[FeFe]hydrogenase mimics for proton reduction catalysis: Supramolecular proton reduction catalysts with appended redox-active and proton-responsive ligands towards application in a molecular artificial leaf

Becker, R.

Citation for published version (APA):
[FeFe]Hydrogenase Mimics for Proton Reduction Catalysis

Supramolecular proton reduction catalysts with appended redox-active and proton-responsive ligands towards application in a molecular artificial leaf

René Becker 2016
[FeFe]Hydrogenase Mimics for Proton Reduction Catalysis

Supramolecular proton reduction catalysts with appended redox-active and proton-responsive ligands towards application in a molecular artificial leaf

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College van Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op woensdag 14 september 2016, te 12:00 uur

door

René Becker

geboren te Roermond
Promotor: prof. dr. J. N. H. Reek
Copromotor: dr. ir. J. I. van der Vlugt

Overige leden:
- prof. dr. B. de Bruin
- dr. ir. B. Ensing
- prof. dr. M. Koper
- prof. dr. J. H. van Maarseveen
- dr. E. Reisner
- prof. dr. S. Woutersen

Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Printed by PrintPartners Ipskamp B.V., Enschede, the Netherlands.

The research described in this thesis was carried out at the Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands.

This work was carried out within the research programme of BioSolar Cells, co-financed by the Dutch Ministry of Economic Affairs.

“And what will they burn instead of coal?”

“Water,” replied Harding.

“Water!” cried Pencroft, “Water as fuel for steamers and engines! Water to heat water!”

“Yes, but water decomposed into its primitive elements,” replied Cyrus Harding, “and decomposed doubtless, by electricity, which will then have become a powerful and manageable force, for all great discoveries, by some inexplicable laws, appear to agree and become complete at the same time. **Yes, my friends, I believe that water will one day be employed as fuel, that hydrogen and oxygen which constitute it, used singly or together, will furnish an inexhaustible source of heat and light, of an intensity of which coal is not capable. Some-day the coal rooms of steamers and the tenders of locomotives will, instead of coal, be stored with these two condensed gases, which will burn in the furnaces with enormous calorific power. There is, therefore, nothing to fear. As long as the earth is inhabited it will supply the wants of its inhabitants, and there will be no want of either light or heat as long as the productions of the vegetable, mineral or animal kingdoms do not fail us. I believe, then, that when the deposits of coal are exhausted we shall heat and warm ourselves with water. Water will be the coal of the future.”

“I should like to see that,” observed the sailor.

Jules Verne – The Mysterious Island (1874)
Contents

Chapter 1. Introduction
- The transition from a fossil fuel economy to a hydrogen economy 2
- The artificial leaf .. 5
- Synthetic mimics .. 13
- Thesis scope and outline ... 21
- References .. 23

Chapter 2. Experimental Methods & Data Analysis
- Cyclic voltammetry .. 30
- Mechanistic analysis ... 36
- Supramolecular association constants from cyclic voltammetry 49
- References .. 51

Chapter 3. A Phosphoramidite-Containing [FeFe]H$_2$ase Functional Mimic Displaying Fast Electrocatalytic Proton Reduction
- Introduction ... 54
- Results and discussion .. 55
- Conclusions ... 61
- Experimental .. 62
- Appendix ... 64
- References .. 66

Chapter 4. A [FeFe]Hydrogenase Mimic with Appended Electron Reservoir for Efficient Proton Reduction in Aqueous Media
- Introduction ... 70
- Results and discussion .. 71
- Conclusions ... 82
- Experimental .. 83
- References .. 102
CHAPTER 5. The Role of Redox-Active Phosphole Ligands in Proton Reduction Catalysis using [FeFe]H\textsubscript{2}ase Mimics ... 105
 Introduction ... 106
 Results.. 108
 Discussion.. 118
 Conclusion.. 120
 Experimental.. 122
 References.. 150

CHAPTER 6. Towards a Base-Metal Molecular Artificial Leaf Photocathode 155
 Introduction ... 156
 Results and discussion.. 157
 Conclusions and outlook ... 172
 Experimental.. 174
 References.. 181

LIST OF PUBLICATIONS ... 185

SUMMARY .. 187

SAMENVATTING ... 193

ACKNOWLEDGEMENTS / DANKWOORD ... 199
Veur mama. Doe bös altied bie j mich.