How do genes get outside the skin? Mechanisms underlying Gene×Environment interactions in child externalizing problems

Weeland, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Supplements
Intervention Effects of Reported and Observed Child and Parent Behavior – Completers Only.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Reported externalizing behavior</th>
<th>Observed externalizing behavior</th>
<th>Reported prosocial behavior</th>
<th>Observed prosocial behavior</th>
<th>Parent behavior</th>
<th>Reported negative behavior</th>
<th>Observed negative behavior</th>
<th>Reported positive behavior</th>
<th>Observed positive behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(.109) (.06)</td>
<td>(.086) (.08)</td>
<td>(.027) (.07)</td>
<td>(.011) (.07)</td>
<td>Parent behavior</td>
<td>(.113) (.06)</td>
<td>(.048) (.11)</td>
<td>(.050) (.07)</td>
<td>(.174) (.10)</td>
</tr>
<tr>
<td>Slope</td>
<td>-.145*** (.04)</td>
<td>-.077 (.07)</td>
<td>.007 (.03)</td>
<td>.037 (.06)</td>
<td>Parent behavior</td>
<td>-.224*** (.04)</td>
<td>-.104 (.09)</td>
<td>.226*** (.04)</td>
<td>.327*** (.07)</td>
</tr>
<tr>
<td>Intercept</td>
<td>.00</td>
<td>.36</td>
<td>.84</td>
<td>.61</td>
<td>Parent behavior</td>
<td>.20.79 (2)</td>
<td>5.83 (4)</td>
<td>10.80 (2)</td>
<td>16.64 (4)</td>
</tr>
<tr>
<td>Corrected X²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parent behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parent behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parent behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parent behavior</td>
<td>.97</td>
<td>.99</td>
<td>.98</td>
<td>.96</td>
</tr>
<tr>
<td>RMSEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parent behavior</td>
<td>.12</td>
<td>.04</td>
<td>.11</td>
<td>.10</td>
</tr>
<tr>
<td>p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parent behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X² (df)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parent behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parent behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: df = degrees of freedom; CFI = comparative fit index; RMSEA = root mean square error of approximation. As X² < df, the CFI is set to 1.0 and RSMEA to .001, which makes it sufficient to read off whether the p value is not significant. *p < .05; **p < .01; ***p < .001.
SUPPLEMENT A

Table A.1 / Intervention Effects of Reported and Observed Child and Parent Behavior – Completers Only.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Intercept</th>
<th>Slope</th>
<th>Corrected</th>
<th>(X^2)</th>
<th>CFI</th>
<th>RMSEA</th>
<th>(p) value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(B) (SD)</td>
<td>(B) (SD)</td>
<td>(p) value</td>
<td>(X^2) (df)</td>
<td>CFI</td>
<td>RMSEA</td>
<td>(p) value</td>
</tr>
<tr>
<td>Child behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reported externalizing</td>
<td>(.109) (.06)</td>
<td>-.145*** (.04)</td>
<td>.00</td>
<td>(11.90) (2)</td>
<td>.97</td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td>Observed externalizing</td>
<td>(.086) (.08)</td>
<td>-.077 (.07)</td>
<td>.36</td>
<td>(7.04) (4)</td>
<td>.95</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>Reported prosocial</td>
<td>-.027 (.07)</td>
<td>.007 (.03)</td>
<td>.84</td>
<td>(0.18) (2)</td>
<td>1.00</td>
<td>.00</td>
<td>.92</td>
</tr>
<tr>
<td>Observed prosocial</td>
<td>-.011 (.07)</td>
<td>.037 (.06)</td>
<td>.61</td>
<td>(3.88) (4)</td>
<td>1.00</td>
<td>.00</td>
<td>.42</td>
</tr>
<tr>
<td>Parent behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reported negative</td>
<td>(.113) (.06)</td>
<td>-.224*** (.04)</td>
<td>.00</td>
<td>(20.79) (2)</td>
<td>.93</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Observed negative</td>
<td>-.048 (.11)</td>
<td>-.104 (.09)</td>
<td>.36</td>
<td>(5.83) (4)</td>
<td>.99</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>Reported positive</td>
<td>(.050) (.07)</td>
<td>.226*** (.04)</td>
<td>.00</td>
<td>(10.80) (2)</td>
<td>.98</td>
<td>.11</td>
<td></td>
</tr>
<tr>
<td>Observed positive</td>
<td>(.174) (.10)</td>
<td>.327*** (.07)</td>
<td>.00</td>
<td>(16.64) (4)</td>
<td>.96</td>
<td>.10</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(df\) = degrees of freedom; CFI = comparative fit index; RMSEA = root mean square error of approximation. As \(X^2 < df\), the CFI is set to 1.0 and RMSEA to .001, which makes it sufficient to read off whether the \(p\) value is not significant. *\(p < .05\); **\(p < .01\); ***\(p < .001\).
SUPPLEMENT B

Figure B.6: Random intercept cross lagged model for reported positive parenting ($\chi^2(N = 387, 3) = 3.84$ CFI = 1.00, TLI = .99, RMSEA = .03).

Indirect effect: $B = .003; SD = .024; p = .91; 91\% CI: -.037 - .043.$

Figure B.1 / Random intercept cross lagged model for parental negative affect ($\chi^2(N = 387, 3) = 7.21$ CFI = .99, TLI = .94, RMSEA = .06). Indirect effect: $B = .000; SD = .006; p = .99; 95\% CI: -.010 - .009.$

Figure B.2 / Random intercept cross lagged model for parental positive affect ($\chi^2(N = 387, 3) = 6.01$ CFI = 1.00, TLI = .96, RMSEA = .05). Indirect effect: $B = .006; SD = .017; p = .71; 95\% CI: -.020 - .033.$

Figure B.3 / Random intercept cross lagged model for observed negative parenting ($\chi^2(N = 387, 3) = 8.86$, CFI = .99, TLI = .92, RMSEA = .07). Indirect effect: $B = .008; SD = .013; p = .55; 95\% CI: -.008 – .035.$

Figure B.4 / Random intercept cross lagged model for observed positive parenting ($\chi^2(N = 387, 3) = 6.32$, CFI = 1.00, TLI = .97, RMSEA = .05). Indirect direct: $B = -.025; SD = .018; p = .18; 95\% CI: -.060 - .000.$
Figure B.1 / Random intercept cross lagged model for parental negative affect (\(\chi^2(N = 387, 3) = 7.21 \), CFI = .99, TLI = .94, RMSEA = .06). Indirect effect: \(\beta = .000; SD = .006; p = .99; 95\% CI: -.010 - .009. \)

Figure B.2 / Random intercept cross lagged model for parental positive affect (\(\chi^2(N = 387, 3) = 6.01 \), CFI = 1.00, TLI = .96, RMSEA = .05). Indirect effect: \(\beta = .006; SD = .017; p = .71; 95\% CI: -.020 - .033. \)

Figure B.3 / Random intercept cross lagged model for observed negative parenting (\(\chi^2(N = 387, 3) = 8.86 \), CFI = .99, TLI = .92, RMSEA = .07). Indirect effect: \(\beta = .008; SD = .013; p = .55; 95\% CI: -.008 – .035. \)

Figure B.4 / Random intercept cross lagged model for observed positive parenting (\(\chi^2(N = 387, 3) = 6.32 \), CFI = 1.00, TLI = .97, RMSEA = .05). Indirect direct: \(\beta = -.025; SD = .018; p = .18; 95\% CI: -.060 - .000. \)
Figure B.5 / Random intercept cross lagged model for reported negative parenting ($\chi^2(N = 387, 3) = 5.49$ CFI = 1.00, TLI = .97, RMSEA = .05). Indirect effect: $B = -.014; SD = .023; p = .55; 95\% CI: -.053 - .023$

Figure B.6 / Random intercept cross lagged model for reported positive parenting ($\chi^2(N = 387, 3) = 3.84$ CFI = 1.00, TLI = .99, RMSEA = .03). Indirect effect: $B = .003; SD = .024; p = .91; 91\% CI: -.037 - .043$.
SUPPLEMENT C

Table C.1 / Multivariate Results Auxiliary Analyses Motor Reactivity to Condition Stimuli.

<table>
<thead>
<tr>
<th></th>
<th>Wilk’s Lambda</th>
<th>F</th>
<th>df</th>
<th>dfe</th>
<th>p</th>
<th>Partial η²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Including one parent-child dyad per family (n = 360)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>.90</td>
<td>8.85</td>
<td>4.00</td>
<td>680.00</td>
<td>.00</td>
<td>.05</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>1.00</td>
<td>.74</td>
<td>2.00</td>
<td>340.00</td>
<td>.48</td>
<td>.00</td>
</tr>
<tr>
<td>Negative parenting</td>
<td>1.00</td>
<td>1.04</td>
<td>2.00</td>
<td>340.00</td>
<td>.35</td>
<td>.01</td>
</tr>
<tr>
<td>Positive parenting</td>
<td>.99</td>
<td>1.98</td>
<td>2.00</td>
<td>340.00</td>
<td>.14</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPR</td>
<td>.99</td>
<td>.80</td>
<td>4.00</td>
<td>680.00</td>
<td>.53</td>
<td>.01</td>
</tr>
<tr>
<td>Conditionxnegative parenting</td>
<td>.99</td>
<td>.60</td>
<td>4.00</td>
<td>680.00</td>
<td>.67</td>
<td>.00</td>
</tr>
<tr>
<td>Conditionxpositive parenting</td>
<td>.99</td>
<td>.85</td>
<td>4.00</td>
<td>680.00</td>
<td>.50</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPRxnegative parenting</td>
<td>.98</td>
<td>1.21</td>
<td>6.00</td>
<td>680.00</td>
<td>.30</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPRxpositive parenting</td>
<td>.99</td>
<td>.54</td>
<td>6.00</td>
<td>680.00</td>
<td>.78</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excluding children from non-European descent (n = 360)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>.91</td>
<td>8.16</td>
<td>4.00</td>
<td>680.00</td>
<td>.00</td>
<td>.05</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>1.00</td>
<td>.11</td>
<td>2.00</td>
<td>340.00</td>
<td>.90</td>
<td>.00</td>
</tr>
<tr>
<td>Negative parenting</td>
<td>1.00</td>
<td>.37</td>
<td>2.00</td>
<td>340.00</td>
<td>.69</td>
<td>.00</td>
</tr>
<tr>
<td>Positive parenting</td>
<td>.98</td>
<td>4.42</td>
<td>2.00</td>
<td>340.00</td>
<td>.01</td>
<td>.03</td>
</tr>
<tr>
<td>Condition×5-HTTLPR</td>
<td>.99</td>
<td>.54</td>
<td>4.00</td>
<td>680.00</td>
<td>.70</td>
<td>.00</td>
</tr>
<tr>
<td>Conditionxnegative parenting</td>
<td>.99</td>
<td>.85</td>
<td>4.00</td>
<td>680.00</td>
<td>.50</td>
<td>.01</td>
</tr>
<tr>
<td>Conditionxpositive parenting</td>
<td>1.00</td>
<td>.28</td>
<td>4.00</td>
<td>680.00</td>
<td>.89</td>
<td>.00</td>
</tr>
<tr>
<td>Condition×5-HTTLPRxnegative parenting</td>
<td>.98</td>
<td>1.73</td>
<td>4.00</td>
<td>680.00</td>
<td>.14</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPRxpositive parenting</td>
<td>.99</td>
<td>.33</td>
<td>6.00</td>
<td>680.00</td>
<td>.92</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Including a tri-allelic factor (n = 403)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>.93</td>
<td>6.23</td>
<td>4.00</td>
<td>662.00</td>
<td>.00</td>
<td>.04</td>
</tr>
<tr>
<td>Tri-allelic score</td>
<td>.99</td>
<td>1.02</td>
<td>4.00</td>
<td>762.00</td>
<td>.40</td>
<td>.01</td>
</tr>
<tr>
<td>Negative parenting</td>
<td>1.00</td>
<td>.78</td>
<td>2.00</td>
<td>331.00</td>
<td>.46</td>
<td>.01</td>
</tr>
<tr>
<td>Positive parenting</td>
<td>.99</td>
<td>1.54</td>
<td>2.00</td>
<td>331.00</td>
<td>.22</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPR</td>
<td>.98</td>
<td>1.04</td>
<td>8.00</td>
<td>662.00</td>
<td>.41</td>
<td>.01</td>
</tr>
<tr>
<td>Conditionxnegative parenting</td>
<td>1.00</td>
<td>.43</td>
<td>4.00</td>
<td>662.00</td>
<td>.79</td>
<td>.00</td>
</tr>
<tr>
<td>Conditionxpositive parenting</td>
<td>1.00</td>
<td>.26</td>
<td>4.00</td>
<td>662.00</td>
<td>.90</td>
<td>.00</td>
</tr>
<tr>
<td>Condition×5-HTTLPRxnegative parenting</td>
<td>.98</td>
<td>.64</td>
<td>12.00</td>
<td>662.00</td>
<td>.81</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPRxpositive parenting</td>
<td>.99</td>
<td>.41</td>
<td>12.00</td>
<td>662.00</td>
<td>.96</td>
<td>.01</td>
</tr>
</tbody>
</table>
Table C.1 / Multivariate Results Auxiliary Analyses Motor Reactivity to Condition Stimuli. (Continued)

<table>
<thead>
<tr>
<th>Wilk's Lambda</th>
<th>F</th>
<th>df</th>
<th>dfe error</th>
<th>p</th>
<th>Partial η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including child age and gender (n = 405)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>.98</td>
<td>1.57</td>
<td>4.00</td>
<td>768.00</td>
<td>.18</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>1.00</td>
<td>.49</td>
<td>2.00</td>
<td>384.00</td>
<td>.61</td>
</tr>
<tr>
<td>age</td>
<td>1.00</td>
<td>.88</td>
<td>2.00</td>
<td>384.00</td>
<td>.42</td>
</tr>
<tr>
<td>gender</td>
<td>.99</td>
<td>1.32</td>
<td>2.00</td>
<td>384.00</td>
<td>.27</td>
</tr>
<tr>
<td>Condition×5-HTTLPR</td>
<td>.99</td>
<td>.83</td>
<td>4.00</td>
<td>768.00</td>
<td>.51</td>
</tr>
<tr>
<td>Condition×age</td>
<td>.99</td>
<td>.58</td>
<td>4.00</td>
<td>768.00</td>
<td>.68</td>
</tr>
<tr>
<td>Condition×gender</td>
<td>.96</td>
<td>4.10</td>
<td>4.00</td>
<td>768.00</td>
<td>.00</td>
</tr>
<tr>
<td>Condition×5-HTTLPR×age</td>
<td>.99</td>
<td>.89</td>
<td>6.00</td>
<td>768.00</td>
<td>.51</td>
</tr>
<tr>
<td>Condition×5-HTTLPR×gender</td>
<td>.88</td>
<td>.42</td>
<td>6.00</td>
<td>768.00</td>
<td>.87</td>
</tr>
</tbody>
</table>
Table C.2 / Multivariate Results Auxiliary Analyses Affective Reactivity to Condition Stimuli.

<table>
<thead>
<tr>
<th></th>
<th>Wilk’s Lambda</th>
<th>F</th>
<th>df</th>
<th>dfe</th>
<th>p</th>
<th>Partial η²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including one parent-child dyad per family (n = 404)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>.96</td>
<td>4.45</td>
<td>4.00</td>
<td>766.00</td>
<td>.00</td>
<td>.02</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>1.00</td>
<td>.88</td>
<td>2.00</td>
<td>383.00</td>
<td>.41</td>
<td>.01</td>
</tr>
<tr>
<td>Negative parenting</td>
<td>1.00</td>
<td>.10</td>
<td>2.00</td>
<td>383.00</td>
<td>.90</td>
<td>.00</td>
</tr>
<tr>
<td>Positive parenting</td>
<td>.97</td>
<td>5.63</td>
<td>2.00</td>
<td>383.00</td>
<td>.00</td>
<td>.03</td>
</tr>
<tr>
<td>Condition×5-HTTLPR</td>
<td>1.00</td>
<td>.31</td>
<td>4.00</td>
<td>766.00</td>
<td>.87</td>
<td>.00</td>
</tr>
<tr>
<td>Condition×negative parenting</td>
<td>.98</td>
<td>1.62</td>
<td>4.00</td>
<td>766.00</td>
<td>.17</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×positive parenting</td>
<td>.99</td>
<td>1.05</td>
<td>4.00</td>
<td>766.00</td>
<td>.38</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPR×negative parenting</td>
<td>.99</td>
<td>.84</td>
<td>6.00</td>
<td>766.00</td>
<td>.78</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPR×positive parenting</td>
<td>.99</td>
<td>.89</td>
<td>6.00</td>
<td>766.00</td>
<td>.50</td>
<td>.01</td>
</tr>
<tr>
<td>Excluding children from non-European descent (n = 415)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>.95</td>
<td>5.05</td>
<td>4.00</td>
<td>788.00</td>
<td>.00</td>
<td>.03</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>1.00</td>
<td>.72</td>
<td>2.00</td>
<td>394.00</td>
<td>.49</td>
<td>.00</td>
</tr>
<tr>
<td>Negative parenting</td>
<td>1.00</td>
<td>.02</td>
<td>2.00</td>
<td>394.00</td>
<td>.98</td>
<td>.00</td>
</tr>
<tr>
<td>Positive parenting</td>
<td>.97</td>
<td>6.88</td>
<td>2.00</td>
<td>394.00</td>
<td>.00</td>
<td>.03</td>
</tr>
<tr>
<td>Condition×5-HTTLPR</td>
<td>.99</td>
<td>1.17</td>
<td>4.00</td>
<td>788.00</td>
<td>.32</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×negative parenting</td>
<td>.98</td>
<td>1.74</td>
<td>4.00</td>
<td>788.00</td>
<td>.14</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×positive parenting</td>
<td>.99</td>
<td>1.53</td>
<td>4.00</td>
<td>788.00</td>
<td>.19</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPR×negative parenting</td>
<td>.99</td>
<td>.92</td>
<td>6.00</td>
<td>788.00</td>
<td>.48</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPR×positive parenting</td>
<td>.99</td>
<td>.74</td>
<td>6.00</td>
<td>788.00</td>
<td>.62</td>
<td>.01</td>
</tr>
<tr>
<td>Including a tri-allelic factor (n = 460)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>.96</td>
<td>4.89</td>
<td>4.00</td>
<td>860.00</td>
<td>.00</td>
<td>.02</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>1.00</td>
<td>.39</td>
<td>4.00</td>
<td>860.00</td>
<td>.82</td>
<td>.00</td>
</tr>
<tr>
<td>Negative parenting</td>
<td>1.00</td>
<td>.50</td>
<td>2.00</td>
<td>430.00</td>
<td>.61</td>
<td>.00</td>
</tr>
<tr>
<td>Positive parenting</td>
<td>.99</td>
<td>2.67</td>
<td>2.00</td>
<td>430.00</td>
<td>.07</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×5-HTTLPR</td>
<td>.99</td>
<td>.47</td>
<td>8.00</td>
<td>860.00</td>
<td>.88</td>
<td>.00</td>
</tr>
<tr>
<td>Condition×negative parenting</td>
<td>.99</td>
<td>1.07</td>
<td>4.00</td>
<td>860.00</td>
<td>.37</td>
<td>.01</td>
</tr>
<tr>
<td>Condition×positive parenting</td>
<td>1.00</td>
<td>.32</td>
<td>4.00</td>
<td>860.00</td>
<td>.86</td>
<td>.00</td>
</tr>
<tr>
<td>Condition×5-HTTLPR×negative parenting</td>
<td>.97</td>
<td>1.30</td>
<td>12.00</td>
<td>860.00</td>
<td>.21</td>
<td>.02</td>
</tr>
<tr>
<td>Condition×5-HTTLPR×positive parenting</td>
<td>.97</td>
<td>1.20</td>
<td>12.00</td>
<td>860.00</td>
<td>.28</td>
<td>.02</td>
</tr>
</tbody>
</table>
Table C.2 / Multivariate Results Auxiliary Analyses Affective Reactivity to Condition Stimuli. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Wilk’s Lambda</th>
<th>F</th>
<th>df</th>
<th>dfe rror</th>
<th>p</th>
<th>Partial η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including child age and gender (n = 460)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>.99</td>
<td>1.24</td>
<td>4.00</td>
<td>878.00</td>
<td>.29</td>
<td>.01</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>.99</td>
<td>1.76</td>
<td>2.00</td>
<td>439.00</td>
<td>.17</td>
<td>.01</td>
</tr>
<tr>
<td>age</td>
<td>.99</td>
<td>2.20</td>
<td>2.00</td>
<td>439.00</td>
<td>.11</td>
<td>.01</td>
</tr>
<tr>
<td>gender</td>
<td>.99</td>
<td>2.52</td>
<td>2.00</td>
<td>439.00</td>
<td>.09</td>
<td>.01</td>
</tr>
<tr>
<td>Conditionx5-HTTLPR</td>
<td>1.0</td>
<td>.12</td>
<td>2.00</td>
<td>439.00</td>
<td>.89</td>
<td>.00</td>
</tr>
<tr>
<td>Conditionxage</td>
<td>.98</td>
<td>1.82</td>
<td>4.00</td>
<td>878.00</td>
<td>.12</td>
<td>.01</td>
</tr>
<tr>
<td>Conditionxgender</td>
<td>.99</td>
<td>1.38</td>
<td>4.00</td>
<td>878.00</td>
<td>.24</td>
<td>.01</td>
</tr>
<tr>
<td>Conditionx5-HTTLPRxage</td>
<td>.98</td>
<td>1.22</td>
<td>6.00</td>
<td>878.00</td>
<td>.30</td>
<td>.01</td>
</tr>
<tr>
<td>Conditionx5-HTTLPRxgender</td>
<td>.99</td>
<td>.85</td>
<td>8.00</td>
<td>878.00</td>
<td>.56</td>
<td>.01</td>
</tr>
</tbody>
</table>