MAb therapy against the IFN-α/β receptor subunit 1 stimulates arteriogenesis in a murine hindlimb ischaemia model without enhancing atherosclerotic burden

Paul F.A. Teunissen†, Marieke C.S. Boshuizen‡, Maurits R. Hollander†, Paul. S. Biesbroek†, Nina W. van der Hoeven†, Jan-Quinten Mol†, Marion J.J. Gijbels‡, Saskia van der Velden‡, Tineke C. van der Pouw Kraan‡, Anton J. Horrevoets‡, Menno P.J. de Winther‡, and Niels van Royen†

† P.F.A.T., M.C.S.B., M.P.J.d.W., and N.v.R. contributed equally to this work

1Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands; 2Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands; 3Department of Pathology and Molecular Genetics, CARIM, Maastricht, The Netherlands; and 4Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands

Abstract

Aims IFN-beta (IFNβ) signalling is increased in patients with insufficient coronary collateral growth (i.e. arteriogenesis) and IFNβ hampers arteriogenesis in mice. A downside of most pro-arteriogenic agents investigated in the past has been their pro-atherosclerotic properties, rendering them unsuitable for therapeutic application. Interestingly, type I IFNs have also been identified as pro-atherosclerotic cytokines and IFNβ treatment increases plaque formation and accumulation of macrophages. We therefore hypothesized that mAb therapy to inhibit IFNβ signalling would stimulate arteriogenesis and simultaneously attenuate—rather than aggravate—atherosclerosis.

Methods and results In a murine hindlimb ischaemia model, atherosclerotic low-density lipoprotein receptor knockout (LDLR−/−) mice were treated during a 4-week period with blocking MAbs specific for mouse IFN-α/β receptor subunit 1 (IFNAR1) or murine IgG isotype as a control. The arteriogenic response was quantified using laser Doppler perfusion imaging (LDPI) as well as immunohistochemistry. Effects on atherosclerosis were determined by quantification of plaque area and analysis of plaque composition. Downstream targets of IFNβ were assessed by real-time PCR (RT-PCR) in the aortic arch. Hindlimb perfusion restoration after femoral artery ligation was improved in mice treated with anti-IFNAR1 compared with controls as assessed by LDPI. This was accompanied by a decrease in CXCL10 expression in the IFNAR1 MAb-treated group. Anti-IFNAR1 treatment reduced plaque apoptosis without affecting total plaque area or other general plaque composition parameters. Results were confirmed in a short-term model and in apolipoprotein E knockout (APOE)−/− mice.

Conclusion Monoclonal anti-IFNAR1 therapy during a 4-week treatment period stimulates collateral artery growth in mice and did not enhance atherosclerotic burden. This is the first reported successful strategy using MAbs to stimulate arteriogenesis.
1. Introduction

Arteriogenesis is a natural mechanism to restore obstructed blood flow by remodeling of small, pre-existing collateral arterioles. In both the coronary as well as the peripheral circulation numerous interarterial connections are present between the different vascular territories. Through arteriogenesis a circulatory system arises that bypasses arterial occlusions. In days to weeks after an acute occlusion, full arterial function can be restored by arteriogenesis. In the presence of a sufficient collateral network, symptoms of ischemia and the extent of myocardial infarction are reduced.

Patients with coronary artery disease (CAD) show a large heterogeneity in their arteriogenic response upon coronary obstruction. In a previous study we found upregulation of interferon-beta (IFNβ) signaling in patients with poor coronary collateral development, leading to the hypothesis that IFNβ has anti-arteriogenic effects. Indeed, mice treated with IFNβ demonstrate inhibition of collateral artery growth and mice with a genetic deletion of the Interferon-α/β Receptor subunit 1 (IFNAR1) show accelerated arteriogenesis. Thus, blockade of IFNβ signaling is a potential therapeutic target for stimulation of arteriogenesis. Interestingly, interfering with IFNβ might also have a beneficial effect on atherosclerosis. A downside of most pro-arteriogenic agents investigated in the past, has been their pro-atherosclerotic properties, rendering them unsuitable for therapeutic application. In mouse models of atherosclerosis, IFNβ treatment accelerated lesion formation and macrophage accumulation in plaques whereas in mice lacking myeloid IFNAR1, atherosclerosis was attenuated, with a decreased accumulation of macrophages and a reduction in plaque cell death. We hypothesized that blocking IFNβ signaling with antibody therapy has a two-ways beneficial effect in the treatment of coronary artery disease; stimulating arteriogenesis while at the same time inhibiting atherosclerosis development. Therefore, in a LDLR−/− murine model we determined the long-term effects of IFNAR1 MAbs on arteriogenesis as measured by LDPI as well as the effects on plaque composition as determined by immunohistochemistry. An APOE−/− model with very advanced atherosclerotic disease was used as a confirmatory model. Also, we determined the effects of IFNAR1 MAbs on macrophage polarization and expression of IFNβ downstream targets in hindlimb tissue.

2. Methods

2.1 Selection of antibody

We analyzed the neutralizing capacities of three antibodies in an IFN-activity assay. RAW-264.7 cells (murine monocyte-macrophage cell line; American Type Culture Collection, Bethesda, MD) were cultured at a density of 2x10⁶ cells/ml in DMEM (Invitrogen, Bleiswijk, Netherlands), supplemented with 10% heat-inactivated fetal bovine serum (iFBS; Lonza, Breda, Netherlands), and 1000 Units/ml penicillin/streptomycin (Lanza). Graded concentrations of mouse IFNβ (PBL Interferonsource, Piscataway, NJ, USA) were used to stimulate the cells as indicated. The capacity of the antibodies to inhibit IFNβ activity at a concentration of 2 µg/ml for each antibody; rat anti-mouse IFNβ, clone 7D3 (Abcam, Cambridge, UK), rat anti-mouse IFNβ clone RMMB-1 (PBL Interferonsource) and mouse anti-mouse IFNAR1/CD118, clone MAR1-5A3 (Leinco technologies, St. Louis, MO, USA). After 24 hours of culture, total RNA was isolated from the RAW cells using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s protocol. IFN-response gene expression
was quantified by real-time polymerase chain reaction (real-time PCR). In brief, RNA was reversed transcribed into cDNA, using the RevertAid H Minus First Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany). Quantification was performed using TaqMan Universal PCR Master Mix (Invitrogen Life Technologies, Bleiswijk, the Netherlands) with SYBR green (Invitrogen Life Technologies) as a detection agent on an ABI Prism 7900HT Fast Real-Time PCR System. mRNA expression levels of the IFN-response gene MX1 was calculated using an arbitrary standard curve and normalized to the amount of HPRT and GAPDH gene transcripts.

2.2 Primary animal experiments in LDLR⁻/⁻ mice
Experiments were approved by the Institutional Animal Experimental committee that conforms to the Guide for the Care and use of Laboratory Animals published by the US National Institutes of Health (NIH Publication, 8th edition, revised 2011). Female C57Bl/6 LDL receptor knockouts (LDLR⁻/⁻) were house bred and backcrossed ten times. At 10 weeks old, they were fed with a high fat diet (0.15% cholesterol, 16% fat, Arie Blok Inc., the Netherlands) for 2 months. A total of 32 LDLR⁻/⁻ mice were divided into a group of 16 mice receiving antibody treatment and 16 control mice. Mice were anesthetized by intraperitoneal (i.p.) injection of dexmedetomidine (1.0 mg/kg, Orion) and ketamine (70.0 mg/kg, Alfasan Pharma). Unilateral double ligation of the right femoral artery was performed as previously described ¹⁰ and a sham operation, in which the femoral artery was dissected, was performed on the left side. Adequacy of the anesthesia and surgical tolerance was monitored by close observation and reflex response tests. After surgery, anesthesia was antagonized with i.p. injection of atipamezole (0.5 mg/kg, Orion) and to minimize pain caused by surgical procedures, buprenorphine (2.0 mg/kg, MSD Animal Health) was administered subcutaneously. After ligation, the treatment group received an intraperitoneal injection with 2.0 mg of monoclonal antibodies specific for mouse Interferon-α/β Receptor subunit 1 (IFNAR1) ¹¹ (MAR-1 5A3 MAb, Leinco Technologies Inc., St. Louis, Missouri, USA) and control mice were injected intraperitoneally with 2.0 mg murine IgG isotype control (Leinco Technologies Inc, St Louis, Missouri, USA). During a 4-week period, in which the high-fat diet was continued, treatment and placebo were continued twice weekly with 0.2 mg IFNAR1 MAbs and IgG isotype respectively.

2.2.1. Laser Doppler Perfusion Imaging
Hindlimb perfusion was measured using laser Doppler perfusion imaging (LDPI) (MoorLDI2, Moor Instruments, Devon, United Kingdom). LDPI was performed under anesthesia directly before and after femoral artery ligation, as well as at 2, 7, 14 and 28 days following ligation. Mice were anesthetized by i.p. injection of dexmedetomidine (1.0 mg/kg, Orion) and ketamine (70.0 mg/kg, Alfasan Pharma). Excess hair from the hindlimb was removed using depilatory cream and mice were placed on a heating plate to minimize temperature variation. After LDPI, anesthesia was antagonized with atipamezole (0.5 mg/kg, Orion). Dedicated software was used to quantify tissue perfusion. To account for variables such as ambient light, temperature and experimental procedures, perfusion was calculated in the foot and expressed as a ratio of right (ischemic) to left (nonischemic) hindlimb as previously described ¹²⁻¹⁵.

2.2.2. Histological analysis of arteriogenesis and angiogenesis
At day 28 after operation, adductor muscles were harvested. For the detection of smooth muscle cells, frozen tissue sections (5 µm) were stained for smooth muscle actin (Rabbit
Anti-Mouse alpha Smooth Muscle Actin antibody, α-SMA, Abcam, Cambridge, UK, 1:100). The antibody for CD31 (Pecam-1, M-20, Santa Cruz Biotechnology, UK, 1:100) was used for the detection of capillaries. Nuclei were stained with 1:50000 Hoechst (Molecular Probe, Bleiswijk, Netherlands). Images of stained sections were made with the Leica DM6000 fluorescence microscope using a 20x objective. All analyses were done by two blinded observers using LAS AF Lite software (Leica microsystems, IL, USA) and quantification was performed using ImageJ 1.46 (National Institutes of Health, USA).

2.2.3. Mouse blood parameters
Blood was withdrawn via tail vein incision at three time-points: before start of the diet, before start of treatment and right before sacrifice. Plasma cholesterol and triglyceride levels were measured according to the manufacturer’s protocol (Roche, Woerden, The Netherlands) and relative blood leukocyte counts were determined using the Scil Vet abc Plus analyzer (Scil animal care company BV, Oostelbeers, The Netherlands).

2.2.4. Atherosclerotic lesion analysis
Mice were sacrificed for tissue isolation and further analysis after LDPI scanning at 28 days following ligation, whilst under anesthesia, by cervical dislocation. Following sacrifice of the animals, the heart was dissected, frozen in Tissue-Tek (Sakura Finetek Europe BV, Alphen aan de Rijn, The Netherlands) and subsequently cut into sections of 7 µm. Serial cross-sections of every 42 µm were stained with toluidin blue and images were obtained using the Leica DM3000 microscope (5x). Necrosis was also measured on the toluidin blue stained slides and was identified by the presence of pyknosis, karyorrhexis or by the complete absence of nuclei. To measure collagen, slides were air dried, fixed in 10% formalin, washed and then incubated for 5 minutes in 0.2% PMA. Hereafter, slides were incubated for 30 minutes in 0.05% Sirius Red (direct red 80; Sigma, Zwijndrecht, The Netherlands), which was diluted in saturated picric acid. The slides were then rinsed with 0.01N HCl, followed by an incubation period of 5 minutes in this solution. Next the slides were rinsed in a series of 70, 90, 96 and 100% ethanol followed by 2x3 minutes of xylene. Quantification of plaque size from the sections stained by Sirius red staining was performed using Adobe Photoshop software. For immunohistochemistry, lesions from the aortic root were air dried, fixed in acetone and blocked with the Avidin/Biotin Blocking Kit (all immunohistologic kits are from Vector Laboratories, Burlingame, USA, SP-2001). During the second phase of blocking, the slides were incubated with the primary antibody; 1:4000 MOMA-2 (macrophages, AbD Serotec, Uden, The Netherlands, 1:400 NIMP (neutrophils, gift from P. Heeringa), 1:250 KT3 (CD3, T cells, AbD Serotec) and 1:1000 rabbit-a-cleaved-caspase-3 (apoptosis, Cell Signaling, Leiden, The Netherlands). Slides were then washed 3x with PBS and incubated for 60 min with a 1:300 biotin labeled rabbit-anti-rat antibody (Dako, Hervelee, Belgium) or polyvision anti-rabbit-HRP (Immunologic, Duiven, the Netherlands) for cleaved caspase-3. Hereafter, the signal was amplified using the ABC kit (except for the cleaved caspase-3 staining). Slides were washed three times with PBS and then stained using different AEC kits for MOMA-2, KT3 and cleaved caspase-3 respectively, and using Novared for NIMP. Quantification of KT3, NIMP and cleaved caspase-3 was performed manually, whereas MOMA-2 staining was quantified using Adobe Photoshop software.

2.2.5. Real Time-PCR
Total RNA from snap-frozen aortic arches was isolated using the Qiagen RNeasy Mini Kit
cDNA synthesis was then performed using 500 ng of RNA with the iScript cDNA synthesis kit (BioRad, Veenendaal, The Netherlands). Real-time PCR was performed for several pro-inflammatory cytokines and chemokines, and IFNβ downstream target genes using 2 ng of cDNA, 300 nM of each primer and 300 nmol/l Fast SYBR Green master mix (Invitrogen Life Technologies) in a total volume of 20 µl. Forty amplification cycles were performed after which fluorescence was analyzed using a computer-based imaging system (ViiA 7 Real-Time PCR system, Invitrogen Life Technologies, Bleiswijk, The Netherlands). All gene expression levels were corrected for ARBP and cyclophilin A as housekeeping genes.

2.3. Effect of treatment at early time-point
To investigate the effects of our treatment on arteriogenesis and angiogenesis, macrophage polarization, other target cells and systemic inflammation at an early time-point, we repeated our experiments in a 2-day model. 12 female LDL receptor knockouts were treated (6 received antibody treatment and 6 served as controls) for 2 days following femoral artery ligation. Anesthesia, surgical procedures including monitoring, and postoperative analgesia were performed according to the protocol of the other experiments. Mice were sacrificed after 2 days for tissue harvesting and further analysis.

2.3.1. Histological analysis of arteriogenesis, macrophages and angiogenesis
Frozen tissue sections (5 µm) of the adductor muscle were stained in order to identify vessels and differentiate between M1- and M2-macrophages. Slides were fixed in dehydrated acetone for 10 minutes (min). Next, slides were blocked in PBS/1%BSA and 10% normal mouse serum. Slides were then incubated with 1:80 primary Rat Anti-Mouse F4/80 antibody (AbdSerotec, Düsseldorf, Germany) for 60 min followed by incubation with secondary antibody, Alexa Fluor 647 Goat Anti-Rat IgG (Molecular Probes, Bleiswijk, Netherlands). All slides were then incubated with 1:100 primary antibody Rabbit Anti-Mouse alpha Smooth Muscle Actin antibody (α-SMA) (Abcam, Cambridge, UK) and with either 1:400 biotinylated Rat Anti-Mouse CD40 (α-CD40) (eBioscience, Vienna, Austria) or 1:50 biotinylated Rat Anti-Mouse Mannose Receptor (α-MR) (BioLegend, Cambridge, UK) for staining of M1 or M2 macrophages respectively. Slides were incubated with secondary antibody Alexa Fluor 488 Goat Anti-Rabbit IgG (Molecular Probes, Bleiswijk, Netherlands) for α-SMA and Streptavidin Alexa Fluor 555 (Molecular Probes, Bleiswijk, Netherlands) for α-CD40 and α-MR. Nuclei were stained with 1:50000 Hoechst (Molecular Probe, Bleiswijk, Netherlands). Angiogenesis was studied by CD31 staining and quantification of capillary density as described above.

2.3.2. Blood parameters
Blood plasma was withdrawn following sacrifice to determine the effects of anti-IFNAR1 treatment on systemic inflammation. Using flow cytometry relative leukocyte numbers and M1 monocyte/macrophage markers on blood monocytes were determined. Blood monocytes were defined as CD45+CD11b-Ly6G- cells. Flow cytometry measurements were performed using a FACS Canto II with FACSDiva software (BD Biosciences, USA).

2.4. Animal experiments in APOE-/- mice
To confirm our results in a different model of atherosclerosis, animal experiments were repeated in 28 female C57Bl/6 Apolipoprotein E knockouts (APOE-/-) (Charles River
Blocking IFNAR1 stimulates arteriogenesis without enhancing atherosclerotic burden

Laboratories, France, B6.129P2-APOE/J) of which 14 received antibody treatment and 14 served as controls. Animals had severely advanced atherosclerosis, after being on a lipid rich diet for 6 months, being 9 months of age at the time of sacrifice. Anesthesia, surgical procedures including monitoring, and postoperative analgesia were performed according to the protocol of the LDLR⁻/⁻ experiments. APOE⁻/⁻ mice in the treatment group received an intraperitoneal injection with 2.5 mg of IFNAR1 antibody and control mice were injected intraperitoneally with 2.5 mg murine IgG isotype control. Antibody and IgG isotype were identical to the LDLR⁻/⁻ experiments. Using methods described above, LDPI was performed before, directly after- as well as 2 and 7 days following ligation. Mice were sacrificed after 7 days for tissue harvesting and further analysis as in LDLR⁻/⁻ experiments. Atherosclerotic lesion analysis was performed as in LDLR⁻/⁻ animals.

2.4.1. Histological analysis of arteriogenesis, macrophages and angiogenesis
Analysis of arteriogenesis and angiogenesis was performed on sections from calf muscle tissue. Macrophage analysis was performed on adductor muscle tissue. Protocols were used as described above.

2.4.2. Downstream targets of IFN-beta in hindlimb tissue
Frozen tissue sections (8 µm) of the right adductor muscle and left adductor muscle were stained for CXCL10 en IL-27 expression. Slides were fixed in dehydrated acetone for 10 min and dried to air for 10 min. Slides were then rehydrated in EBSS/0.1% saponin (EBSS/sap) for 5 min followed by blocking with Avidin/Biotin Blocking Kit (Vector Laboratories, Burlingame, USA, SP-2001) for 15 min each and EBSS/0.1% saponin/1%block (EBSS/inc) with 10% normal mouse serum and 10% Normal Donkey Serum for 60 min. Slides were incubated overnight at 4°C with 10 µg/ml primary antibody Goat Anti-Mouse CXCL10 (Leinco, St. Louise, USA, I-236) or 10 µg/ml primary antibody Goat Anti-Mouse IL27 (R&D Systems, Minneapolis, USA, AF1834). After incubation, slides were washed 3x5 min with EBSS/sap and incubated for 60 minutes with Biotinylated Donkey Anti-Goat IgG (Jackson ImmunoResearch, Baltimore, USA, 705-066-147) followed by Tyramide Signal Amplification (TSA™ Kit #23, Molecular Probes/Invitrogen, T20933) including incubation with HRP-streptavidin for 90 minutes followed by 3x5min washing with EBSS/sap and incubation with Alexa Fluor 546 tyramide for 5 minutes. Next, slides were washed with 3x5 min EBSS/sap and stained for α-SMA and Hoechst as described above. Quantification of macrophages and arterial lumen area was performed as described above. CXCL10⁺ cells and IL-27⁺ cells were counted using ImageJ. Cell Fluorescence was measured in the vessel wall with correction for background staining and expressed in arbitrary units (AU).

2.4.3. Real Time-PCR
Total RNA was isolated from adductor muscle according to the Trizol reagent protocol (Leiden University Medical Center, Leiden, the Netherlands). Total RNA was reverse-transcribed with the Revert Aid H Minsus First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, Massachusetts, USA). The resulting cDNA was amplified using 5 nmol/L of each primer and 50 nmol/l Fast SYBR Green Master Mix (Invitrogen Life Technologies). Real-time PCR was performed as in the LDLR⁻/⁻ protocol described above.

2.5 Statistical analysis
Results are presented as mean ± S.E.M. Significant differences between sample means
were determined with an independent-samples t test for data with a normal distribution and a nonparametric Mann-Whitney U-test for data with a non-normal distribution using GraphPad Prism 5 (GraphPad Software Inc., California, USA). LDPI data were statistically evaluated using a repeated measurement ANOVA test. A value of p<0.05 was considered significant.

3. Results

3.1 Selection of antibody
Three different antibodies were tested for their capacities to inhibit the activity of IFNβ; two monoclonal antibodies were directed against IFNβ, and one against the IFNAR1 (a common receptor chain for IFNα and IFNβ). We stimulated mouse macrophages with murine INFβ, and measured the expression of IFNβ-response gene MX1 as readout for IFNβ activity (Supplemental figure 1). All three antibodies effectively inhibited IFNβ activity. Because the IFNAR1 antibody showed the highest level of inhibition we selected this antibody for subsequent use in our in vivo experiments.

3.2 Primary animal experiments in LDLR⁻/⁻ mice
To analyze the effect of anti-IFNAR1 treatment on both arteriogenesis and atherosclerosis we performed experiments in LDLR⁻/⁻ mice that were subjected to femoral artery ligation. The study in LDLR⁻/⁻ involved 4 weeks anti-IFNAR1 treatment in a setting of early atherosclerosis development. 3 control animals died during the surgical procedure and these animals were excluded from the analysis.

3.2.1. Laser Doppler Perfusion Imaging in LDLR⁻/⁻ mice
Hindlimb perfusion restoration was significantly improved in anti-IFNAR1 treated animals compared to controls at 7, 14 and 28 days (control vs. treatment; day 7: 23.6 ± 8.7% vs. 35.6 ± 16.5%, p= 0.03, day 14: 35.0 ± 12.3% vs. 51.4 ± 17.2%, p= 0.01, day 28: 54.0 ± 16.3% vs 71.5 ± 13.8%, p=0.01; ANOVA p=0.004) (Figure 1A and 1B). Notably, no signs of necrosis of the paws were detected in anti-IFNAR1- or control-treated mice and the anti-IFNAR1 showed the same weight gain as the control mice (data not shown).

3.2.2. Histological analysis of arteriogenesis and angiogenesis
Quantification of arterial lumen area in adductor muscle tissue by alpha-smooth muscle actin (SMA) staining showed no difference in arterial lumen area as a ratio of total section area after 4 weeks in treated LDLR⁻/⁻ animals compared to controls (control vs. treatment: 0.37 ± 0.04 vs. 0.54 ± 0.09, p=0.20). Arterial lumen area was significantly larger on the ligated side compared to sham side in anti-IFNAR1-treated animals (0.54 ± 0.09 vs. 0.28 ± 0.07, p=0.04) (Figure 1C and 1D). Also, the number of arterioles per um² was similar (control vs. treatment: 3.79·10⁻⁶ ± 5.14·10⁻⁷ vs. 3.28·10⁻⁶ ± 4.54·10⁻⁷, p=0.46) (Supplemental figure 2A and 2B). Capillary density expressed in number of capillaries per mm² was similar in treated animals compared to controls (control vs. treatment: 588.7 ± 23.0 vs. 632.7 ± 54.2, p=0.50) (Supplemental figure 2C).

3.2.3. Atherosclerotic lesion analysis in LDLR⁻/⁻ mice
Gene expression analyses of the aortic arches in the LDLR⁻/⁻ mice demonstrated a decrease
Blocking IFNAR1 stimulates arteriogenesis without enhancing atherosclerotic burden

in IFNβ downstream target genes in the anti-IFNAR1 treated animals as compared to the controls following 4 weeks of treatment (STAT1 control vs. treatment: 1.00 ± 0.20 vs. 0.37 ± 0.04, p=0.02, CXCL10: 1.00 ± 0.21 vs. 0.54 ± 0.11, p=0.06, MX1: 1.00 ± 0.19 vs. 0.53 ± 0.15, p=0.07, MX2: 1.00 ± 0.02 vs. 0.93 ± 0.01, p=0.01) (Figure 2A). No effects of anti-IFNAR1 therapy on gene expression in aortic arches of typical pro-inflammatory cytokines, such as TNF, IL-1β and IL-6 could be observed (Figure 2B). Plasma cholesterol and triglyceride levels did also not differ between control and anti-IFNAR1 treated mice (Supplemental figure 3A and 3B). In addition, no effect of anti-IFNAR1 treatment on relative leukocyte subsets was observed (Supplemental figure 3C). Total atherosclerotic lesion area showed no difference between the controls and the treatment group after 4 weeks of treatment (Figure 3A and 3B). In addition, lesion distribution into early, moderate or severe lesions did not show a difference in plaque severity between control and anti-IFNAR1 treated animals (Figure 3C). A more extensive immunohistochemical analysis of the aortic root demonstrated no differences in plaque phenotype, regarding collagen deposition, neutrophils and T-cells as related to the lesion area (Figure 3D-G).

Figure 1. Arteriogenesis in 4-week treated LDLR⁻/⁻ mice. (A) Restoration of hindlimb perfusion in LDLR⁻/⁻ mice after ligation of the femoral artery imaged by Laser Doppler Perfusion Imaging (LDPI). (B) 4-week treatment of LDLR⁻/⁻ mice with anti-IFNAR1 and follow-up with LDPI. Restoration of hindlimb perfusion was significantly improved in mice treated with anti-IFNAR1 compared to controls at 7, 14 and 28 days after femoral artery ligation. (C) Quantification of arterial lumen area as a ratio of total section area in hindlimb tissue by alpha-smooth muscle actin (α-SMA) staining. (D) Representative immunofluorescence stainings (10x) for SMA from adductor muscle tissue. Shown are mean ± S.E.M. n=13-16/group.
Figure 2. Systemic anti-IFNAR1 treatment blocks IFNβ signaling in vivo, but does not affect general inflammation in aortic arch of LDLR⁻/⁻ mice. (A) Relative gene expression of IFNβ downstream target genes in aortic arches of LDLR⁻/⁻ mice treated with anti-IFNAR1 and controls in the 4-week experiments. (B) Relative aortic arch gene expression of pro-inflammatory cytokines. Shown are mean ± S.E.M. n=13-16/group.

Figure 3. Systemic IFNAR1 blockade has no effect on atherosclerotic plaque size or phenotype. (A) Representative toluidin blue staining (5x) of aortic root tissue from controls and treated LDLR⁻/⁻ mice. Scale bars represent 500 μm. (B) Quantification of lesion size in aortic root lesions. (C) Plaque severity score. (D) Representative Sirius red stained lesions (5x) from control and anti-IFNAR1 treated LDLR⁻/⁻ mice. Scale bars represent 500 μm. (E) Quantification of collagen deposition in aortic root lesions. (F) Neutrophil and (G) T-cell counts in aortic root tissue from LDLR⁻/⁻ mice following 4 weeks of control or anti-IFNAR1 treatment and (H) quantification of the necrotic core in the aortic root lesions. Shown are mean ± S.E.M. n=13-16/group.
Also no difference was found in the amount of necrosis as a percentage of lesion area (Figure 3H). However, a significant decrease in apoptosis was observed in the anti-IFNAR1 treated mice (control vs. treatment: 0.16 ± 0.05 vs. 0.04 ± 0.01, p=0.04) (Figure 4A and 4B). Further immunohistochemical analysis demonstrated a significant increase in the percentage of macrophage area in the lesions of anti-IFNAR1 treated animals (control vs. treatment: 43.0 ± 5.4% vs. 59.0 ± 3.5% of plaque area p=0.02) (Figure 4C and 4D). In addition, a trend towards an increased gene expression of the macrophage marker CD68 was present in the aortic arches of anti-IFNAR1 treated animals (control vs. treatment: 1.0 ± 0.2 vs. 1.5 ± 0.2, p=0.11), (Figure 4E). This points to an increased macrophage accumulation in the plaques of those animals. However, gene expression of M1 and M2 macrophage markers did not differ between control and anti-IFNAR1 treated animals (Figure 4F).

Figure 4. Systemic IFNAR1 blockade results in increased macrophage area and decreased apoptosis in the atherosclerotic plaque. (A) Representative caspase-3 staining in aortic root tissue from LDLR⁻/⁻ mice following 4 weeks of control or anti-IFNAR1 treatment. Scale bars represent 500 μm. (B) Quantification of caspase-3 positive cells in aortic root lesions. (C) Representative MOMA-2 staining (5x) in aortic root tissue. Scale bars represent 500 μm. (D) Quantification of MOMA-2 in the aortic root lesions. (E) Relative gene expression of CD68 and (F) M1 and M2 macrophage markers in aortic arches of LDLR⁻/⁻ mice. Shown are mean ± S.E.M. n=13-16/group.

3.3. Effect of treatment at early time-point

3.3.1. Histological analysis of arteriogenesis, macrophages and angiogenesis

To assess early changes upon ligation we performed a short-term 2-day experiment. Quantification of arterial lumen area in calf tissue by alpha-smooth muscle actin (SMA) staining showed no difference in arterial lumen area as a ratio of total section area after 2
days in treated LDLR⁻/⁻ animals compared to controls (control vs. treatment: 0.09 ± 0.03 vs. 0.17 ± 0.08, p=0.40) (Supplemental figure 4A). The number of arterioles per μm² was similar in calf tissue 2 days following ligation in treated animals and controls (control vs. treatment: 3.65±10⁻⁶ ± 5.19·10⁻⁷ vs. 2.69·10⁻⁶ ± 6.20·10⁻⁷, p=0.26). Fewer arterioles per μm² were found on ligated side when compared to sham side in anti-IFNAR1-treated animals (2.70 ± 0.62 vs. 4.84 ± 0.72, p=0.048) and controls (3.65 ± 0.52 vs. 5.44 ± 0.46, p=0.03) (Supplemental figure 4B). Capillary density expressed in number of capillaries per mm² in calf tissue after 2 days was similar in treated animals compared to controls (control vs. treatment: 762.7 ± 158.9 vs. 638.0 ± 92.3, p=0.52) (Supplemental figure 4C).

The mean number of surrounding macrophages per vessel in sections from hindlimb tissue from the LDLR⁻/⁻ mice did not differ between mice treated with anti-IFNAR1 and controls (control vs. treatment: 5.3 ± 0.3 vs. 5.1 ± 0.3, p=0.62). Furthermore, the mean number of vessels with surrounding macrophages per fixed section area did not differ significantly (control vs. treatment: 1.3 ± 0.04 vs. 1.3 ± 0.05, p=0.96). We found no differences in M1 and M2 infiltration in ligated adductor muscle tissue between anti-IFNAR1 treated animals and controls (ratio of CD40 positive cells (M1) versus F4/80 positive cells (all macrophages); control vs. treatment: 0.81 ± 0.03 vs. 0.77 ± 0.03, p=0.23; ratio of MR positive (M2) versus F4/80 positive cells (all macrophages); control vs. treatment: 0.08 ± 0.01 vs. 0.07 ± 0.01, p=0.52). Also, we found no significant differences in mean number of surrounding neutrophils per vessel between anti-IFNAR1 treated animals and controls (control vs. treatment: 2.59 ± 0.20 vs. 2.50 ± 0.14, p=0.71) (Supplemental figure 5A). However, a significant higher mean number of surrounding T-cells per vessel was found in animals treated with IFNAR1 antibodies compared to controls (control vs. treatment: 1.50 ± 0.11 vs. 2.85 ± 0.22, p<0.0001) (Supplemental figure 5B).

3.3.2. Systemic inflammation
Anti-IFNAR1 treatment had no effect on systemic inflammation after 2 days of treatment, as the percentage of leukocyte subsets and pro-inflammatory M1 markers on blood monocytes were not different between control and treated mice (Supplemental figure 6).

3.4 Animal experiments in APOE⁻/⁻ mice
The study in APOE⁻/⁻ mice was performed to investigate the effect of anti-IFNAR1 treatment on arteriogenesis and advanced atherosclerosis with a short 1-week anti-IFNAR1 intervention. 2 animals receiving treatment died and these animals were excluded from the analysis.

3.4.1. LDPI
In accordance with the results obtained from the 4-week treated LDLR⁻/⁻ mice experiments, hindlimb perfusion restoration was also significantly improved in APOE⁻/⁻ mice treated with anti-IFNAR1 compared to controls at 2 and 7 days after femoral artery ligation (control vs. treatment; day 2: 18.8 ± 4.2% vs. 27.6 ± 9.7%, p=0.01, day 7: 31.1 ± 5.9% vs. 45.9 ± 6.2%, p=0.04; ANOVA p=0.015) (Figure 5A).

3.4.2. Histological analysis of arteriogenesis, macrophages and angiogenesis
Quantification of arterial lumen area as a ratio of total section area in hindlimb tissue by alpha-smooth muscle actin (SMA) staining also showed an increased arterial lumen area after 1 week in treated APOE⁻/⁻ animals compared to controls (control vs. treatment: 0.21 ± 0.04 vs. 0.35 ± 0.04, p=0.02). Arterial lumen area was also significantly larger on the ligated
Blocking IFNAR1 stimulates arteriogenesis without enhancing atherosclerotic burden.

Side compared to sham side in anti-IFNAR1-treated animals (0.35 ± 0.04 vs. 0.09 ± 0.03, p=0.0001) and in control animals (0.22 ± 0.04 vs. 0.09 ± 0.02, p=0.008) (Figure 5B and 5C). The mean number of surrounding macrophages per vessel in sections from hindlimb tissue from the APOE−/− mice did not differ between mice treated with anti-IFNAR1 and controls (control vs. treatment: 3.9 ± 0.6 vs. 4.0 ± 0.4, p=0.26). Furthermore, the mean number of vessels with surrounding macrophages per fixed section area did not differ significantly (control vs. treatment: 6.5 ± 0.9 vs. 6.8 ± 1.0, p=0.62). No difference was found in the distribution of macrophage subsets surrounding the vessels (ratio of CD40 positive cells (M1) versus F4/80 positive cells (all macrophages); control vs. treatment: 0.05 ± 0.03 vs. 0.08 ± 0.02, p=0.13). In both groups very few M1 macrophages were seen. The ratio of MR positive (M2) versus F4/80 positive cells (all macrophages) was also similar in both groups (control vs. treatment: 0.77 ± 0.05 vs. 0.75 ± 0.03, p=0.92).

The number of arterioles per μm² was similar (control vs. treatment: 2.65 ± 0.39 vs. 2.87 ± 0.36, p=0.68) (Supplemental figure 7A). Fewer arterioles per μm² were found on ligated side when compared to sham side in anti-IFNAR1-treated animals (1.41 ± 0.25 vs. 2.87 ± 0.36, p=0.003) and controls (0.91 ± 0.11 vs. 2.65 ± 0.39, p=0.0001). Also, capillary density expressed in number of capillaries per mm² was similar in treated animals compared to controls (control vs. treatment: 747.1 ± 105.3 vs. 678.1 ± 57.3, p=0.59) (Supplemental figure 7B).

Figure 5. Arteriogenesis in 1-week treated APOE−/− mice. (A) 1-week treatment of APOE−/− mice with anti-IFNAR1 and follow-up with LDPI. Restoration of hindlimb perfusion was significantly improved in mice treated with anti-IFNAR1 compared to controls at 2 and 7 days after femoral artery ligation. (B) Quantification of arterial lumen area as a ratio of total section area in hindlimb tissue by alpha-smooth muscle actin (α-SMA) staining. (C) Representative immunofluorescence stainings (10x) for SMA from adductor muscle tissue. Shown are mean ± S.E.M. n=14-12/group.
3.4.3. Gene expression analysis arteriogenesis

In search of mechanistic evidence responsible for increased arteriogenesis, we performed real-time RT-PCR for major factors known to influence arteriogenesis in ischemic hindlimb tissue of anti-IFNAR1 treated mice and controls. PDGF-a and FGF-2 showed similar expression, whereas VEGF-a showed lower expression in hindlimb tissue from anti-IFNAR1 treated animals compared to controls (control vs. treatment: 1.84 ± 0.50 vs. 0.63 ± 0.15, p=0.03) (Supplemental figure 8).

3.4.4. IFNβ downstream targets: ligated versus sham hindlimb

Cell fluorescence of two IFNβ downstream targets, CXCL10 and IL-27 was compared between sham (left) hindlimb and ligated (right) hindlimb. At day 7, a significantly higher intensity of CXCL10 in the vessel wall was found at the ligated side in comparison to the sham side while a trend was found for IL-27 (CXCL10, sham vs. ligated: 458.7 ± 68.2 vs. 951.1 ± 60.4, p<0.001. IL-27, sham vs. ligated: 253.2 ± 64.1 vs. 395.3 ± 37.7, p=0.05). Also, the number of CXCL10 and IL-27 positive cells was higher in hindlimb tissue from ligated side compared to sham side (CXCL10, sham vs. ligated: 6.9 ± 0.8 vs. 10.2 ± 0.4, p<0.001. IL-27, sham vs. ligated: 1.9 ± 0.4 vs. 5.3 ± 0.5, p<0.001). Real-time RT-PCR analysis correspondingly showed increased expression of CXCL10 in ligated compared to sham adductor muscle (sham vs. ligated: 0.03 ± 0.01 vs. 1.1 ± 0.4, p=0.02) (Figure 6A and 6B). These data confirm induction of an interferon response upon femoral ligation.

Figure 6. IFNβ downstream targets in 1-week treated APOEΔΔ mice. (A) Representative immunofluorescence stainings (40x) for CXCL10 and IL-27 from sham (left) and ligated (right) adductor muscle tissue from the hindlimb of APOEΔΔ mice. (B) Cell fluorescence of CXCL10 and IL-27 in the vessel wall from sections of sham and ligated side in arbitrary units, positive cell count of CXCL10 and IL-27 in hindlimb tissue from sham and ligated side, real-time RT-PCR analysis of relative gene expression of CXCL10 in hindlimb tissue from sham and ligated side in arbitrary units. (C) Representative immunofluorescence stainings (40x) for CXCL10, IL-27 and alpha-SMA from adductor muscle tissue from the hindlimb of a control mouse. (D) Cell fluorescence of CXCL10 and IL-27 in the vessel wall from sections of treated mice and controls in arbitrary units, positive cell count of CXCL10 and IL-27 in hindlimb tissue from treated mice and controls, real-time RT-PCR analysis of relative gene expression of CXCL10 in hindlimb tissue from treated mice and controls in arbitrary units. Shown are mean ± S.E.M. n=14-12/group.
3.4.5. IFNβ downstream targets: anti-IFNAR1 treated versus control
When comparing anti-IFNAR1 treated to control mice, no significant differences were found in total cell fluorescence of CXCL10 and IL-27 in the vessel wall (CXCL10, control vs. treatment: 902.6 ± 72.0 vs. 1004 ± 99.9, p=0.42. IL-27, control vs. treatment: 348.3 ± 42.6 vs. 437.2 ± 61.5, p=0.22). However, upon quantification of cells, a decreased number of CXCL10 positive cells was found in hindlimb tissue from the anti-IFNAR1 treated group (control vs. treatment: 11.1 ± 0.5 vs. 9.5 ± 0.5, p=0.02). IL-27 positive cell count was not significantly different between the groups (control vs. treatment: 5.7 ± 0.8 vs. 4.9 ± 0.8, p=0.46). These findings were corroborated by significant higher levels of CXCL10 gene expression in control mice compared to anti-IFNAR1 treated mice (control vs. treatment: 1.6 ± 0.6 vs. 0.1 ± 0.1, p=0.02) (Figure 6C and 6D).

3.4.6. Atherosclerosis assessment
Atherosclerotic lesion analyses were also in line with the 4-week experiments showing no significant differences between the anti-IFNAR1 and control group when examining general plaque characteristics and severity (Figure 7A and 7B). In addition, no effects of anti-IFNAR1 therapy on gene expression of typical pro-inflammatory cytokines, such as TNF, IL-1β and IL-6 in aortic arches could be observed (Figure 7C).

4. Discussion
In this study we investigated the effect of blocking IFNAR1 on arteriogenesis and atherosclerosis using in vivo mouse models. For the first time, we show that monoclonal antibody therapy against IFNAR1 leads to improved restoration of hindlimb perfusion after femoral artery ligation in mice, without enhancing atherosclerotic burden. Application of monoclonal antibody therapy has proven to be an efficacious treatment in multiple diseases, like cancer and rheumatic diseases. In the field of cardiovascular disease, monoclonal antibodies are currently being investigated, for example to reduce low-density lipoprotein cholesterol levels by blocking PCSK9 or to reduce the inflammatory profile by blocking IL-1β. Monoclonal antibodies were also previously tested to stimulate arteriogenesis.
Hellingman et al. expanded regulatory T-cell numbers 2-fold in a murine ischemic hind limb model by injecting mice with IL-2 mixed with an IL-2 MAb. They showed a significant attenuation of blood flow recovery on LDPI and also a significant lower number of alpha-SMA-expressing collaterals in the hind limb tissue on the ligated side in animals treated with antibody compared to controls. Depletion of regulatory T-cells with anti-CD25 treatment however showed no effect on arteriogenesis in this study.

Mouse monoclonal antibodies specific for the IFNAR1 subunit of the mouse interferon-alpha and -beta receptor were previously generated in IFNAR1-/- mice. Clone MAR1-5A3 was shown to block type I interferon-induced antiviral, antimicrobial, and antitumor responses in vivo. Increased sensitivity to viral infection was shown to be similar in IFNAR1 knockout mice as compared to antibody treated wild type mice. The MAR1-5A3 clone was also shown to delay CD8+ T cell maturation during viral infection. In accordance, our MX-1 assay showed a strong blocking capacity of MAR1-5A3 and therefore we selected this clone for application in our in vivo experiments.

In previous studies we found IFNβ expression to be upregulated in monocytes isolated from patients with a poor arteriogenic response. Furthermore, arteriogenesis is hampered after exogenous application of IFNβ in a murine hindlimb model. IFNAR1-/- mice showed improved hindlimb perfusion 1 week after femoral artery ligation compared to wild-type mice as assessed by infusion of fluorescent microspheres. In the present study, we show that the inhibitory effect of IFNβ on arteriogenesis can be inverted by blocking IFNAR1. Hindlimb perfusion restoration after femoral artery ligation was improved in mice treated with anti-IFNAR1 compared to controls as assessed by LDPI. An increased arterial lumen area in animals treated for 1 week endorses the finding of an accelerated growth of collateral arteries. The lack of a significant difference in arterial lumen area in animals treated for 2 days and 4 weeks may be attributed to the fact that perfusion depends on luminal size to the fourth power and consequently relatively small changes in vessel diameter can result in large changes in perfusion, as seen by LDPI. Furthermore, we show that in hindlimb tissue the IFNAR1 blockade leads to a decreased number of CXCL10 positive cells and a lower CXCL10 gene expression and likewise to a decrease in CXCL10 gene expression in the aortic arches. The mechanism through which CXCL10 mediates its effects on arteriogenesis is not completely elucidated. Van den Borne et al. investigated the role of CXCL10 in arteriogenesis and showed that bone marrow-derived CXCL10 and tissue-derived CXCL10 play a role in accelerating perfusion recovery after arterial occlusion in mice. They postulate that this is probably induced by the promotion of vascular smooth muscle cell recruitment and maturation of pre-existing anastomoses. The discrepancy between our results and those of van den Borne et al. can be explained by the fact that CXCL10 has both pro-arteriogenic- as well as anti-arteriogenic effects. Van den Borne et al. demonstrated that in the early phase after femoral artery ligation, CXCL10 expression in hindlimb tissue increases, with improved restoration of perfusion. In the late phase however, CXCL10 expression subsides and the rapid perfusion recovery as seen in the early phase is diminished. This anti-arteriogenic effect of CXCL10 in the late phase corresponds with our findings that restoration of perfusion is accelerated in the late phase following ligation accompanied by lowered levels of CXCL10. Moreover, it is important to take into account that CXCL10-/- mice possibly have an altered immune system causing differences in endothelial cell proliferation, making comparison to previous studies as well as our own work challenging.

Studies investigating the role of macrophage subpopulations in arteriogenesis have shown that a shift towards M2 macrophages improves collateral remodeling. However, we found
no difference in distribution of macrophage subsets between the groups and the total number of vessels with surrounding macrophages was similar.

In search of mechanistic evidence responsible for increased arteriogenesis, we performed PCR for major factors known to influence arteriogenesis in ischemic hindlimb tissue of anti-IFNAR1 treated mice and controls. PDGF-a and FGF-2 showed similar expression, whereas VEGF-a showed lower expression in hindlimb tissue from anti-IFNAR1 treated animals compared to controls. VEGF-a is known to induce a heterogeneous response and its inducing effect on angiogenesis is more distinct than that of arteriogenesis. Our results cannot confirm a role for aforementioned growth factors in promoting collateral vessel growth. Thacker et al. showed that IFNAR1 knockout mice show enhanced endothelial-dependent vasodilation. Possibly, the IFNAR1 blockade as performed in our experiments leads to enhanced blood flow recovery through this mechanism. Another possible mechanism behind the enhanced collateralization found in our experiments could be T-cell dependent vascularization. Stabile et al. showed that CD4 + T-cells control the arteriogenic response to acute hindlimb ischemia. Sharir et al. found that regulatory T-cells play an important role in flow re-establishment after inducement of hindlimb ischemia. In line with these studies, we found significantly elevated numbers of CD3 + T-cells in hindlimb tissue from anti-IFNAR1 treated animals compared to controls.

Increased atherosclerotic plaque formation and plaque destabilization have hindered the development of therapeutic pro-arteriogenic therapies. For example, MCP-1 was shown to be a potent pro-arteriogenic chemokine. However, local application caused systemic monocyte activation and effects on neointima and plaque composition leading to potentially unstable atherosclerotic lesions, rendering its pharmaceutical application unsuitable for the treatment of CAD.

Although type I interferons have important immunomodulatory functions, primarily in response to viral encounters, they also have been linked to disease progression, as they are for instance implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interestingly, patients with SLE show an increased risk of cardiovascular disease, which is directly associated with their increased type I interferon levels. The involvement of type I interferons in atherosclerosis was further illustrated by the observation that the main cellular source of type I interferon, plasmacytoid dendritic cells (pDCs), are present in rupture-prone areas of the human atherosclerotic plaque. Furthermore, pDC depletion in APOE -/- mice decreased lesion size, and similar reductions in lesion size were obtained in LDLR -/- mice with MHC class II-deficient pDCs, which indicates that pDCs promote atherosclerosis. In addition, we recently demonstrated that vulnerable plaques have increased type I IFN signaling as well. Thus, type I interferons are associated with plaque instability in human lesions.

In our experiments we examined the effect of systemic IFNAR1 blockade on plaque size and composition using a well-established mouse model of atherosclerosis, the LDLR -/- mouse. Using this model, we observed no effects of anti-IFNAR1 treatment on total plaque size following treatment. An enhanced macrophage accumulation was found, however, M1 and M2 macrophage markers in the aortic arch did not differ between control and treated animals. Thus, even though an increase in macrophages may be present, these macrophages do not display an increased pro-inflammatory phenotype. Furthermore, relative blood leukocyte levels were similar between control and anti-IFNAR1 treated animals, which we could confirm in the 2-day experiments, indicating anti-IFNAR1 treatment has no effect on systemic inflammation either. The increased macrophage accumulation was
also accompanied by decreased apoptosis in the lesions of anti-IFNAR1 treated animals, indicating improved survival of foam cells upon blockade of IFN signaling. We previously demonstrated that absence of myeloid IFNAR1 signaling is also protective for foam cell death\(^9\) and we can thus recapitulate this with a systemic antibody blockade. Such decrease in apoptosis may be considered beneficial, as the resulting decrease in cell debris limits necrotic core formation, which strongly affects plaque vulnerability\(^43\). This is in line with our previous results, showing pro-apoptotic effects of IFNβ via increased expression of TRAIL, FAS and FASL, as well as decreased apoptosis in monocytes derived from IFNAR1\(^{-/-}\) mice\(^7\). Of note, IFNβ is also known to prime monocyte-derived macrophages for cell death in multiple sclerosis (MS), in which a subgroup of patients is treated with IFNβ\(^{44}\).

In a previous study\(^9\) we observed a reduction in atherosclerosis development, with less macrophage accumulation and a decrease in plaque cell death, by the genetic myeloid-specific ablation of IFNAR1. In the present study we did not observe such reduction in atherosclerosis. Possibly, the anti-IFNAR1 treatment period in the present study was too short. In addition, the systemic antibody mediated approach, as studied in the present manuscript, also targets the endothelium which might counteract the myeloid effects observed previously\(^9\). We indeed observed a significantly increased expression of the endothelial cell activation marker VCAM1 in lesions of anti-IFNAR1 treated animals, with a concomitant increase in VCAM1 aortic gene expression (data not shown), which demonstrates that in atherosclerosis, type I IFNs might prevent endothelial activation. Interestingly, part of the beneficial effects of IFNβ-treatment in MS patients is attributed to an indirect blockade of cerebral endothelial activation. IFNβ-treatment increases serum levels of soluble VCAM1 (sVCAM1), which binds to its co-receptor VLA-4 on leukocytes. This subsequently inhibits leukocyte adhesion to membrane-bound VCAM1, resulting in less cellular recruitment to inflammatory foci and dampening clinical relapses\(^{45}\).

A similar counteracting factor might be the targeting of T regulatory cells (Tregs). Tregs are atheroprotective as depletion of CD4\(^+\)CD25\(^+\) Tregs, aggravated atherosclerosis in LDLR\(^{-/-}\) mice, whereas adoptive transfer of CD4\(^+\)CD25\(^+\) Tregs diminished atherosclerosis in APOE\(^{-/-}\) mice\(^{46}\). In the spleen of the anti-IFNAR1 treated LDLR\(^{-/-}\) mice we observed less suppressive Tregs as compared to control treated mice, as the gene expression of FoxP3 and TGF-β, its key cytokine, decreased (data not shown). This further demonstrates the importance of cell-specific targeting, making the myeloid compartment an attractive target for further studies, where we will specifically focus on myeloid IFNAR1 signaling to stimulate arteriogenesis with an additional reduction in atherosclerosis development and without side effects on endothelium or T-cell populations.

5. Conclusion

The findings of the present study indicate that blocking IFNAR1, using monoclonal antibodies during both a 1- and a 4-week period, stimulates collateral artery growth in mice without enhancing atherosclerotic burden. This is the first successful approach to stimulate arteriogenesis using monoclonal antibodies, paving the way towards clinical application of such strategy.
Blocking IFNAR1 stimulates arteriogenesis without enhancing atherosclerotic burden

Funding

This work was supported by ICAR-VU (2010, “Regenerative therapies to treat ischemic heart disease” to NvR en AH) and the Netherlands Heart Foundation (grant 2010B022 to MdW). MdW is an established investigator of the Netherlands Heart Foundation (2007T067). We also acknowledge the support from the Netherlands CardioVascular Research Initiative, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS project “Generating the best evidence-based pharmaceutical targets for atherosclerosis” (CVON2011-19).

Acknowledgements

We thank the staff members of the animal laboratory facility and Anouk Haverkamp, Ryanne Betgem, Guus de Waard, Sylvia Nieuwenhuis and Josefien Baggen for skilled assistance during the various procedures.

Conflict of interest

None

Reference list

12. van der Laan AM, Schirmer SH, de Vries MR, Koning JJ, Volger OL, Fledderus JO, Bastiaansen AJ, Hollandier MR,
Chapter 5

Supplemental material

Supplemental figure 1. Selection of antibody in vitro. In an interferon activity assay, IFNAR1 mouse antibody clone MAR1-5A3 caused lowest expression of MX1. Shown are mean ± S.E.M.
Supplemental figure 2. Arteriolar density and capillary density are similar in hindlimb tissue of treated LDLR^{−/−} animals compared to controls after 4 week treatment. Quantification of arterioles per μm² tissue in hindlimb tissue by alpha-smooth muscle actin (α-SMA) staining in (A) the ligated hindlimb and (B) the non-ligated hindlimb. (C) Quantification of capillary density in hindlimb tissue by CD31 staining after 4 week treatment. Shown are mean ± S.E.M. n=13-16/group.

Supplemental Figure 3. LDLR^{−/−} mice characteristics following 4-week of anti-IFNAR1 treatment. (A) Plasma cholesterol levels before and after 4 and 8 weeks of high fat diet (HFD). (B) Plasma triglyceride levels before and after 4 and 8 weeks of HFD. (C) Relative levels of leukocyte subsets after 8 weeks of HFD. Mono = monocytes, Granulo = granulocytes. Shown are mean ± S.E.M. n=13-16/group.

Supplemental Figure 4. Mean arterial lumen area, number of vessels and capillary density are similar in calf muscle tissue of treated animals compared to controls after 2 day treatment in LDLR^{−/−} mice. Quantification of (A) mean arterial lumen area and (B) number of arterioles per μm² tissue in calf muscle tissue by alpha-smooth muscle actin (α-SMA) staining and (C) capillary density by CD31 staining. Shown are mean ± S.E.M. n=6-6/group.
Blocking IFNAR1 stimulates arteriogenesis without enhancing atherosclerotic burden

Supplemental figure 5. Neutrophil and T-cell counts. Quantification of (A) neutrophils (Ly6G) and (B) T-cells (CD3) in hindlimb tissue from animals treated for 2 days following femoral artery ligation. Shown are mean ± S.E.M. n=6-6/group.

Supplemental Figure 6. Two day anti-IFNAR1 treatment of LDLR⁻/⁻ mice has no impact on blood leukocyte subsets and pro-inflammatory M1 macrophage markers. (A) Relative levels of leukocyte subsets 2 days following anti-IFNAR1 treatment. Mono = monocytes, Granulo = granulocytes. (B) MFI of M1 macrophage markers. (C) Representative histograms of M1 macrophage markers. Shown are mean ± S.E.M. n=6-6/group.
Supplemental figure 7. Arteriolar density and capillary density are similar in hindlimb tissue of treated APOE^{-/-} animals compared to controls after 1 week treatment. (A) Quantification of arteriols per μm² tissue in hindlimb tissue by alpha-smooth muscle actin (α-SMA) staining. (B) Quantification of capillary density in hindlimb tissue by CD31 staining. Shown are mean ± S.E.M. n=13-16/group.

Supplemental Figure 8. PCR of PDGF-a, VEGF-a, FGF-2. PCR of (A) PDGF-a, (B) VEGF-a and (C) FGF-2 in hindlimb tissue from APOE^{-/-} mice treated for 1 week. n=13-16/group.