Epigenetic regulation of macrophage function
Hoeksema, M.A.

Citation for published version (APA):
Hoeksema, M. A. (2016). Epigenetic regulation of macrophage function

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Atherosclerosis is a lipid-driven chronic inflammatory disorder with a key role for macrophages in all disease stages, as discussed in Chapter 1. Macrophages are involved as scavengers of lipids, regulate inflammation, attract other immune cells and contribute to the resolution of inflammation, fibrosis and plaque stability. In this thesis, I investigate the potential for intervening at the level of transcriptional and epigenetic regulation to manipulate macrophages to dampen inflammation and to combat atherosclerosis.

In Chapter 2, we discuss the different macrophage subtypes and their role in atherosclerosis. Moreover, we describe the different cytokines and signaling pathways responsible for the macrophage phenotypes. We further discuss different transcriptional and epigenetic mechanisms that facilitate and shape polarized macrophage phenotypes. When applicable, we consider these transcription factors within the context of atherosclerosis and reflect on opportunities for future application.

In Chapter 3, we show that IFN-γ priming represses a subset of LPS-induced genes, particularly genes involved in cellular movement and leukocyte recruitment. We observe epigenetic remodeling by IFN-γ priming on enhancer or promoter sites of repressed genes, which results in less NF-κB p65 recruitment to these sites without effects on global NF-κB activation. The epigenetic and transcriptional changes induced by IFN-γ priming leads to reduced neutrophil recruitment in vitro and in vivo. Our data show that IFN-γ priming changes the inflammatory repertoire of macrophages, especially affecting neutrophil recruitment.

In Chapter 4, we demonstrate that IFN-β promotes macrophage foam cell formation by increasing SR-A-mediated cholesterol influx and decreasing ABCA1-mediated efflux. These data contribute to a better understanding on the pro-atherogenic properties of IFN-β.

In Chapter 5, we hypothesize that epigenetic enzymes could serve as the link between environment, cellular metabolism and macrophage phenotype and propose epigenetic intervention as a future pharmacological target to modulate macrophage polarization and to treat inflammatory diseases such as atherosclerosis.

In Chapter 6, we show that inhibiting epigenetic enzymes can ameliorate features of macro-
phage activation involved in atherosclerosis. We conclude that specific Hdac inhibition is the most promising strategy to achieve this.

In **Chapter 7**, we demonstrate that specific targeting of Hdac3 in macrophages improves atherosclerotic disease outcome. We find that myeloid Hdac3 deficiency promotes collagen deposition in atherosclerotic lesions and thus induces a stable plaque phenotype. Also, Hdac3 deficient macrophages present a switch to anti-inflammatory wound healing characteristics and show improved lipid handling. The pro-fibrotic phenotype is directly linked to epigenetic regulation of the Tgfb1 locus upon Hdac3 deletion, driving smooth muscle cells to increased collagen production. Moreover, we associate HDAC3 expression in human atherosclerotic plaques with pro-inflammatory characteristics.

In **Chapter 8**, we show that priming of the bone marrow as a result of hypercholesterolemia induces increased HSPC proliferation in Ldlr\(^{-/-}\) mice on a high cholesterol diet. We demonstrate that hypercholesterolemia results in decreased retinoblastoma (Rb) gene expression, which is associated with decreased histone acetylation on the Rb promoter. This suggests epigenetic regulation of the hypercholesterolemia-induced phenotype of HSPCs, which may explain the long-lasting priming effects. In atherosclerosis, hypercholesterolemia-induced priming of HSPCs generates leukocytes that more readily migrated into the artery, which results in increased atherosclerotic plaque size.

Chapter 9 discusses how monocytes and macrophages are regulated at the epigenetic level. It gives a comprehensive overview of recent developments and understanding of the epigenetic pathways that control monocyte and macrophage function and of the epigenetic enzymes involved in monocyte and macrophage differentiation and activation.

In **Chapter 10**, we show that short-term priming with T. suis soluble products (TsSPs) during monocyte-to-macrophage differentiation reduces the production of inflammatory cytokines, including IL-6 and TNF, in human pro-inflammatory M1 macrophages. The TsSP-induced effects in M1 macrophages are completely reversed by Hdac inhibition, which corresponds with decreased histone acetylation by treatment with TsSPs at the TNF and IL6 promoters.
These results demonstrate that TsSPs have a potent and sustained immunomodulatory effect on human macrophages through epigenetic remodeling.

In Chapter 11, we demonstrate that absence of Kdm3a in macrophages results in a hypo-inflammatory phenotype in both murine and human macrophages. RNA-sequencing reveals that particularly interferon (IFN) pathways are suppressed in \textit{Kdm3a$^{-/-}$} macrophages. In a murine disease model for atherosclerotic disease, we found that \textit{Kdm3a} deletion leads to reduced atherosclerosis with less necrosis and fewer recruited neutrophils. In line, the expression of neutrophil chemokines CXCL1 and CXCL2 was decreased in activated \textit{Kdm3a$^{-/-}$} macrophages, leading to reduced neutrophil migration in \textit{in vitro} and \textit{in vivo} recruitment models. Overall, we conclude that Kdm3a is a crucial regulator of the IFN-driven macrophage inflammatory program and an interesting target for intervention in disease.

Finally, in Chapter 12, I discuss the results from my thesis and future research directions. I conclude that macrophage function is tightly regulated by epigenetic processes and postulate that specific targeting of epigenetic enzymes or processes in innate immune cells, like macrophages, should be considered as future therapeutic opportunity in disease.
Appendix

Nederlandse samenvatting
Aderverkalking is een lipiden gedreven chronische ontstekingsziekte met een belangrijk rol voor macrofagen, zoals beschreven in Hoofdstuk 1. Macrofagen zijn betrokken bij het opruimen van lipiden, het reguleren van ontsteking, het aantrekken van andere ontstekingscellen en dragen tevens bij aan het oplossen van de ontsteking, fibrose en plaque stabiliteit. In mijn proefschrift onderzoek ik de mogelijkheid om in te grijpen in de transcriptionele en epigenetische regulatie van macrofagen om ze te manipuleren om ontsteking te remmen en aderverkalking tegen te gaan.

In Hoofdstuk 2 bediscussiëren we de verschillende macrofaag subtypes en hun rol in aderverkalking. Bovendien beschrijven we de verschillende cytokines en signaleringsroutes verantwoordelijk voor de fenotypes van de macrofaag. Verder bediscussiëren we de verschillende transcriptionele en epigenetische mechanismes die polarisatie naar verschillende macrofaag fenotypes mogelijk maken. Waar mogelijk bespreken we de rol van de verschillende transcriptiefactoren in aderverkalking en de potentie om deze kennis in de toekomst te kunnen gebruiken voor de ontwikkeling van een therapie voor atherosclerose.

In Hoofdstuk 3 laten we zien dat voorbehandeling van macrofagen met het cytokine IFN-γ resulteert in verminderde expressie van een deel van de LPS-geïnduceerde genen, met name genen betrokken bij het aantrekken van andere ontstekingscellen. We zien dat er epigenetische veranderingen plaatsvinden door IFN-γ voorbehandeling op enhancers of promoters van geremde genen, wat resulteert in minder NF-κB p65 recruitment naar deze sites enhancers of promoters. De epigenetische en transcriptionele veranderingen door IFN-γ voorbehandeling leiden tot verminderde neutrofiel aantrekking in vitro en in vivo. Onze data laten zien dat IFN-γ voorbehandeling het inflammatoire repertoire van macrofagen vermindert, en met name de aantrekking van neutrofielen.

In Hoofdstuk 4 laten we zien dat de cytokine IFN-β schuimcelvorming (het overladden van macrofagen met lipiden) versterkt door verhoogde expressie van cholesterol influx receptor SR-A en verlaagde ABCA1-gemedieerde cholesterol efflux. Dit onderzoek draagt bij aan een beter begrip van de pro-atherogene eigenschappen van IFN-β.
In **Hoofdstuk 5** stellen we dat epigenetische enzymen de link zouden kunnen zijn tussen de omgeving, het cellulaire metabolisme en het macrofaag fenotype en stellen we epigenetische interventie voor als een toekomstig farmacologisch aangrijppunt om macrofaag fenotypes te veranderen en ontstekingsziekten als aderverkalking te kunnen behandelen.

In **Hoofdstuk 6** laten we zien dat het remmen van epigenetische enzymen de aderverkalking-gerelateerde macrofaag functies kan verbeteren. We concluderen dat het remmen van specifieke histone deacetylases (Hdacs) de meest belovende strategie is om dit te bewerkstelligen.

In **Hoofdstuk 7** tonen we aan dat specifieke deleitie van Hdac3 in macrofagen de uitkomst van aderverkalking verbetert. Macrofaag Hdac3 deleitie bevordert collageen productie in aderverkalking en induceert daarmee een stabiel plaque fenotype. Verder hebben Hdac3 deficiente macrofagen een anti-inflammatoir fenotype en kunnen ze beter lipiden verwerken. Het pro-fibrotische fenotype is gekoppeld aan epigenetische regulatie van het Tgfb1 locus na Hdac3 deleitie, waarna gladde spiercellen gestimuleerd worden om meer collageen te maken. Bovendien hebben we aangetoond dat in plaques van mensen de expressie van Hdac3 geassocieerd is met pro-inflammatoire eigenschappen.

In **Hoofdstuk 8** laten we zien dat blootstelling van beenmergcellen aan hypercholesterolemie leidt tot verhoogde celdeling van hematopoietische stamcellen (HSCs) in Ldlr⁻/⁻ muizen op een hoog cholesterol dieet. We tonen aan dat hypercholesterolemie resulteert in verlaagde retinoblastoma (Rb) genexpressie, hetgeen associeerde met verlaagde histon acetylatie op de Rb promoter. Dit suggereert epigenetische regulatie van het hypercholesterolemie-geïnduceerde fenotype van HSCs, welke de langdurende effecten in het immuunsysteem kan verklaren. In een aderverkalking model zien we dat uit de hypercholesterolemie HSCs meer leukocyten uitgroeien die makkelijker naar de plaque migreren, wat resulteert in meer aderverkalking.

Hoofdstuk 9 bediscussieert hoe monocyten en macrofagen zijn gereguleerd op epigenetisch niveau. Het geeft een compleet overzicht van de recente ontwikkelingen en kennis hoe
epigenetische signaleringsroutes monocyt en macrofaag functie beïnvloeden en van de epigenetische enzymen betrokken in monocyt en macrofaag differentiatie en activatie.

In Hoofdstuk 10 tonen we in humane pro-inflammatoire M1 macrofagen aan dat een korte behandeling met stoffen van de parasiet *Trichuris suis* (*T. suis*) tijdens monocyt naar macrofaag differentiatie de productie van inflammatoire cytokines sterk verminderd, waaronder IL-6 en TNF. De effecten van *T. suis* in M1 macrofagen kunnen te niet gedaan worden door het remmen van Hdacs, wat correspondeert met verlaagde histon acetylatie door een korte behandeling met *T. suis* op de TNF en IL6 gen promoters. Deze bevindingen tonen aan dat *T. suis* een sterke en langdurig immunomodulerend effect op humane macrofagen heeft door epigenetische veranderingen.

In Hoofdstuk 11 laten we zien dat deletie van de histon demethylase Kdm3a in macrofagen resulteert in een hypo-inflammatoire fenotype in zowel muizen als humane macrofagen. RNA-sequencing toont aan dat met name interferon (IFN) signalering verminderd is in *Kdm3a*⁻/⁻ macrofagen. In een muizen model voor aderverkalking vinden we dat *Kdm3a* deletie leidt tot kleinere atherosclerotische plaques met minder necrose en minder neutrofielen. Hiermee overeenkomstig is de verminderde expressie van neutrofiel chemokines CXCL1 en CXCL2 in geactiveerde *Kdm3a*⁺/⁺ macrofagen, wat leidt tot verminderde neutrofiel migratie in *in vitro* en *in vivo* experimenten. We concluderen dat Kdm3a een cruciale regulator is van het IFN-gedreven macrofaag inflammatoire programma en een interessant doelwit voor interventie in ziekte.

Uiteindelijk, in Hoofdstuk 12, bediscussieer ik de resultaten van mijn proefschrift en mogelijk toekomstige onderzoekslijnen. Ik concludeer dat macrofaag functie strak wordt gereguleerd door epigenetische processen en stel dat specifiek remmen van deze epigenetische enzymen of processen in ontstekingscellen, zoals macrofagen, als toekomstige therapeutische mogelijkheden in ziekte beschouwd moeten worden.
Appendix

PhD Portfolio
Curriculum Vitae

Marten Anne Hoeksema was born on May 18, 1987 in Geleen, the Netherlands. He obtained his Bachelor of Science in Molecular Life Sciences in 2008 at Maastricht University. In 2010, he graduated in Clinical Molecular Sciences at Maastricht University and wrote his thesis on signaling pathways of activated macrophages. During the last year of his master, Marten was awarded the Kootstra Talent Student Fellowship. After this one-year fellowship, Marten started his PhD under supervision of Prof. M.P.J. de Winther and Prof. E. Lutgens at the Academic Medical Center, University of Amsterdam. During his PhD, he investigated the epigenetic regulation of macrophages in atherosclerosis. In 2012, he was awarded a Boehringer Ingelheim travel grant which allowed him to work on epigenetic remodeling during foam cell formation in the lab of Prof. Glass. In 2016, Marten finished the PhD work that resulted in this thesis and continues his scientific career as post-doctoral researcher in the lab of Prof. Glass at UCSD, CA, USA.
Name PhD student: Marten Hoeksema

PhD period: October 2011 – October 2016

Name PhD supervisors: Prof. dr. Menno de Winther and Prof. dr. Esther Lutgens

1. PhD training

<table>
<thead>
<tr>
<th>Courses</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Laboratory Safety, AMC</td>
<td>2013</td>
<td>0.4</td>
</tr>
<tr>
<td>Immunology Course, AMC Graduate School</td>
<td>2013</td>
<td>3.0</td>
</tr>
<tr>
<td>Writing in scientific English, AMC Graduate School</td>
<td>2012</td>
<td>1.0</td>
</tr>
<tr>
<td>Presentation skills/Creativity, Maastricht University</td>
<td>2011</td>
<td>1.0</td>
</tr>
<tr>
<td>Writing research proposals, Maastricht University</td>
<td>2009</td>
<td>2.0</td>
</tr>
<tr>
<td>Scientific English Writing, Maastricht University</td>
<td>2009</td>
<td>2.0</td>
</tr>
<tr>
<td>Laboratory Animal Science, Maastricht University</td>
<td>2009</td>
<td>3.0</td>
</tr>
<tr>
<td>Safe Laboratory Practice, Maastricht University</td>
<td>2009</td>
<td>0.4</td>
</tr>
<tr>
<td>Radiology, level 5b, Maastricht University</td>
<td>2009</td>
<td>2.0</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Medical biochemistry department meeting (weekly)</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Experimental Vascular Biology meeting (weekly)</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Journal club (monthly)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EpiMac meetings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM immunology meeting</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Ruysch lectures by invited scientists</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Rembrandt meeting (yearly)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Masterclass by dr. Glass</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Masterclass by dr. Hancock and dr. Tarakhovksy</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Masterclass by dr. Staels</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keystone meeting: Myeloid Cells, Killarney, Co. Kerry Ireland, April 10—14, 2016.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Keystone Meeting: DCs and Macrophages Reunited, Montreal, Canada, March 8—13, 2015.</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMDS. Vienna, Austria, October 2-4, 2014.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>CardioVascular Conferentie. Ermelo, The Netherlands, March 6-7, 2014.</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keystone Symposia: Molecular Cell Biology of Macrophages in Human Diseases. Santa Fé, NM, USA, February 9-14, 2014.</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference on epigenetics and cancer, Barcelona, Spain, November 21-22, 2013.</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Teaching

<table>
<thead>
<tr>
<th>Supervising</th>
<th>Year</th>
<th>Workload (Hours/ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master student Ayestha Sijm</td>
<td>2013</td>
<td>2.0</td>
</tr>
<tr>
<td>Master student Rosa Bering</td>
<td>2014</td>
<td>2.0</td>
</tr>
</tbody>
</table>

3. Parameters of Esteem

<table>
<thead>
<tr>
<th>Grants</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWO-ALW Rubicon grant</td>
<td>2016</td>
</tr>
<tr>
<td>Postdoc grant Amsterdam Cardiovascular Institute</td>
<td>2016</td>
</tr>
<tr>
<td>Postdoc grant CVON, Nederlandse Hartstichting</td>
<td>2015</td>
</tr>
<tr>
<td>BIF Travel Grant, Boehringer Ingelheim, Germany. “Epigenetic regulation of foam cell responses.”</td>
<td>2012</td>
</tr>
<tr>
<td>Kootstra Fellowship (for talented students). “Signaling pathways in activated macrophage subsets.”</td>
<td>2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Awards and Prizes</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMDS Travel Award, EMDS, Vienna, Austria. “IFNγ priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment”</td>
<td>2014</td>
</tr>
<tr>
<td>Best oral presentation award, Rembrandt Meeting, Noordwijkhout, the Netherlands. “Hdac3 regulates macrophage phenotype and plaque stability”</td>
<td>2013</td>
</tr>
</tbody>
</table>
4. Oral and poster presentations at (inter)national scientific meetings:

“Jmjd1a regulates macrophage phenotype and atherosclerosis” Keystone meeting: Myeloid Cells, Killarney, Co. Kerry Ireland, April 10—14, 2016.

“IFNγ priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment” Keystone Meeting: DCs and Macrophages Reunited, Montreal, Canada, March 8—13, 2015.

“IFNγ priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment” EMDS. Vienna, Austria, October 2-4, 2014.

5. List of publications:

Hoeksema MA & de Winther MP. Epigenetic regulation of monocytes and macrophages. *Antioxidants & Redox Signaling.* 2016 Apr 25.

Dankwoord
Ik wil graag iedereen met wie ik de afgelopen jaren heb samen mogen werken van harte bedanken, ik ben zeer gelukkig dat ik met zo veel fijne collega’s heb mogen samenwerken. Allereerst en in het bijzonder mijn promotoren prof. dr. de Winther en prof. dr. Lutgens. Beste Menno, na mijn stage bij de afdeling Moleculaire Genetica in Maastricht, vroeg je of ik mee wilde gaan met jou naar het AMC om daar een nieuw lab op te starten en te promoveren. Ondanks dat het in het begin soms weinig met proefjes doen te maken had, was het een zeer leuke en leerzame periode. Ik wil je vooral bedanken voor alle vrijheid en vertrouwen die je mij gegeven hebt. Je stuurde bij waar nodig en was kritisch op de juiste momenten. Je deur stond altijd open en je hebt altijd oprecht interesse gehad in mij en mijn werk, dat heb ik altijd als heel fijn ervaren! Bovendien hebben we samen veel leuke congressen bezocht en uitstapjes gemaakt! Bedankt voor alle kansen die je mij gegeven hebt, de toekomst ziet er qua samenwerking ook nog mooi uit. Beste Esther, bij jou kon ik altijd terecht voor hulp bij mijn onderzoeken en vele projectaanvragen. Bedankt voor al je input en hulp, het heeft me heel veel gebracht.

En dan eerst mijn lieve paranimfen, Saskia en Tom, allereerst bedankt dat jullie mijn paranimfen willen zijn! Saskia, vanaf het allereerste moment waren we maatjes op het lab, eerst samen puinruimen en het lab proberen op te starten, daarna muizenproefjes en op het einde zelfs een beetje kloonwerk. Ik heb altijd blind op je kunnen vertrouwen en waar ik soms iets vergat, had jij het al geregeld, ik heb heel erg genoten van onze samenwerking en natuurlijk ook de gezellige borrels, samen met RJ. Tom, het was fijn om kamergenootjes te zijn en sa-
Dankwoord

men te werken. Met jouw zelfdiscipline en werklust ben je altijd een uitstekend voorbeeld geweest. Maar ik kijk uiteraard vooral met veel plezier terug naar onze tripjes door Californië en Florida en uiteraard de gezellige wekelijkse avondjes samen sporten en eten.

Dan wil ik graag iedereen in de Medische Biochemie afdeling bedanken voor de fijne samenwerking. In het bijzonder de macrofaagclub: ik vind het heel fijn dat we als team veel experimenten samen hebben gedaan. Marion, al was je maar een dagje per week in Amsterdam, het was altijd een heel gezellig moment om naar uit te kijken. Je wist met een paar opmerkingen alles even op de juiste plaats te zetten en de rust terug te laten keren. Bij vlagen zeer verhelderend! Annette, altijd in voor een feestje of een uitje, het was heel erg leuk om met jou het EVB uitje te organiseren. Bedankt voor je bijdrage aan mijn boekje, ik waardeer al je hulp (vooral bij de FACS) zeer! MB, lieve Marieke, jij ook bedankt voor de fijne samenwerking vooral in de cytokine projectjes, ik hoop dat je een bizarrr leuke tijd in San Francisco zal hebben en hopelijk spreken we daar snel eens af! Jan, jij ook bedankt voor de leuke tijd met de vele door jou geïnitieerde brouwerijbezoeken en de fijne samenwerking, we vulden elkaar geweldig aan qua interesses en afkeer voor technieken ;) Oliver, it has been a great pleasure working with you, I admire your energy, creativity and eagerness to learn! My roomies and ex-roomies: Jeroen (het blijft elke keer verrassend hoe je Nijmegen in elk gesprek verwerkt krijgt), Ewelina (I love your funny stories and questions on the most diverse topics), Carlos (always so much fun to discuss science and to see your passion for it) Helene (I really hope you enjoy your new job and that we will meet again!). Quinte, laten we nog eens klaverjassen in de Ep en dan proberen elkaar droog te houden! ;) Ook EVB collega’s Susan, Charo, Svenja, Linda, Lauran, Myrthe, Suzanne, Thijs, Pascal, Claudia, Marnix, Annelie en kleine Esther van harte bedankt voor de leuke tijd en fijne samenwerkingen! Ayestha, je was een geweldige student, ik hoop dat je PhD je goed af gaat in Rotterdam.

Natuurlijk ook iedereen “van boven” heel erg bedankt voor de fijne samenwerkingen en gezellige tijd. Ook veel dank voor al jullie hulp bij het opstarten van het lab, in het bijzonder Duco en Romana. Romana, jouw hartelijkheid is van ongekend niveau en dankzij jou kende ik
Dankwoord

binnen de kortste keren alle sluiproutes binnen het AMC. Duco, ondanks dat je mijn grapjes in het begin misschien niet altijd kon waarderen, hebben we daarna een hoop lol gehad, bovendien kon ik bij jou altijd terecht met de meest diverse vragen! Noam, jouw input bij experimenten en de hulp bij het schrijven van grants waardeer ik zeer, dank voor al je tijd en enthousiasme! Anke and Duco, thanks for all your time and help with cloning. Duco (namas-té), Jessica, Lejla, Stijntje and Thijs, thanks for the “gezellige” drinks in Belgique, the mill, the Ep or anywhere else! Stijn, ik hoop dat je ooit nog een keer zult winnen van een eerstejaars Geneeskunde studente... Anouk, altijd gezellig, altijd tijd voor een borrel ook al moest je daarna weer aan het werk, laten we die borrels voortzetten in San Diego!

Natuurlijk wil ik ook alle oud-collega’s in Maastricht bedanken. In het bijzonder de andere macrofaag ALO’s Lauran, Nadine, Emiel, Ine en natuurlijk ook Marjo, Patrick, Chantal en Petra voor een zeer gezellige tijd! Pieter, ik heb veel van je geleerd in mijn stage bij jou, heel leuk dat we elkaar recent weer tegenkwamen op congres nadat jij een paar jaar opgesloten had gezeten in een Frans lab!

Verder wil ik graag iedereen van binnen en buiten het AMC bedanken waar ik de afgelopen jaren nog verder mee heb mogen samenwerken heel erg bedanken. Gijs, Lisa en Irma bedankt voor de fijne samenwerking in het T. Suis project, Linda en Ted voor de hulp bij het sequencen, Aldo en Perry voor de bio-informatica ondersteuning, Alinda en Geesje voor de hulp bij de cholesterol efflux proeven, Anton en Hanke bij de neutrofiel chemotaxis proefjes. Brendon, thanks for all your help with the IFN microarray analysis. Nina, het was altijd heel gezellig samen experimenten te doen, ook al was het vaak vroeg en in het weekend! Also, all Epimac colleagues, thanks for the nice meetings and collaborations! Of course, I would also like to thank Chris for giving me the opportunity to work in your lab during my PhD for a couple of months and as a postdoctoral fellow starting the end of this year, Nathan it was a lot of fun working with you and I am looking forward to work with you again when I am back in San Diego.

Travis and Parascha, we met in a wine bar in San Diego. You took great care of me and showed
me a lot of beautiful spots around San Diego, I enjoyed our picnics in the park and all our trips
and holidays. Thanks for this great time and friendship ever since, I am looking forward to see
you again soon in San Diego. Mijn MLW-vriendjes, bedankt voor de vele leuke spelletjesavon-
den, Center Parcs-breaks en al die andere talloze activiteiten. Schmitz, jouw imitaties zijn
hilarisch, met jou kan ik altijd geweldig ouwehoeren of je episch verslaan met bordspelletjes.
Melle, lieve Mirelle, jij wordt een hele goede klinisch chemicus daar in Dordt. En Emiel, heel
leuk en gezellig dat we ook nog samengewerkt hebben. Jij bent al een zelfstandig weten-
schapper, daar in München, dat wordt alleen maar beter. Mevrouw Eurlings, jij ook bedankt,
dat je al sinds onze MLW studie zorgt voor de soms zo broodnodige relaative noot. Auke,
bedankt voor al je steun de afgelopen jaren. Het is fijn dat je begrijpt wat er moet gebeuren
en hoe het in de wetenschap verloopt. Ik hoop dat we nog heel veel mooie momenten zullen
meemaken. Pap en mam, bedankt voor alles wat jullie voor me hebben gedaan, dankzij jullie
heb ik alle mogelijkheden gehad om te studeren en nu te promoveren. Jullie hebben altijd
oprechte interesse, ook al ben ik soms met onbegrijpelijke dingen bezig. Ik heb me altijd ge-
steund gevoeld en als ik thuis was dan kon ik even echt tot rust komen. Ook René, Tom en de
rest van de familie heel erg bedankt voor al jullie steun! Ik koester de vele momenten samen
als familie, toen, nu en in de toekomst.