Quantitative image analysis for planning of aortic valve replacement
Elattar, M.A.

Citation for published version (APA):
Elattar, M. A. I. M. (2016). Quantitative image analysis for planning of aortic valve replacement

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
INVITATION to the public defense of my PhD thesis

"Quantitative Image Analysis for Planning of Aortic Valve Replacement"

On 27th of October 2016 at 14:00 pm

Agnietenkapel
Oudezijds Voorburgwal 231, 1012 EZ, Amsterdam, The Netherlands

A reception will be held after the defense

Mustafa A. Elattar
Mustafa.Elattar@gmail.com

Paranymphs:

Emilie M. Santos
e.m.santos@amc.nl
Renan S. Barros
renansalesbarros@gmail.com

Quantitative Image Analysis for Planning of Aortic Valve Replacement

Mustafa Ahmed Elattar
Quantitative Image Analysis for Planning of Aortic Valve Replacement

Mustafa Ahmed Elattar
For parents, Lily, Yazid, and Hadeer

Quantitative Image Analysis for Planning of Aortic Valve Replacement

The work presented in this dissertation was conducted at the Department of Biomedical Engineering at the Academic Medical Center, Amsterdam. Support for the publication of this dissertation was generously provided by the Academic Medical Center for research.

This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO) and partly funded by the Ministry of Economic Affairs (PAPAVER 11630).

Financial support by the Dutch Heart Foundation for the publication of this thesis is gratefully acknowledged.

Layout and cover design by Mustafa Elattar
Printed by Ipskamp Drukkers B.V., Enschede, the Netherlands

Copyright© Mustafa Elattar, 2016. All rights reserved. No part of this book may be reproduced, stored in a database or retrieval system, or published, in any form or any other means without prior permission by the author or respective journals of published chapters. For additional requests or specific source code, please contact the author at mustafa.elattar@gmail.com.
Quantitative Image Analysis for Planning of Aortic Valve Replacement

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op donderdag 27 oktober 2016, te 14:00 uur

doors
Mustafa Ahmed Ibrahim Mohamed Elattar
geboren te Cairo, Egypte
Promotiecommissie:

Promotor: Prof. Dr. E.T. van Bavel
Universiteit van Amsterdam

Copromotores: Dr. H.A. Marquering
Universiteit van Amsterdam
Dr. J. Baan
Universiteit van Amsterdam
Dr. R.N. Planken
Universiteit van Amsterdam

Overige leden: Prof. Dr. R. Balm
Universiteit van Amsterdam
Prof. Dr. J.A. Reekers
Universiteit van Amsterdam
Prof. Dr. Ir. G.J. Strijkers
Universiteit van Amsterdam
Prof. Dr. Ir. B.P.F. Lelieveldt
Universiteit Leiden
Prof. Dr. J.J. Piek
Universiteit van Amsterdam
Dr. H.C. van Assen
Technische Universiteit Eindhoven

Faculteit der Geneeskunde
Contents

Chapter 1 Introduction and outline ... 6

Chapter 2 Segmentation of Aortic Root of TAVI Candidate Patients in CTA 26

Chapter 3 Aortic Root Landmark Detection for TAVI Planning in CTA 42

Chapter 4 Aortic Annulus Dynamics in 4D CTA for TAVI Patients 62

Chapter 5 Automated CTA based Measurements for mini-AVR Support 80

Chapter 6 Validation of a novel planning tool for mini-AVR 98

Chapter 7 Comparison of NC-MRA and CE-MRA .. 114

Chapter 8 Summary & General Discussion .. 126

Chapter 9 Appendices .. 136

 Samenvatting .. 137

 Curriculum vitae ... 140

 Portfolio .. 141

 List of publications ... 143

 Acknowledgments ... 145