhD thesis, technical infrastructure expansion planning reports from power utilities and governmental bodies, as well as interviews with experts for SHP in Colombia. The SHP database contains information of each individual plant, including construction year, installed capacity, location and current state of operation. Furthermore, information about investment costs for different SHP projects between 1900 and 2013 is included. Based on the data collected, we calculated the annual new capacity of the country by summing the capacity of each new plant. With the annual new capacity data, we calculated the cumulative capacity by adding the yearly new capacity to the value of the previous year, as shown in Fig. 3. We explicitly include plants which are not more in operation (which represent 9% of the current cumulative capacity), because the experience in the construction of those plants contributed to the learning process that this study wants to.

Table 1

<table>
<thead>
<tr>
<th>Category</th>
<th>Plant capacity [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small hydropower</td>
<td>1.0 < x ≤ 20</td>
</tr>
<tr>
<td>Mini hydropower</td>
<td>0.1 < x ≤ 1.0</td>
</tr>
<tr>
<td>Micro hydropower</td>
<td>x ≤ 0.1</td>
</tr>
</tbody>
</table>

Fig. 2. Timeline of the development of Small Hydropower in Colombia.

3 The non-grid-connected areas in Colombia are defined as all the municipalities, town and villages that are not connected to the national grid, excluding those with viable conditions for interconnection [38].

4 Note that we use capital X for the cumulative capacity of the country, while the small x refers to individual plant capacity.

5 For further detail, see the SHP database with the inventory and cost data in the Supplementary material, available in the web version of this document.
evaluate. This also means that scrapping and lifetime were not considered for the calculation of cumulative capacity for this analysis.

Fig. 3a presents the consolidated total annual new capacity and cumulative capacity evolution, including all three categories listed in Table 1. Two periods of low investment activity are observed (1960–1969 and 1975–1985), which correspond to the previously mentioned energy crises. Low activity can also be observed around World War I and II. As we can see from Fig. 3a SHP cumulative capacity has been doubled in Colombia over the past 3 decades.

For each capacity category (small, mini and micro), the cumulative capacity developments are presented in Fig. 3b–d respectively. The figures show that 95% of the total cumulative capacity belongs to small plants, 4.9% to mini, and only 0.1% to micro. Almost all micro plants have been built after 1980. Construction of new mini centrals has remained approximately constant with only 28.4% of the cumulative capacity built after 1980, while for micro and small plants 90% and 54% of the cumulative capacity has been built in the last 3 decades, respectively.

![Fig. 3. Evolution of annually installed capacity and cumulative installed capacity of SHP plants in Colombia by capacity category. (Database comprises 191 plants: 21 micro plants, 67 mini plants, 103 small plants).](image-url)
3. Cost assessment

Specific investment costs reported for historic installations of SHP in developing countries fall typically in a range of 1000 and 8000 USD dollars per kW, with few values outside of this bandwidth [16]. Almost all cost data we gathered for this study falls in this interval with very few outliers for SHP in non-connected areas, which expands the range from 900 USD/kW to 9400 USD/kW [8].

For the effect, which needs to be taken into consideration when calculating total costs of installed capacity can be observed. This suggests an EOS points are rather scattered, a tendency with respect to the magnitude in comparison to those in grid-connected areas. Due to lack of information on the cost components of investments costs for non-connected installations (which might we driven by ancillary equipment and not by the costs for the turbine part) we exclude these plants from our analysis [10].

Total investment costs comprise different cost components, which can be distinguished into equipment costs, infrastructure costs, and other costs as shown in Fig. 5 [17]. Where data availability allowed, we took these cost components in our dataset of SHP plants into consideration. Not all literature sources provided information on all four types of costs, which explains why our four costs components display a different number of plants, even when they cover the same time horizon. Even so, this does not constitute a limitation for our analysis, given that each set is treated independently.

The historical costs for SHP in grid-connected areas, clustered by capacity categories, are presented in Fig. 6. Even though, the data points are rather scattered, a tendency with respect to the magnitude of installed capacity can be observed. This suggests an EOS effect, which needs to be taken into consideration when calculating the LBD effect. Otherwise, cost reductions over time could partly result from EOS instead of LBD. We separate the EOS effect from the cost data following the procedure as suggested in Ref. [18]. For the calculation of EOS and LBD effects we also exclude the component other costs, because they are not comparable as a result of the fact that the consulted sources differ on the items included in this category (e.g. not all the sources report the environmental costs). Also, we assume that the items in the category other costs are not affected by LBD and EOS.

4. Economies-of-scale

EOS effects describe the relation between the level of production and the associated production costs or return rate [19]. EOS effects can be investigated at different layers of depth where EOS models can include multiple input variables, such as scale of production, hours of labor, fuel price, capital [20]. We conduct our analysis on an aggregated level with one input parameter for EOS. Consequently, in our context, EOS exists when an increase in the amount of installed power plants results in a reduction of specific investment costs. Typically, EOS effects for energy technologies are modeled as shown in Equation (1) [21]. In this equation the specific cost $C (\$/kW)$ depends on the installed capacity of the plant x and the parameter λ, where λ is the rate at which the unit costs decrease when the capacity increases. The parameter a is an equivalent cost for a plant of 1 kW.

$$C = a x^{-\lambda}$$ (1)

In order to make cost data comparable, we normalized the EOS effects to the same reference capacity as shown in equation (2). In this equation, C_r represents the normalized cost for a reference capacity x^*, C_r represents the normalized cost for the capacity x, and λ is the same parameter from equation (1) (see e.g. Ref. [18]). Normalizing EOS effects provides an improved comparability across different plants, which allows to analyze LBD effects.

$$C_r = C_r \left(\frac{x^*}{x} \right)^{1-\lambda}$$ (2)

Several studies have demonstrated EOS effects of SHP (see e.g. Refs. [22–24]). To our knowledge, detailed studies about EOS for SHP in Colombia do not exist, however some authors have observed cost reductions [17]. When plotting cost data against the installed capacity, as shown in Fig. 7, our data depicts typical behavior of EOS, i.e. there is a decreasing cost trend at increasing installed capacity. We used an Ordinary Least Squares (OLS) method for all our data points to estimate the scale parameter $(1-\lambda)$ for each cost category (total, equipment, and infrastructure) and for each SHP size cluster (micro, mini and small plants). In order to avoid dynamical effects such as LBD in the costs data, the time span from 1985 to 2013 is divided into smaller intervals. Table 2 presents the scale parameters $(1-\lambda)$ estimated for equipment, infrastructure, and total costs for defined time intervals. For the purpose to test the significance of the estimated parameters we employ a standard t-test from the standard error of the regressions. Therefore, we calculated the scale parameter for Colombia as the average of the significant estimates in Table 2.

Table 3 presents the estimations for the scaling parameter reported by other recent studies, as well as the average of all the estimations for Colombia and abroad. For equipment costs, the total average value is 0.218, the minimum reported value is 16% lower than the average and the maximum value is 32% bigger than the average. The average parameter for infrastructure costs is 0.352, with a relative variation of –32% and +12%. The average value for total costs is 0.326 with a percentage variation of –33% and +23%. Some studies have observed variations to the scale parameter for

6 Hereinafter, the term “cost” is used to refer to specific cost.
7 If not stated otherwise, monetary units reported in this article refer to US Dollar (USD) based on the year 2013.
8 Due to limitations in the availability of costs data, it was not possible to consider cost data for all SHP plants included in the SHP database.
9 As some of the cost data were presented in Colombian pesos, they were converted to United States dollars with the average exchange rate of the corresponding year, reported by the Bank of the Republic of Colombia [39], and then converted to (2013) USD using the annual inflation rate reported by the US Bureau of Labor Statistics [40].
10 Hereinafter we use the SHP acronym to refer to grid-connected plants.
11 In the period-clustering we excluded the time before 1985 because this period lacks sufficient data points for dividing them into smaller periods.
different types of turbines [25], which may explain the wide ranges of variation. The scaling parameter may not be comparable among different countries, and a detailed analysis of the SHP markets around the world would provide further insights on the comparability of this parameter across countries. Since such an analysis would go beyond our scope, we used the total average to approximate the correction for the EOS effects. In addition to the calculation of the EOS based on the averages of the scaling parameters we tested the sensitivity of the parameters, varying each parameter between its maximum and minimum value (see Table 4).

Fig. 8 shows the total costs of SHP after the scale correction over time. There is no evidence that the total costs are affected by LBD, mainly because the scale-corrected data does not present a decreasing trend over time (Pearson’s coefficient “r” is positive and close to zero), as it is shown in the figure. The total costs can be influenced on the one hand by EOS and LBD effects (e.g. related to costs for infrastructure and equipment), and on the other hand by exogenous elements, which influence other cost components. We conclude that LBD can hardly be analyzed in such aggregated information. As a result, we exclude total costs of the LBD analysis, and perform the analysis for the other two cost categories only: infrastructure and equipment.

Fig. 9 displays the scale correction for infrastructure costs, which show a more uniform distribution of data points than observed for

Fig. 5. Cost breakdown for SHP (based on [17]).

Fig. 6. Investment costs for SHP for grid-connected areas in Colombia by cost type and capacity category.
the total costs. With a slightly negative Pearson’s coefficient “r”, infrastructure-related costs depict a week decreasing trend over time. After the t-test analysis, however, we could not observe a significant behavior that could explain a LBD effect. Instead, data points tend to remain on the same interval (300–1800 USD/kW), with some outliers. The variation over time observed in Fig. 6 can be explained by EOS. Moreover, we excluded the infrastructure cost from the LBD analysis, because LBD appears to have little impact on these costs. One possible explanation is that the increasing environmental and social constraints in the construction activities

Table 2
Scale parameter estimated for SHP in Colombia.

<table>
<thead>
<tr>
<th>Period</th>
<th>Years</th>
<th>Equipment</th>
<th>Infrastructure</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1−λ)</td>
<td>R²</td>
<td>t²</td>
</tr>
<tr>
<td>1985–1990</td>
<td>5</td>
<td>0.08</td>
<td>1.0</td>
<td>8.99</td>
</tr>
<tr>
<td>1990–1995</td>
<td>5</td>
<td>0.05</td>
<td>0.7</td>
<td>3.42</td>
</tr>
<tr>
<td>1995–2010</td>
<td>15</td>
<td>0.15</td>
<td>0.3</td>
<td>1.01</td>
</tr>
<tr>
<td>2000–2013</td>
<td>13</td>
<td>0.47</td>
<td>0.8</td>
<td>2.58</td>
</tr>
<tr>
<td>Average (R² > 0.7)</td>
<td></td>
<td>0.200</td>
<td>0.393</td>
<td>0.346</td>
</tr>
</tbody>
</table>

*a The shaded results have a t value greater than the critical t value, and are significant with a confidence of 90%.

Table 3
Values of (1−λ) for SHP abroad.

<table>
<thead>
<tr>
<th>Source</th>
<th>Equipment</th>
<th>Infrastructure</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[25]</td>
<td>0.182</td>
<td>0.240</td>
<td>0.376</td>
</tr>
<tr>
<td>[26]</td>
<td>0.287</td>
<td>0.300</td>
<td>0.350</td>
</tr>
<tr>
<td>[27]</td>
<td>0.350</td>
<td>0.400</td>
<td>0.220</td>
</tr>
<tr>
<td>Average abroad</td>
<td>0.236</td>
<td>0.311</td>
<td>0.307</td>
</tr>
<tr>
<td>Average Colombia</td>
<td>0.200</td>
<td>0.393</td>
<td>0.307</td>
</tr>
<tr>
<td>Total average</td>
<td>0.218</td>
<td>0.352</td>
<td>0.326</td>
</tr>
</tbody>
</table>

Table 4
Sensitivity analysis for scale parameter.

<table>
<thead>
<tr>
<th>(1−λ)</th>
<th>Mini plants</th>
<th>Small plants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−α</td>
<td>LR</td>
</tr>
<tr>
<td>Av. −50%</td>
<td>−0.331</td>
<td>20.5%</td>
</tr>
<tr>
<td>Average</td>
<td>−0.340</td>
<td>21.0%</td>
</tr>
<tr>
<td>Av. +50%</td>
<td>−0.349</td>
<td>21.5%</td>
</tr>
</tbody>
</table>

All values are statistically significant under a t-test analysis, with a confidence of 90%.
could have balanced or limited the benefits from LBD process. It is possible to analyze the materials cost reduction as a result of a learning process, but it goes beyond the objective of this study, and could be a potential topic for further research.

The scale-corrected data for equipment costs are less scattered than the non-corrected ones, as shown in Fig. 10. The figure shows a decreasing tendency of costs over time, which is a typical behavior of LBD. One can observe some outliers in the dataset depicted as non-filled points in Fig. 10. Although the correlation of the data points is rather small ($R^2 \approx 1$), the behavior of the corrected data shows a significant declining trend (Pearson’s coefficient “r” is negative and higher than for infrastructure costs, and the t-value is greater than t-critical). This suggests that further analysis is needed. A reduction of equipment costs is expected as a result of technological change and innovation processes in the manufacturing and installation of electromechanical equipment. Such effects can be investigated by a LBD analysis which is provided in the next section.

The analysis presented in this section showed that SHP plants are affected by EOS. This suggests that both the public and private sectors should focus on small and mini plants, rather than micro plants if a least-cost deployment of SHP is envisaged. Installation of micro plants started after 1980, as shown in Fig. 3d, most of them for electrification of non-connected areas. Other micro plants were built as individual installations to provide electricity for e.g. small farms, industries, and hotels. In order profit from EOS for the SHP, owners should pool with their neighbors and between communities to invest in larger plants. Government should evaluate the viability to electrify several non-connected areas with the same SHP plant, rather than building one micro plant for each community. This, however, strongly depends on the costs to set up the mini-grid infrastructure.

The existing hydropower plants, regardless of the scale, can also benefit from EOS for the operation cost. Filippini & Luchsinger [22] present an EOS analysis in the Swiss hydropower sector considering data like production capacity, operational costs, and number of operated plants, for sizes from small (run-off river) to large (pump-storage). They showed that operating several hydropower plants is more cost-efficient than operating only one plant. Thus, the owners of current and future plants have the potential to reduce their operational costs by joining forces and operating all plants as a single agent.

5. Learning-by-doing

Learning curves are empirical models commonly used to study the technological change as a result of learning. In this paper we consider learning as the knowledge gained through repeating a process, i.e., increasing production capacity brings learning because it involves repetition and thus specialization of activities [28]. Learning may involve different processes, such as innovation in materials [29], R&D [30], global and local phenomena [31], etc., but given the quality of our data, we cannot differentiate among the effects of other processes. Learning curves have been applied in manufacturing, business management, and organization studies, among others. Recently, it has also been used for policy analysis of RET [32]. In this section we estimate the learning curves for equipment costs of SHP in Colombia. We explore the existence of LBD for each capacity category previously described: mini, micro and small plants.

In the previous section we observed a typical behavior of LBD in the scale-corrected equipment costs. As the adjusted tendency was not significant, we have broken down these corrected data by capacity category, as shown in Fig. 11. Here, a cost reduction over time is also observed for each category. Given that the decreasing tendency remains after the EOS correction, LBD is expected to be stronger than EOS in all three cases.

The learning curve is modeled as a power law, as presented in equation (3) [33]. In this equation, C_t and $X_{cum,t}$ are the equipment cost and cumulative installed capacity at time t, respectively. C_0 and $X_{cum,0}$ are the values for the initial time $t = 0$. The learning index α can be estimated from historical data. The progress rate (PR) and the learning rate (LR) are calculated using equations (4) and (5), where LR represents the cost reduction percentage when cumulative capacity is doubled.

$$C_t = C_0 \left(\frac{X_{cum, t}}{X_{cum, 0}} \right)^{-\alpha}$$

(3)

$$PR = 2^{-\alpha}$$

(4)

$$LR = 1 - 2^{-\alpha}$$

(5)

We estimated the LR using standard OLS method for the total data and for each capacity category individually. We used the X_{cum} curves presented in Fig. 3, and the scale-corrected costs. Moreover, we performed a sensitivity analysis for the scale parameter, using the total average value of λ calculated in the previous section with an interval variation of $\pm 50\%$. This interval covers the variations observed in the EOS analysis.

Regression analysis shows that the LR varies between 13.2 and 18.4% for the total equipment data, with R^2 lower than 0.3. Thus, the existence of LBD for SHP equipment costs in general cannot be confirmed. The individual analysis for capacity categories, however, depicts a better correlation. Fig. 12 presents the learning curves for mini and small plants, and Table 4 shows the result of the sensitivity analysis. We found a LR of $21 \pm 0.5\%$ and $24 \pm 3\%$ for mini and small plants respectively with acceptable adjustments ($R^2 = 0.7$) and statistical significance in the LR parameter (p-value < 0.1). These results show that small and mini hydropower plants in Colombia have experienced a LBD phenomenon, and that the learning process has produced a reduction in equipment costs of about 21%–24% after the cumulative installed capacity has doubled.

12 Point in 1910: The source does not specify if the reported value correspond to investment or equipment repair. Points in 1999 and 2011: Correspond to particular applications for improvement of an integrated public services system. These three points were excluded from λ and LR estimations.
The cumulative installed capacity of micro plants covers only one order of magnitude increase, and the data points are very close to each other in the log-log scale, which prohibits to derive a statistically significant learning curve for this category.

Our results are consistent with other RET studies, which report values of LR of around 20% for most technologies [33–36]. The sensitivity analysis for the scale parameter shows variations lower than 4% in R^2, and variations in LR from 20.5% to 26.6% (see Table 4). Hence, the assumed value for the scale parameter does not affect the final conclusion about the existence of a LBD phenomenon.

6. Discussion, limitations and conclusions

SHP is a mature technology in Colombia with more than a century of practical experience. Since the installation of the first plant in 1900, more than 200 plants have been built to electrify different regions in the country. The renewed interest of the government and private sector to install new SHP stations has increased over recent decades, given Colombia’s hydropower potential and the limited social and environmental impacts of SHP. Different programs for electrification with SHP are currently running, which necessitates the analysis of the prospects for SHP in Colombia. In this paper we presented an investigation of the cost reductions for SHP, based on an inspection of both learning-by-doing and economies-of-scale effects.

We built a database of SHP plants installed in Colombia between 1900 and 2013, with information on capacity, year of installation, location, current state, and investment costs. The plants were classified in three categories, as micro plants ($IC < 0.1$ MW), mini plants ($0.1 < IC < 1$ MW), and small plants ($1 < IC < 20$ MW). Total costs were sub-divided into equipment, infrastructure, and other costs. We estimated a scale parameter on the basis of historical data including all three capacity categories. For our LBD analysis, we considered only mini and small SHP plants. We corrected the
effects of EOS to a reference capacity, and thereby estimated the learning rate.

Our results suggest that infrastructure and total costs are mainly affected by EOS. For these cost measures we did not observe LBD. For equipment costs our results show that both EOS and LBD mechanisms have driven down the costs of SHP plants in Colombia. We found that equipment costs for mini and small SHP plants have declined with a learning rate of around 22%. More specifically, we found learning rates for equipment costs of 21 ± 0.5% for mini plants, and 24 ± 3% for small plants. Although the data set we used is limited, our statistical analysis showed that both the scale and the learning parameters are significant at a 90% confidence level. Future research could extend our database, whereby our results can be updated and validated with more information. Our sensitivity analysis showed that the value we calculated for the scale parameter does not affect our final conclusion about the existence of a LBD effect.

Although our LBD analysis was made with a relative large number of data for capacity (194 entries), our costs database was still relatively limited. The limitation in the cost data that we gathered constitutes a source of uncertainty in our EOS and LBD estimations. Still, however, our analysis showed that both EOS and LBD parameters are statistically significant, which suggests that EOS and LBD phenomena do exist. During our study we made an effort to collect, organize, and report all the techno-economic data available for SHP in Colombia, whereby we built a database that was inexistent in the country before our work was initiated. The results reported in this article hopefully motivate other researchers to improve and extend this database, on the basis of which they could perform a more complete analysis in the future, and validate our present findings.

We recommend both public and private sectors to exploit the EOS and LBD mechanisms described in this study. More specifically, we recommend future private owners of SHP plants to join whenever feasible with neighboring co-owners. This allows exploiting the effects of EOS, and thus lowering relative investment costs. We thus advise to invest in relatively large SHP plants that can electrify, for example, a group of farms, rather than individual ones. The mechanism of EOS can also support a decline in operational costs, such that owners of existing plants can reduce costs by allowing plants to be operated by the same agent, as shown in Ref. [22]. Finally, we recommend that the implications of our work as applied to Colombia are inspected for other countries as well, not only in the direct vicinity on the South American continent where similar physical and/or socio-economic circumstances may hold (such as in Argentina, Bolivia, Chile, Ecuador, and Peru), but also in other (notably developing) regions across the world, notably Africa and Asia.

Conflict of interest

No conflict of interest.

Acknowledgements

The analysis that allowed the publication of this paper was funded by the Enlaza Mundos program of the Colombian government (call 2013). Additional funding derived from the CLI-MACAP project (European Commission, FP7/2011-2014), and the Colombian project “Impact of Distributed Generation (DG) on the National Transmission System”, funded by Interconexión Eléctrica S.A. (ISA) (project No. 202010010363). The opinions expressed in this article are the sole responsibility of the authors. We would like to thank four anonymous reviewers for their critical comments that contributed substantially to the improvement of our analysis and paper. BvdZ also acknowledges support from the TRANSRISK project (European Commission, Horizon 2020, grant agreement No. 642260).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.renene.2017.01.054.

References

[23] E.B. Heinrinsson, Economies of scale and optimal selection of hydroelectric projects, in: Int. Conf. Electr. Util. Deregul. Restructuring Power Technol., 13 We collected 58 data points for total cost, 49 for infrastructure, 50 for equipment, and 39 for other costs. After excluding the data for non-connected areas, for our EOS analysis we ended up using 37 data points for total costs, 31 for infrastructure, and 31 for equipment (the 21 data points for other costs were excluded from our analysis). For our LBD analysis, we considered only equipment costs, classified in 11 data points for micro, 7 for mini, and 13 for small SHP plants.

[38] Congreso de la República de Colombia, Ley 855 de, Congreso de la República de Colombia, Bogotá D.C., Colombia, 2003, 2003.
