Interfaces in nanoscale photovoltaics

Öner, S.Z.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Summary

This thesis deals with material interfaces in nanoscale photovoltaics. Interfaces between the absorbing semiconductor and the ambient, a dielectric, metal, metal oxide or another semiconductor are all of utmost importance for an efficient solar cell. While the optical properties are largely unaffected by a few nanometer thin layer, the electronic properties can change tremendously: electrical passivation of surface defects or establishing contact selectivity can turn a piece of black rock with two metal leads into a highly efficient solar cell.

When moving from macro- to nanoscale semiconductors, highly useful properties emerge compared to wafer-based or even thin-film semiconductors. Most importantly, not only directly incident but also adjacent light can be absorbed by the single nanoscale constituents. As a result, the same amount of light can be absorbed with an array of single nanoscale structures with much empty space in between, as with a continuous thin-film. This effect leads to largely reduced material consumption and, depending on the growth methods, even to a faster growth process for a fully absorbing layer. The empty space in between the nanoscale elements can be filled with a flexible glass or polymer layer, that allows to mechanically peel off the structures from their growth template. Additionally, the nanostructured semiconductor elements do not need any additional anti-reflection coating, as do wafer-based or thin-film solar cells. While those properties are enormously beneficial for photovoltaics, another feature creates a tremendous challenge: by nanostructuring semiconductors, the surface-to-volume ratio becomes much larger compared to thin-film or wafer-based solar cells. As a result, the influence of surface and interface properties on the overall performance of the nanoscale photovoltaic elements increases substantially. In this thesis, nanowires are therefore chosen as a highly sensitive platform to study the impact of those interface properties on the overall photovoltaic performance. Based on our findings we to propose device designs for more efficient practical nanowire array solar cells.

In Chapter 2, we study the photovoltaic performance of metal-semiconductor core-shell nanowires. This type of nanowire has theoretically been predicted to
provide outstanding optical absorption in the semiconductor shell and a short re-
quired minority carrier diffusion length, with the added benefit of direct carrier ex-
traction via the metal core, potentially reducing the series resistance of the device as
compared to core-shell geometries that only consist of semiconductor nanowires.
We show, that even though the semiconductor shell grows epitaxially of the metal
core, that is the interface is highly ordered, charge carrier extraction barriers and
enhanced interfacial recombination can be observed.

In Chapter 3, we study a metal-insulator-semiconductor solar cell, that miti-
gates the direct and detrimental contact between a metal and a semiconductor by
utilizing a thin passivating and insulating interlayer. We show highly homogenous
charge carrier extraction and are able to fabricate devices with a power conversion
efficiency of 11% (after correction, $V_{oc} = 560\, \text{mV}, J_{sc} = 33\, \text{mA/cm}^2$). For a metal-
insulator-semiconductor solar cell, the V_{oc} depends strongly on the work function
difference between the metal and the semiconductor. We argue that the presence of
a charge-neutrality-level at the metal-dielectric interface is likely to lower the metal
work function from its vacuum value and hence negatively impacts the measured
V_{oc}. Furthermore, we introduce a novel structure, nanopyramids integrated in be-
tween the metal nanowire network, that allow to substantially reduce reflection and
potentially increase the short-circuit current densities.

In Chapter 4 we turn our focus on single InP nanowires. Those nanoscale struc-
tures have a higher optical than geometrical absorption cross section and while this
property can be of great use, as outlined above, it complicates the characteriza-
tion of single nanoscale devices. A priori the absorption cross section is unknown
and additionally changing with wavelength, hence it is unclear how much of the
incident light directly interacts with the single nanoscale device. This prevents
quantification of the different conversion steps and hence loss mechanisms, but
also the quantification of the absolute radiative limit V_{oc}^{rad}. For this thesis it is of
great importance to quantify non-radiative recombination and non-ideal contacts.
To that end, we introduce a new measurement technique, integrating sphere mi-
croscopy, to accurately quantify the remaining loss mechanisms. We measure the
internal quantum efficiency (IQE), the photoluminescence quantum yield (PLQY)
and the nanoscale equivalent of the EQE (external quantum efficiency) of a single
record nanowire device for the first time. With those measurements we are able
to quantify the impact of non-ideal contacts and non-radiative recombination and
understand how much can be gained by reducing those loss mechanisms.

In Chapter 5 we focus on the interface properties of those InP nanowires. We
study the device performance of contacted and masked single nanowire devices
before and after HF, MoO$_x$ and sulfur treatment. We show improved surface pas-
sivation and improved carrier selectivity for the different treatments and in par-
ticular pay attention to the effect of Fermi-level pinning on those properties. By
introducing the interfacial layer MoO$_x$ to nanowire solar cells, we can increase the
open-circuit voltage by up to 335 mV, from 500 mV to 835 mV.

In Chapter 6, we explore valorization opportunities that emerge from our in-
sights of the preceding chapters. In the previous chapters we have shown how to
contact single p-type InP nanowires and how to increase their contact selectivity to make highly performing devices, which has been an unsolved issue in the past. Translating those insights to array solar cells allows us to propose a manufacturing line which exploits the intrinsic advantages that emerge from the nanowire geometry compared to thin-films; faster growth speeds, reduced material consumption, fast mechanical peel-off and intrinsic anti-reflection properties. We perform a techno-economic analysis on our proposed fabrication process by comparing the technology to already existing and very similar manufacturing lines for thin-film GaAs solar cells. Furthermore, we underline the highly flexibility of the process line which is not limited to one growth method, let alone semiconductor. We argue that this can have a substantial impact on the rate of innovation in a hypothetical company invested into this process.

So far nanowire solar cells are limited to efficiencies < 20%. Improvements in the past have mainly been achieved by improving the optics, that is the absorption has been enhanced due to an optimized array design (width, length, tapering and array pitch), and because of improved nanowire fabrication methods (crystal growth, etching). This thesis turns the attention towards the electronics, in particular novel selective contacts and passivation layers. With those two major contributions nanowire solar cells have the chance to finally close the gap between their practical and thermodynamic efficiency limits and to finally become a technological and economical reality.
Samenvatting

Dit proefschrift betreft grensvlakken tussen materialen in zonnecellen op nanoschaal. Grensvlakken tussen de absorberende halfgeleider en bijvoorbeeld lucht, een diëlektricum, een metaal, een metaaloxide, of een andere halfgeleider, zijn van groot belang voor efficiënte zonnecellen. Hoewel de optische eigenschappen van een zonnecel nauwelijks veranderen door een laag van een paar nanometer, kunnen de elektronische eigenschappen juist sterk beïnvloed worden. Het passiveren van oppervlaktedefecten of het creëren van selectieve contacten maakt het verschil: wat in feite een zwarte steen met metalen contacten was, verandert zo in een erg efficiënte zonnecel.

In halfgeleiders op nanoschaal zijn er zeer bruikbare optische fenomenen, die in macroscopische halfgeleiders niet voorkomen. Het meest bijzondere voorbeeld is dat nanostructuren meer licht kunnen absorberen dan dat wat ze direct raakt. Als een direct gevolg kan een periodieke structuur van nanodeeltjes, met veel lege ruimte daartussenin, evenveel licht absorberen als een continue laag. Daardoor kunnen zonnecellen gefabriceerd worden van veel minder halfgeleider, en, afhankelijk van de methode, ook sneller. De lege ruimte tussen de nanodeeltjes kan gevuld worden met een flexibele glassoort of een polymeer, waarmee de laag met nanodeeltjes van het originele substraat gepeld kan worden. Daarnaast is voor zonnecellen gebaseerd op dit soort nanodeeltjes geen extra antireflectieve laag nodig, in tegenstelling tot voor normale zonnecellen. Nanostructuren bieden dus enorme voordelen voor zonnecellen, maar er zijn ook grote uitdagingen. De verhouding van oppervlakte tot volume is met name veel groter dan in vergelijkbare zonnecellen gemaakt van dunne films of wafers, en als gevolg spelen oppervlaktes en grensvlakken dus een veel grotere rol. In dit proefschrift gebruiken wij nanodraden als een hoogst sensitief platform om de rol van oppervlaktes en grensvlakken in zonnecellen op nanoschaal te onderzoeken. Op basis van onze vondsten stellen wij ook ontwerpen voor die kunnen leiden tot nanodraadzonnecellen met hogere efficiëntie.

In hoofdstuk 2 onderzoeken we de fotovoltaïsche eigenschappen van nanodraden met een kern van metaal en een schil van halfgeleider. Het is eerder theoretisch aangetoond dat deze metaal-halfgeleider nanodraden licht zeer
sterk kunnen absorberen in een heel dunne schil van halfgeleider. Doordat de metalen kern ook als elektrode kan fungeren, is daardoor maar een hele korte diffusielengte nodig, en kan ook de serieweerstand stukken lager zijn dan in nanodraden die helemaal van halfgeleider zijn gemaakt. We laten zien dat, hoewel de halfgeleiderschil zich als een epitaxiale laag op de metalen kern, er toch extractiebarrières voor de ladingsdragers zijn. Er vindt daardoor verhoogde recombinatie plaats.

In hoofdstuk 3 onderzoeken we een metaal-isolator-halfgeleider zonnecel, waarin het nadelige directe contact tussen het metaal en de halfgeleider vermeden wordt door een dunne isolerende en passiverende laag tussen beiden te plaatsen. Als contactgeometrie gebruiken wij een netwerk van metalen nanodraden. We demonstreren een zeer homogene extractie van ladingsdragers, en hebben een zonnecel gemaakt met een efficiëntie van 11%. Na correctie had deze zonnecel een $V_{oc} = 560$ mV en een $J_{sc} = 33$ mA/cm2.

In metaal-isolator-halfgeleider zonnecellen hangt de V_{oc} sterk af van het verschil in uittreearbeid tussen het metaal en de halfgeleider. Hoewel het directe contact tussen het metaal en de halfgeleider nu vermeden is, ondervinden wij dat de V_{oc} nu negatief beïnvloed wordt door een ladingsneutraliteitsniveau. Daarnaast laten wij zijn dat ons nanodraadnetwerk gecombineerd kan worden geïnverteerde pyramides tussen de contactvingers, wat leidt tot sterk gereduceerde reflectie en daarom mogelijk tot hogere stroomdichtheden.

In hoofdstuk 4 richten we ons op individuele InP nanodradazonnecellen. Deze nanodraden kunnen een grotere absorptiedoorsnede hebben dan hun geometrische doorsneden, zoals hierboven al genoemd. Hoewel deze eigenschap dus erg nuttig kan zijn, maakt het karakterisatie van zulke zonnecellen een stuk gecompliceerder. A priori is de absorptiedoorsnede onbekend en afhankelijk van de golflengte van het licht, en het is dus onduidelijk hoeveel van het inkomende licht direct reageert met de nanodraad zonnecel. Dit maakt het kwantificeren van de efficiëntie van de verschillende stappen in het conversieproces onmogelijk, en dus ook van de verliesmechanismes. Daarnaast kan de ultieme thermodynamische limiet voor het voltage, V_{oc}^{rad}, niet bepaald worden, en in deze dissertatie spelen al deze factoren juist een zeer belangrijke rol. Daartoe introduceren wij een nieuwe meettechniek, integrerende bol microscopie, waarmee we de verschillende verliesmechanismes in kaart kunnen brengen. We meten de interne kwantum efficiëntie en fotoluminescentie kwantum efficiëntie voor de eerste keer, en definiëren en bepalen een equivalent voor de externe kwantum efficiëntie op nanoschaal. Met behulp van deze metingen kunnen we kwantificeren wat het effect is van de contactkwaliteit en niet-stralende recombinatie, en krijgen we inzicht in hoeveel deze nanodradazonnecel verbeterd kan worden door deze verliesmechanismes te elimineren.

In hoofdstuk 5 onderzoeken we de grensvlakeigenschappen van deze InP nanodraden nader. We bestuderen het gedrag van deze zonnecellen voor en na behandeling met HF, MoO$_x$ en zwavel. We demonstreren verbeterde grensvlakpassivatie en ladingsdragerselectiviteit door deze verschillende behandelingen, en letten in
Samenvatting

het bijzonder op hoe deze behandelingen het Fermi-niveau vastleggen, en hoe dat de eigenschappen van de zonnecel beïnvloedt. Door een grensvlaklaag van MoO$_x$ toe te voegen kunnen we de V_{oc} met 335 mV verhogen, van 500 mV naar 835 mV.

In hoofdstuk 6 verkennen wij valorisatiekansen die voortkomen uit inzichten verkregen op basis van de voorgaande hoofdstukken. In die hoofdstukken hebben wij laten zien hoe elektrodes gevormd kunnen worden op individuele positief gedoteerde InP nanodraden, en hoe de selectiviteit van die elektrodes verbeterd kan worden. Dit was een onopgelost probleem, en als gevolg kunnen nu hoogefficiënte nanodraad zonnecellen gemaakt worden. Door deze nieuwe inzichten te vertalen naar periodieke roosters van nanodraadzonnecellen, kunnen we een nieuwe fabricageproces voorstellen. Dit proces benut de intrinsieke voordelen die de nanodraadgeometrie met zich meebrengt ten opzichte van dunne films: kortere depositietijden, verminderde materiaalconsumptie, snel mechanisch afpellen van de laag met nanodraden en bijna ideale antireflectie-eigenschappen. We ondermaken een techno-economische analyse van ons fabricageproces door de methode te vergelijken met bestaande en vergelijkbare technieken voor GaAs zonnecellen. We benadrukken de flexibiliteit van de methode, die niet tot een enkele depositiemethode gelimiteerd is, laat staan tot één halfgeleider. Onze voorgestelde methode kan grote invloed hebben op bedrijven in deze sector.

Tot dusver zijn efficiënties van nanodraadzonnecellen gelimiteerd tot <20%. Verbeteringen in het verleden hebben vooral te maken gehad met optica, door bijvoorbeeld verbeterde absorptie van licht, of door verbeteringen in fabricagemethoden (zoals kristallisatie en etsen). In dit proefschrift richten wij ons op de elektronische eigenschappen, met nadruk op vernieuwende selectieve elektrodes en passiverende lagen. Door deze twee belangrijke bijdragen hebben nanodraadzonnecellen de kans om het gat te dichten tussen de praktische en limiterende efficiënties, en om eindelijk een technologische en economische realiteit te worden.