Search for massive supersymmetric particles decaying to many jets using the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV

Published in: Physical Review D. Particles and Fields

DOI: 10.1103/PhysRevD.91.112016

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
I. INTRODUCTION

Supersymmetry (SUSY) [1–9] is a theoretical extension of the Standard Model (SM) which fundamentally relates fermions and bosons. It is an alluring theoretical possibility given its potential to solve the naturalness problem [10–15] and to provide a dark-matter candidate [16,17]. Partially as a result of the latter possibility, most searches for SUSY focus on scenarios such as a minimal supersymmetric standard model (MSSM) in which R-parity is conserved (RPC) [18–21]. In these models, SUSY particles must be produced in pairs and must decay to a stable lightest supersymmetric particle (LSP). With strong constraints now placed on standard RPC SUSY scenarios by the experiments at the Large Hadron Collider (LHC), it is important to expand the scope of the SUSY search program and explore models where R-parity may be violated and the LSP may decay to SM particles, particularly as these variations can alleviate to some degree the fine-tuning many SUSY models currently exhibit [22].

In R-parity-violating (RPV) scenarios, many of the constraints placed on the MSSM in terms of the allowed parameter space of gluino (\tilde{g}) and squark (\tilde{q}) masses are relaxed. The reduced sensitivity of standard SUSY searches to RPV scenarios is due primarily to the high missing transverse momentum (E_T^{miss}) requirements used in the event selection common to many of those searches. This choice is motivated by the assumed presence of two weakly interacting and therefore undetected LSPs. Consequently, the primary challenge in searches for RPV SUSY final states is to identify suitable substitutes for the canonical large E_T^{miss} signature of RPC SUSY used to distinguish signals from background processes. Common signatures used for RPV searches include resonant lepton pair production [23–25], exotic decays of long-lived particles, and displaced vertices [26–29].

New analyses that do not rely on E_T^{miss} are required in order to search for fully hadronic final states involving RPV gluino decays directly to quarks or via $\tilde{\chi}_1^0$ neutralinos as shown in the diagrams in Fig. 1. Cases in which pair-produced massive new particles decay directly to a total of six quarks, as well as cascade decays with at least ten quarks, are considered. Three-body decays of the type shown in Fig. 1 are given by effective RPV vertices allowed by the baryon-number-violating $\tilde{\lambda}^\prime$ couplings as described in Sec. II with off-shell squark propagators. This analysis is an extension of the search conducted at $\sqrt{s} = 7$ TeV for the pair production of massive gluinos, each decaying directly into three quarks [30].

The diagrams shown in Fig. 1 represent the benchmark processes used in the optimization and design of the search presented in this paper. The extension to considering cascade decays of massive particles creates the potential for significantly higher hadronic final-state multiplicities and motivates a shift in technique with respect to previous searches. Therefore, the analysis is extended to look...
II. R-PARITY-VIOLATING SUPERSYMMETRY AND BARYON-NUMBER VIOLATION

The benchmark model used to interpret the results of the search for high multiplicity hadronic final states is the baryon-number-violating RPV SUSY scenario. The RPV component of the generic supersymmetry superpotential can be written as [31,32]

$$W_{\kappa_r} = \frac{1}{2} \lambda_{ijk} L_i E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k + \kappa L_i H_2,$$

where $i, j, k = 1, 2, 3$ are generation indices. The generation indices are sometimes omitted in the discussions that follow if the statement being made is not specific to any generation. The first three terms in Eq. (1) are often referred to as the trilinear couplings, whereas the last term is bilinear. The L_i, Q_i represent the lepton and quark $SU(2)_L$ doublet superfields, whereas H_2 is the Higgs superfield. The E_j, D_j, and U_j are the charged lepton, down-type quark, and up-type quark $SU(2)_L$ singlet superfields, respectively. The Yukawa couplings for each term are given by λ, λ', and λ'', and κ is a dimensionful mass parameter. In general, the particle content of the RPV MSSM is identical to that of the RPC MSSM but with the additional interactions given by W_{κ_r}.

Generically, the addition of W_{κ_r} into the overall SUSY superpotential allows for the possibility of rapid proton decay. The simultaneous presence of lepton-number-violating (e.g. $\lambda' \neq 0$) and baryon-number-violating operators ($\lambda'' \neq 0$) leads to proton decay rates larger than allowed by the experimental limit on the proton lifetime unless, for example [33],

$$\lambda'_{11k} \cdot \lambda''_{11k} \lesssim 10^{-23} \left(\frac{m_{\tilde{q}}}{100 \text{ GeV}} \right)^2,$$

where $m_{\tilde{q}}$ is the typical squark mass. As a result, even when considering this more generic form of the SUSY superpotential by including W_{κ_r}, it is still necessary to impose an ad hoc, albeit experimentally motivated, symmetry to protect the proton from decay. It is generally necessary that at least one of λ, λ', λ'' be exactly equal to zero. Consequently, it is common to consider each term in Eq. (1) independently. In the case of nonzero λ and λ', the typical signature involves leptons in the final state. However, for $\lambda''_{ijk} \neq 0$, the final state is characterized by jets, either from direct gluino decay or from the cascade decay of the gluino to the lightest neutralino ($\tilde{\chi}_1^0$), as also considered here. Because of the structure of Eq. (1), scenarios in which only $\lambda''_{ijk} \neq 0$ are often referred to as UDD scenarios.

Current indirect experimental constraints [34] on the sizes of each of the UDD couplings λ''_{ijk} from sources other
than proton decay are valid primarily for low squark masses, as suggested by Eq. (2). Those limits are driven by double nucleon decay [35] (for λ'_{112}), neutron oscillations [36] (for λ'_{113}), and Z boson branching ratios [37].

Hadron collider searches are hindered in the search for an all-hadronic decay of new particles by the fact that the SM background from multijet production is very high. Nonetheless, searches have been carried out by several collider experiments. The CDF Collaboration [38] excluded gluino masses up to 240 GeV for light-flavor models. The CMS Collaboration [39] excludes such gluinos up to a mass of 650 GeV and additionally sets limits on some heavy-flavor UDD models. The ATLAS Collaboration [30] has also previously set limits in a search for anomalous six-quark production, excluding gluino masses up to 666 GeV for light-flavor models. The search presented here uniquely probes the flavor structure of the UDD couplings and employs new techniques both in analysis and theoretical interpretation.

III. THE ATLAS DETECTOR

The ATLAS detector [40] provides nearly full solid angle coverage around the collision point with an inner tracking system covering the pseudorapidity range $|\eta| < 2.5$, electromagnetic (EM) and hadronic calorimeters covering $|\eta| < 4.9$, and a muon spectrometer covering $|\eta| < 2.7$.

The ATLAS tracking system is composed of a silicon pixel tracker closest to the beam line, a microstrip silicon tracker, and a straw-tube transition radiation tracker. These systems are layered radially around each other in the central region. A thin solenoid surrounding the tracker provides an axial 2 T field enabling measurement of charged-particle momenta.

The calorimeter, which spans the pseudorapidity range up to $|\eta| = 4.9$, is comprised of multiple subdetectors with different designs. The high granularity liquid argon electromagnetic calorimeter system includes separate barrel ($|\eta| < 1.475$), end cap ($1.375 < |\eta| < 3.2$), and forward subsystems ($3.1 < |\eta| < 4.9$). The tile hadronic calorimeter ($|\eta| < 1.7$) is composed of scintillator tiles and iron absorbers. As described below, jets used in the analyses presented here are typically required to have $|\eta| < 2.8$ such that they are fully contained within the barrel and end cap calorimeter systems.

A three-level trigger system is used to select events to record for off-line analysis. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz during 2012. This is followed by two software-based triggers, level-2 and the event filter (collectively called the high-level trigger), which together reduce the event rate to a few hundred Hz. The primary triggers used in this analysis collected the full integrated luminosity of the 8 TeV data set with good efficiency for the event selections described in this paper.

IV. DATA AND MONTE CARLO SAMPLES

The data used in this analysis correspond to $20.3 \pm 0.6 \text{ fb}^{-1}$ [41,42] of integrated luminosity taken during periods in which the data satisfied baseline quality criteria. Further details of the event selections applied, including the ATLAS data quality criteria and trigger strategy, are given in Sec. V. The primary systems of interest in these studies are the electromagnetic and hadronic calorimeters and the inner tracking detector. The data were collected with triggers based on either single-jet or multijet signatures. The single-jet trigger selection has a transverse momentum threshold of 360 GeV using a large-R anti-k_t jet definition [43] with a nominal radius of $R = 1.0$ within the high-level jet trigger. The multijet trigger selection requires at least six anti-$k_t, R = 0.4$ jets with a nominal p_T threshold of 45 GeV in the high-level trigger. Data collected using several additional multijet requirements (from three to five jets) are also used for background estimation studies.

Multiple simultaneous proton-proton (pp) interactions, or pileup, occur in each bunch crossing at the LHC. The additional collisions occurring in the same and neighboring bunch crossings with respect to the event of interest are referred to as in-time and out-of-time pileup, respectively, and are uncorrelated with the hard-scattering process.

The benchmark RPV SUSY signal processes of both the six-quark and ten-quark models (see Sec. I) were simulated using HERWIG++ 6.520 [44] for several gluino and neutralino mass hypotheses using the parton distribution function (PDF) set CTEQ6L1 [45,46]. For both models, all squark masses are set to 5 TeV and thus gluinos decay directly to three quarks or to two quarks and a neutralino through standard RPC couplings. In the ten-quark cascade decay model, the neutralinos each decay to three quarks via an off-shell squark and the RPV UDD decay vertex with coupling λ''. In this model, the neutralino is the lightest supersymmetric particle.

Samples are produced covering a wide range of both $m_{\tilde{g}}$ and $m_{\tilde{\chi}^0_1}$. In the six-quark direct gluino decay model, the gluino mass is varied from 500 to 1200 GeV. In the case of the cascade decays, for each gluino mass (400 GeV to 1.4 TeV), separate samples are generated with multiple neutralino masses ranging from 50 GeV to 1.3 TeV. In each
As a function of the jet-region selections that use multijet kinematic observables and topologies. For signal production, several MC simulations were compared with the SM contributions and background estimation techniques. In the case of the vastly dominant background from SM jet production processes, were simulated in order to study the hadronic end cap calorimeter are rejected and jets in the forward extend to prevent contamination from detector noise, noncollision beam backgrounds, cosmic rays, and other spurious effects. The selection related to these quality criteria is based upon individual assessments for each subdetector, usually separated into barrel, forward and end cap regions, as well as for the trigger and for each type of reconstructed physics object (i.e. jets).

To reject noncollision beam backgrounds and cosmic rays, events are required to contain a primary vertex consistent with the LHC beamspot, reconstructed from at least two tracks with transverse momenta \(p_T^{\text{track}} > 400 \text{ MeV} \). Jet-specific requirements are also applied. All jets reconstructed with the anti-\(k_T \) algorithm using a radius parameter of \(R = 0.4 \) and a measured \(p_T^{\text{jet}} > 20 \text{ GeV} \) are required to satisfy the “looser” requirements discussed in detail in Ref. [57]. This selection requires that jets deposit at least 5% of their measured total energy in the EM calorimeter as well as no more than 99% of their energy in a single calorimeter layer.

The above quality criteria selections for jets are extended to prevent contamination from detector noise through several detector-region-specific requirements. Jets with spurious energy deposits in the forward hadronic end cap calorimeter are rejected and jets in the central region (\(|\eta| < 2.0 \)) that are at least 95% contained within the EM calorimeter are required not to exhibit any electronic pulse shape anomalies [58]. Any event with a jet that fails the above requirements is removed from the analysis.
B. Object definitions

Jets are reconstructed using the anti-k_T algorithm with radius parameters of both $R = 0.4$ and $R = 1.0$. The former are referred to as standard jets and the latter as large-R jets. The inputs to the jet reconstruction are three-dimensional topological clusters [59]. This method first clusters together topologically connected calorimeter cells and classifies these clusters as either electromagnetic or hadronic. The classification uses a local cluster weighting calibration scheme based on cell-energy density and longitudinal depth within the calorimeter [60]. Based on this classification, energy corrections derived from single-pion MC simulations are applied. Dedicated corrections are derived for the effects of noncompensation, signal losses due to noise-suppression threshold effects, and energy lost in noninstrumented regions. An additional jet energy calibration is derived from MC simulation as a correction relating the calorimeter response to the true jet energy. In order to determine these corrections, the identical jet definition used in the reconstruction is applied to particles with lifetimes greater than 10 ps output by MC generators, excluding muons and neutrinos. Finally, the standard jets are further calibrated with additional correction factors derived in situ from a combination of $\gamma +$ jet, $Z +$ jet, and dijet balance methods [60].

No explicit veto is applied to events with leptons or E_T^{miss}. This renders the analysis as inclusive as possible and leaves open the possibility for additional interpretations of the results. There is no explicit requirement removing identified leptons from the jets considered in an event. Calorimeter deposits from leptons may be considered as jets in this analysis given that the data quality criteria described in Sec. VA are satisfied. A further consequence of these requirements is that events containing hard isolated photons, which are not separately identified and distinguished from jets, have a high probability of failing to satisfy the signal event selection criteria. For the signals considered, typically 1% of events fail these quality requirements.

The standard jet-p_T requirement is always chosen to be at least 60 GeV in order to reside in the fully efficient region of the multijet trigger. For the jet-counting analysis selection (Sec. VI), a requirement of $p_T^{\text{jet}} > 80$ GeV is imposed for each jet in most of the background control regions, and a higher requirement is used for the majority of the signal regions of the analysis. All jets used in this analysis are required to have $|\eta| < 2.8$. The effect of pileup on jets is negligible for the kinematic range considered, and no selection to reduce pileup sensitivity is included.

In order to constrain specific UDD couplings to heavy flavor quarks, b-tagging requirements are also applied to some signal regions. In these cases, one or two standard jets are required to satisfy b-tagging criteria based on track transverse impact parameters and secondary vertex identification [61]. In simulated $t\bar{t}$ events, this algorithm yields a 70% (20%) tagging efficiency for real b-(c-)jets and an efficiency of 0.7% for selecting light quark and gluon jets. The b-tagging efficiency and misidentification are corrected by scale factors derived in data [61]. These jets are additionally required to lie within the range $|\eta| < 2.5$.

The topological selection based on the total mass of large-R jets (Sec. VII) employs the trimming algorithm [62]. This algorithm takes advantage of the fact that contamination from the underlying event and pileup in the reconstructed jet is often much softer than the outgoing partons from the hard scatter. The ratio of the p_T of small subjets (jets composed of the constituents of the original jet) to that of the jet is used as a selection criterion. The procedure uses a k_t algorithm [63,64] to create subjets with a radius $R_{\text{sub}} = 0.3$. Any subjets with $p_T^{\text{jet}}/p_T^{\text{sub}} < f_{\text{cut}}$ are removed, where p_T^{jet} is the transverse momentum of the ith subjet, and $f_{\text{cut}} = 0.05$ is determined to be an optimal setting [65]. The remaining constituents form the trimmed jet, and the mass of the jet is the invariant mass of the remaining subjets (which in turn is the invariant mass of the massless topological clusters that compose the subjet). Using these trimming parameters, the full mass spectrum is insensitive to pileup.

The total-jet-mass analysis uses a sample from the high-p_T single-jet triggers. A requirement that the leading large-R jet have $p_T^{\text{jet}} > 500$ GeV is applied to ensure that these triggers are fully efficient.

VI. JET-COUNTING ANALYSIS

A. Method and techniques

The jet-counting analysis searches for an excess of events with ≥ 6 or ≥ 7 high-p_T jets (with at least 80 GeV), with ≥ 0, ≥ 1, or ≥ 2 b-jet requirements added to enhance the sensitivity to couplings that favor decays to heavy-flavor quarks. The number of jets, the p_T requirement that is used to select jets, and the number of b-tagged jets are optimized separately for each signal model taking into account experimental and theoretical uncertainties.

The background yield in each signal region is estimated by starting with a signal-depleted control region in data and extrapolating its yield into the signal region using a factor that is determined from a multijet simulation, with corrections applied to account for additional minor background processes. This can be expressed as

$$N_{n\text{-jet}} = \left(\frac{N_{\text{data}} - N_{\text{MC}, \text{Other BGs}}}{N_{\text{MC}} - N_{\text{MC}, \text{Other BGs}}} \right) \times \left(\frac{N_{\text{MC}}}{N_{\text{MC}} - N_{\text{MC}, \text{Other BGs}}} \right)$$

where the number of predicted background events with n jets ($N_{n\text{-jet}}$) is determined starting from the number of events in the data with m jets ($N_{m\text{-jet}}$). The extrapolation...
factor \(\frac{N_{\text{mc}}^{\text{jet}}}{N_{\text{data}}^{\text{mc}}} \), is determined from multijet simulation and validated in the data. This procedure is performed in exclusive bins of jet multiplicity. Since the simulation is not guaranteed to predict this scaling perfectly, cross-checks in the data and a data-driven determination of systematic uncertainties are performed as described in Sec. VI C. It is assumed here that the simulation used for this extrapolation given by PYTHIA 6.426 predicts the relative rate of events with one additional order in the strong coupling constant in a consistent way across jet-multiplicity regions. This assumption comes from the behavior of the parton shower model used by PYTHIA to obtain configurations with more than two partons and is shown to be consistent with data in the measurement of multijet cross sections [66]. Other models were studied and are discussed in Sec. VI C.

Small corrections from other backgrounds (tt, single top, and W/Z + jet events) are applied based on estimates from the simulation. Without b-tagging, the contribution of events from these other backgrounds is less than 1%. Including two b-tagged jets increases this relative contribution to as much as 10%.

B. Signal and control region definitions

Control regions are defined with \(m \leq 5 \), for which the background contribution is much larger than the expected signal contributions from the benchmark signal processes. Extrapolation factors with \(n, m \leq 5 \) are used to validate the background model and to assign systematic uncertainties. For \(n > 5 \), the expected signal contributions can become significant and an optimization is performed to choose the best signal region definitions for a given model. Signal regions are chosen with simultaneous optimizations of the jet-multiplicity requirement (\(\geq 6 \) or \(\geq 7 \) jets), the associated transverse momentum requirement (80–220 GeV in 20 GeV steps), and the minimum number of b-tagged jets (\(\geq 0 \), \(\geq 1 \), or \(\geq 2 \)) for a total of 48 possible signal regions. Alternative control regions are constructed from some \(n > 5 \) regions when the signal significance is expected to be low as described in Sec. VI C. Such regions are then excluded from the list of allowed signal regions. For a given signal model, the signal region deemed most effective by this optimization procedure is used for the final interpretations. The signal regions chosen by the optimization procedure tend to pick regions with signal acceptances as low as 0.5% and as high as roughly 20%.

Although other choices are also studied to determine background yield systematic uncertainties from the data, the background contributions are estimated in the final signal regions using extrapolations across two jet-multiplicity bins (\(n = m + 2 \)). This choice leads to negligible signal contamination in the control regions used for this nominal prediction.

C. Validation and systematic uncertainties

Since the 3-, 4-, and 5-jet-multiplicity bins have minimal expected signal contamination they are used to validate the background model based on the MC simulation. The initial validation of the background prediction is performed by extrapolating the background from either the \(m = 3 \) or \(m = 4 \) jets control region into the \(n = 5 \) jets control region and comparing with the data. This comparison is presented in Fig. 2, which shows the number of events passing a given jet-\(p_T \) requirement with a 5-jet requirement. This procedure is shown to be accurate in the extrapolations to the 5-jet bin in data, both with and without the requirement of b-tagging.

The conclusion of this validation study is that Eq. (3) can be used with no correction factors, but a systematic uncertainty on the method is assigned to account for the discrepancies between data and the prediction in the control regions. This systematic uncertainty is assigned to cover, per \(p_T \) bin, the largest discrepancy that is observed between data and the prediction when extrapolating from either the 3-jet or 4-jet bins into the 5-jet control region, as well as from extrapolations to higher jet multiplicity as discussed below.

Alternative MC models of extra-jet production such as those given by SHERPA, HERWIG++, and additional parameter tunes in PYTHIA were studied and either did not satisfy the criterion that the model be consistent through control and signal regions (e.g. the model must not describe the control regions with a matrix-element calculation and the signal regions with a parton shower model giving unreliable projections) or disagreed significantly with the data in the validations presented here. The internal spread of predictions given by each of these background models in various extrapolations is considered when assigning systematic uncertainties. In all cases, this spread is consistent with the systematic uncertainties obtained using PYTHIA in the manner described above.

In addition to the extrapolation factor described by Eq. (3), it is possible to also study the extrapolation along the jet-\(p_T \) degree of freedom. In this case, the \(n \)-jet event yield for a given high jet-\(p_T \) selection is predicted using extrapolation factors from lower jet-\(p_T \) selections determined from MC simulation. This method is tested exclusively in a low \(n \)-jet region for the high jet-\(p_T \) requirement and the spread is compared to the baseline systematic uncertainty, which is increased in case of disagreement larger than this baseline.

Additional control regions can be constructed from exclusive 6-jet regions with low jet-\(p_T \) requirements. Any region with an expected signal contribution less than 10% for the \(m_5 = 600 \) GeV six-quark model is used as additional control region in the evaluation of the background systematic uncertainties. These regions are used to ensure that the jet-multiplicity extrapolation continues to accurately predict the event rate at higher jet multiplicities, as shown in Fig. 3(a), without looking directly at possible signal regions. This procedure allows the exclusive 6-jet,
low jet-p_T region to be probed and shows that the jet-multiplicity extrapolations continue to provide accurate predictions at higher jet multiplicities.

To extend this validation, a requirement that the average jet pseudorapidity $\langle |\eta| \rangle > 1.0$ is applied to create a high-pseudorapidity control region to reduce the signal contribution to a level of less than approximately 10% while retaining a reasonable number of events. Results of these extrapolations are shown for the exclusive 7-jet bin in Fig. 3(b). The largest deviations from the expected values are found to be a few percent larger than for the 5-jet extrapolations.

The uncertainty due to any mismodeling of contributions from backgrounds such as $t\bar{t}$, single top, and $W/Z +$ jet processes is expected to be small and is covered by the procedure above since these contributions are included in the extrapolation. Therefore, any mismodeling of these sources results in increased systematic uncertainty on the entire background model in this procedure.

Distributions for data in the inclusive ≥ 6-jet and ≥ 7-jet signal regions are shown in Figs. 4–6 compared with background predictions determined using extrapolations from three different jet-multiplicity bins. In each case, the distributions representing the extrapolations across two jet-multiplicity bins (i.e. $4 \rightarrow 6$ and $5 \rightarrow 7$) are used as the final background prediction whereas the other extrapolations are simply considered as additional validation. Contributions from higher jet-multiplicity regions are summed to construct an inclusive sample. The systematic uncertainty is

FIG. 2 (color online). The number of observed events in the 5-jet bin is compared to the background expectation that is determined by using PYTHIA to extrapolate the number of events in data from the low jet-multiplicity control regions. The contents of the bins represent the number of events with 5-jets passing a given jet-p_T requirement. These bins are inclusive in jet p_T. Results with various b-tagging requirements are shown. (a) ≥ 0 b-tagged jets required. (b) ≥ 1 b-tagged jets required, and (c) ≥ 2 b-tagged jets required.
constructed from the maximum deviation given by the various validations and for most signal regions is dominated by the baseline uncertainty obtained from the \(n \leq 5 \) jet regions. Results using the three \(b \)-tagging selections (\(\geq 0, \geq 1, \geq 2 \) \(b \)-tagged jets) are shown in Figs. 4–6. The background systematic uncertainties determined from the control regions in the data are shown as the green shaded region in the ratio plots of these figures. This procedure results in a background systematic uncertainty in the \(p_T^{\text{jet}} \geq 120 \text{ GeV}, \geq 7 \)-jet region of 14%, 15%, and 40% for \(\geq 0, \geq 1, \geq 2 \) \(b \)-tagged jets, respectively.

The bins in these distributions that were not assigned as control regions represent possible signal regions, which may be chosen as a signal region for a particular model under the optimization procedure described in Sec. VIII B.
The level of disagreement between the expectation and data is shown in Fig. 7 for the ≥ 0 b-tagged jets control and signal regions. In the b-tagged signal regions similar agreement is observed between data and the predicted background, within the assigned uncertainties. In practice, it is seen that for most signals, the ≥ 7-jet bin is preferred by the optimization procedure as a signal region. The data in each distribution show good agreement with background predictions within uncertainties.

Systematic uncertainties on the jet-counting background estimation using the extrapolation method are determined directly from the data as part of the background validation and, by design, account for all uncertainties on the technique and on the reference model used in the projection. In contrast, systematic uncertainties on the signal predictions are determined from several sources of modeling uncertainties. The largest systematic uncertainties are those on the background yield, the jet energy scale uncertainties on the signal yield (10%–20% for most signal regions), and the uncertainty in b-tagging efficiencies for many signal regions that require the presence of b-tagged jets (between 15%–20% for signal regions requiring at least two b-tags).

An additional systematic uncertainty is included in these estimates in order to cover possible contamination of signal in the control regions for the extrapolation. The analysis is repeated with signal injected into the control regions and the backgrounds are recomputed. The resulting bias depends on the signal model and is found to be less than 5% in all cases.

Given the good agreement between the data and the predictions from the jet-counting background estimation, there is no evidence of new physics.

FIG. 5 (color online). Distributions shown here are as in Fig. 4 but with (a) ≥ 6-jet and (b) ≥ 7-jet ≥ 1 b-tagged jets required.

FIG. 6 (color online). Distributions shown here are as in Fig. 4 but with (a) ≥ 6-jet and (b) ≥ 7-jet ≥ 2 b-tagged jets required.
VII. TOTAL-JET-MASS ANALYSIS

A. Method and techniques

The total-jet-mass analysis uses a topological observable M_J as the primary distinguishing characteristic between signal and background. The observable M_J [67–69] is defined as the scalar sum of the masses of the four leading large-R jets reconstructed with a radius parameter $R = 1.0$, $p_T > 100$ GeV and $|\eta| < 2.5$,

$$M_J = \sum_{p_T > 100 \text{ GeV}, |\eta| < 2.5} m_{\text{jet}}. \quad (4)$$

This observable was used for the first time in the $\sqrt{s} = 8$ TeV search by the ATLAS Collaboration for events with many jets and missing transverse momentum [70] and provides significant sensitivity for very high-mass gluinos. Four-jet (or more) events are used as four large-R jets cover a significant portion of the central region of the calorimeter, and are very likely to capture most signal quarks within their area. This analysis focuses primarily on the ten-quark models mentioned in Sec. I.

Simulation studies show that M_J provides greater sensitivity than variables such as H_T, the scalar sum of jet p_T: the masses contain angular information about the events by definition, whereas a variable like H_T simply describes the energy (or transverse momentum) in the event. A large M_J implies not only high energy, but also rich angular structure. Previous studies at the Monte Carlo event generator level have demonstrated the power of the M_J variable in the high-multiplicity events that this analysis targets [67,68].

Figure 8 presents examples of the discrimination that the M_J observable provides between the background (represented here by SHERPA multijet MC simulation) and several signal samples, as well as the comparison of the data to the SHERPA multijet background. Three signal samples, each with $m_{\tilde{q}} = 175$ GeV and several gluino masses $m_{\tilde{g}}$ in the range 0.6–1.4 TeV are shown. In each case, the
discrimination in the very high M_{T}^J region is similar and is dictated primarily by the gluino mass, but is also sensitive to the mass splitting, $m_{\tilde{g}} - m_{\chi^0_1}$. Larger $m_{\tilde{g}}$ results in larger M_{T}^J, as expected. However, for the same $m_{\tilde{g}}$, M_{T}^J is largest for $m_{\chi^0_2} \approx m_{\tilde{g}}/2$. This is due to the partitioning of the energy in the final state. For very large $m_{\chi^0_2}$, with $m_{\chi^0_2} \lesssim m_{\tilde{g}}$, the two quarks from the decay of the \tilde{g} are very soft and the partons from the decay of the $\tilde{\chi}^0_1$ are relatively isotropic, slightly reducing the efficacy of the approach. For very low $m_{\chi^0_2}$, $m_{\chi^0_2} \ll m_{\tilde{g}}$, the opposite occurs: the two quarks from the gluino decay have very high p_T and the neutralino is Lorentz boosted, often to the point that the decay products merge completely, no longer overlapping with quarks from other parts of the event, and the mass of the jet is substantially reduced.\(^3\) In both cases, although the sensitivity of M_{T}^J is reduced, the overall approach still maintains good sensitivity.

Another discriminating variable that is independent of M_{T}^J is necessary in order to define suitable control regions for the analysis. As in the jet-counting analysis, the signal is characterized by a considerably higher rate of central jet events as compared to the primary multijet background. This is expected due to the difference in the production processes that is predominantly s-channel for the signal, while the background can also be produced through u- and t-channel processes. Figure 8 additionally shows the distribution of the pseudorapidity difference between the two leading large-R jets, $|\Delta \eta|$. The discrimination between the signal samples and the background is not nearly as significant for $|\Delta \eta|$ as for M_{T}^J. However, the lack of significant correlation (Pearson linear correlation coefficient of approximately 1%) between the two observables makes $|\Delta \eta|$ effective as a means to define additional control regions in the analysis. It is also observed that the shape of the distribution is relatively independent of the \tilde{g} and $\tilde{\chi}^0_1$ masses and mass splittings.

The ability of several other observables to discriminate between signal and background was also tested. In particular, the possibility of using more detailed information about the substructure of jets (e.g. the subjet multiplicity or observables such as N-subjettiness, τ_{32} [71,72]) was investigated. Although some additional discrimination is possible using more observables, these significantly complicate the background estimation techniques and only marginally increase the sensitivity of the analysis.

\(^3\)While the complete merging of the decay products of a $\tilde{\chi}^0_1$ into a single jet may suggest that the most effective variable at low $m_{\chi^0_2}$ might be the jet mass itself, typically only the lightest $\tilde{\chi}^0_1$ have enough p_T to be strongly collimated. Such jets thereby have very low jet masses. These low jet masses are similar to what is expected from QCD radiation, making discrimination very difficult, and so the nominal total-jet-mass technique is maintained even in these regions.

The use of M_{T}^J in this analysis provides significant sensitivity as well as the opportunity to complement the jet-counting analysis described in Sec. VI with a fully data-driven background estimation that does not require any input from MC simulation. A template method is adopted in which an expected M_{T}^J distribution is constructed using individual jet mass templates. Single-jet mass templates are extracted jet-by-jet from a signal-depleted 3-jet control region (3jCR), or training sample. These jet mass templates are binned in jet p_T and η, which effectively provides a
probability density function} that describes the relative probability for a jet with a given \(p_T \) and \(\eta \) to have a certain mass. This template is randomly sampled 2500 times for a single jet \(p_T \) and \(\eta \), and a precise predicted distribution of possible masses for the given jet is formed.\(^4\)

For an event with multiple jets, the jet mass templates are applied to each jet and the resulting predicted mass distributions are combined to predict the total jet mass \(M_T \) for that ensemble of jets.

Jet mass templates are applied to jets in events in orthogonal regions, typically with at least four large-\(R \) jets—the control (4jCR), validation (4jVR), and signal regions (4jSR)—but also in the 3jCR to test the method. Samples used in this way are referred to as the kinematic samples. The only information used is the jet \(p_T \) and \(\eta \), which are provided as inputs to the templates. The result is referred to as a dressed sample, which provides a SM prediction of the individual jet mass distributions for the jets in the kinematic sample. A SM prediction for the total jet mass can then be formed by combining the individual dressed jet mass distributions. The normalization of the \(M_T \) prediction—the dressed sample—is preserved such that the total expected yield is equal to the number of events in the kinematic sample. The procedure can be summarized as [69]

1. Define a control region to obtain the training sample from which jet mass templates are to be constructed;
2. Derive a jet mass template binned in jet \(\eta \) and \(p_T \) using a smoothed Gaussian kernel technique;
3. Define a kinematic sample as either another control region or the signal region;
4. Convolve the jet mass template with the kinematic sample using only the jet \(p_T \) and \(\eta \);
5. Obtain a sample of dressed events which provides the data-driven background estimate of \(M_T \).

The key assumption in this approach is that the jet kinematics factorize and are independent of the other jets in the event. Deviations from this approximation may occur due to effects that are not included in the derivation of the jet mass templates. In particular, the composition of quarks and gluons can vary across different samples [73], and quark and gluon jets have been observed to have different radial energy distributions [74]. Other experimental affects, arising from close-by or overlapping jets, can also have an effect. For this reason, extensive tests are performed in the 4jCR and 4jVR, as defined in Sec. VII B, to estimate the size of the correction factors needed to account for any sample dependence, and to assess systematic uncertainties. The entire procedure is tested first in SHERPA multijet MC simulation, which shows minimal differences between the template prediction and observed mass spectrum.

B. Signal and control region definitions

The \(M_T^2 \) and \(|\Delta \eta| \) observables form the basis for the signal region definition for the analysis, where \(|\Delta \eta| \) is used to define control regions for testing the background estimation in data. A requirement of \(|\Delta \eta| < 0.7 \) is found to have the best signal sensitivity over the entire plane of \((m_{j1}, m_{j2})\). In this optimization, the background contribution is modeled by multijet events simulated with SHERPA.

An optimization study indicated that when using a single \(M_T^2 \) selection, \(M_T^2 > 625 \text{ GeV} \) provides the best sensitivity to many signal hypotheses, and gives the best expected sensitivity at high \(m_{\tilde{g}} \). A single-bin signal region (SR1) is therefore defined with \(M_T^2 > 625 \text{ GeV} \) and a 250 GeV \(p_T \) threshold applied to the third leading in \(p_T \) large-\(R \) jet. This region has an acceptance of 0.26% for the \(m_{\tilde{g}} = 600 \text{ GeV} \), \(m_{\tilde{g}^0} = 50 \text{ GeV} \) signal point. This acceptance grows rapidly with gluino mass to 11% for the point \(m_{\tilde{g}} = 1000 \text{ GeV} \), \(m_{\tilde{g}^0} = 600 \text{ GeV} \), and is only weakly dependent on the neutralino mass.

A second set of signal regions is used to further improve the power of the analysis by making use of the shape of the \(M_T^2 \) distribution. Two selections on the third leading jet in \(p_T \) (\(p_T^3 \)) are used, \(p_T^3 > 100 \text{ GeV} \) (SR100) and \(p_T^3 > 250 \text{ GeV} \) (SR250). This provides better sensitivity to the full range of gluino masses considered, compared to SR1. The lower \(p_T \) region, SR100, has better sensitivity for lower gluino masses, whereas SR250 has improved sensitivity for higher masses. All other selections are unchanged. In this case, a lower threshold of \(M_T^2 > 350 \text{ GeV} \) is used and the observed data are compared to the template predictions in bins of \(M_T^2 \). The improvements in the

TABLE I. Control (CR), validation (VR), and signal regions (SR) used for the analysis. \(p_T^3 \) and \(p_T^4 \) represent the transverse momentum of the third and fourth jet in \(p_T \), respectively.

| Region | \(n_{\text{jet}} \) | \(|\Delta \eta| \) | \(p_T^3 \) [GeV] | \(p_T^4 \) [GeV] | \(M_T^2 \) [GeV] |
|--------|----------------|----------------|-----------------|-----------------|----------------|
| 3jCR | \(n_{\text{jet}} = 3 \) | \(\cdots \) | \(\cdots \) | \(\cdots \) | \(\cdots \) |
| 4jCR | \(n_{\text{jet}} \geq 4 \) | >1.40 | >100 | >100 | \(\cdots \) |
| | | | >250 | \(\cdots \) | \(\cdots \) |
| 4jVR | \(n_{\text{jet}} \geq 4 \) | 1.0–1.40 | >100 | >100 | \(\cdots \) |
| | | | >250 | \(\cdots \) | \(\cdots \) |
| SR1 | | | >250 | >625 | \(\text{binned} \) |
| SR100 | \(n_{\text{jet}} \geq 4 \) | < 0.7 | >100 | >100 | >350 (binned) |
| SR250 | | | >250 | >350 (binned) | |
The sensitivity obtained by adding these additional signal regions and using the shape of the $M^2_{\Sigma J}$ spectrum are described below. The full set of selection criteria is listed in Table I.

The jet multiplicity and $|\Delta \eta|$ are used to define the control regions. The 3jCR, with exactly three jets, is used to train the background templates previously discussed. In the remaining control and validation regions, each requiring ≥4 jets, the $|\Delta \eta|$ selection suppresses the signal contribution and is used to define the 4jCR and 4jVR. In the ≥4-jet regions, the $|\Delta \eta|$ selection value for the control regions is chosen to be larger than an inversion of the signal region selection, resulting in the selections presented in Table I. These control region definitions permit studies of the full $M^2_{\Sigma J}$ spectrum as well as comparisons of data and SM predictions without significant signal contamination.

C. Validation and systematic uncertainties

Many tests are performed using the 3jCR as both the training sample and the kinematic sample in order to
(leading, subleading, and third jet) and to bin the separate templates for each of the three jet categories jet kinematics. It is determined that it is optimal to define template on the jet in question (leading, subleading, etc.) event, as described in Table I. The dependence of the requirements that there be exactly three large-
scenarios. The background uncertainties are displayed as statistical + systematic; the signal uncertainties are displayed as statistical + systematic + theoretical.

<table>
<thead>
<tr>
<th>M_T^2 Bin</th>
<th>Expected SM</th>
<th>Observed</th>
<th>$m_3 = 600$ GeV</th>
<th>$m_3 = 1$ TeV</th>
<th>$m_3 = 1.4$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T^3 = 50$ GeV</td>
<td>$m_{p_T}^3 = 600$ GeV</td>
<td>$m_{p_T}^3 = 600$ GeV</td>
<td>$m_{p_T}^3 = 900$ GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>625 GeV</td>
<td>$160 \pm 9.7^{+40}_{-34}$</td>
<td>176</td>
<td>$70 \pm 4.2 \pm 25 \pm 30$ (0.26%)</td>
<td>$55 \pm 0.51 \pm 8.6 \pm 14$ (11%)</td>
<td>$6.3 \pm 0.07 \pm 0.46 \pm 2.5$ (35%)</td>
</tr>
</tbody>
</table>

Table showing the predicted in the SM and observed number of events in SR1 as well as three representative signal scenarios. Acceptances (including efficiency) of the various signals are listed in parentheses. The background uncertainties are displayed as statistical + systematic; the signal uncertainties are displayed as statistical + systematic + theoretical.

<table>
<thead>
<tr>
<th>Summary yield table for SR100</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_T^2 Bin</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>$p_T^3 = 50$ GeV</td>
</tr>
<tr>
<td>350–400 GeV</td>
</tr>
<tr>
<td>400–450 GeV</td>
</tr>
<tr>
<td>450–525 GeV</td>
</tr>
<tr>
<td>525–725 GeV</td>
</tr>
<tr>
<td>>725 GeV</td>
</tr>
</tbody>
</table>

Table showing the predicted in the SM and observed number of events in SR100 as well as three representative signal scenarios. The background uncertainties are displayed as statistical + systematic; the signal uncertainties are displayed as statistical + systematic + theoretical.

<table>
<thead>
<tr>
<th>Summary yield table for SR250</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_T^2 Bin</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>$p_T^3 = 50$ GeV</td>
</tr>
<tr>
<td>350–400 GeV</td>
</tr>
<tr>
<td>400–450 GeV</td>
</tr>
<tr>
<td>450–525 GeV</td>
</tr>
<tr>
<td>525–725 GeV</td>
</tr>
<tr>
<td>>725 GeV</td>
</tr>
</tbody>
</table>

determine the robustness of the method. The selection requires that there be exactly three large-R jets in the event, as described in Table I. The dependence of the template on the jet in question (leading, subleading, etc.) is tested, as well as the dependence of the template on the jet kinematics. It is determined that it is optimal to define separate templates for each of the three jet categories (leading, subleading, and third jet) and to bin the templates according to the jet p_T and η.\footnote{In the 4-jet regions, the fourth jet uses the template derived for the third jet in the 3jCR: tests in the 4jCR and 4jVR indicate very good agreement between this template and the third jet exhibits qualitatively different masses as a function of the jet p_T.}
observed spectrum. As a first test, the M_T^2 template constructed from the 3-jet kinematic sample is compared to the actual M_T^2 distribution in 3-jet events, and very good agreement is observed.

There are two intrinsic sources of systematic uncertainty associated with the template procedure: the uncertainty due to finite statistics in the 3jCR training sample (the variance), and the uncertainty due to the smoothing procedure in the template derivation (the bias). The former is estimated by generating an ensemble of M_T^2 templates and taking the $\pm 1\sigma$ deviations (defined as the $\pm 34\%$ quantile) with respect to the median of those variations as the uncertainty, bin by bin. The systematic uncertainty due to the smoothing procedure is determined using the fact that a Gaussian kernel smoothing is applied to the template. The full difference between the nominal template and a template constructed using a leading-order correction for the bias, derived analytically in Ref. [69], is taken as the systematic uncertainty.

A small level of disagreement (between 5% to 15%) is observed when comparing the observed mass to the predicted mass in the 4jCR: a reweighting derived in the 4jCR (as a function of each individual jet mass) is then applied to the individual jet masses prior to the construction of the M_T^2 for each event. After the reweighting the agreement is substantially improved at high total jet mass. Figure 9 presents the total jet mass M_T^2 in the 4jVR using $p_T > 100$ GeV. The reweighted template agrees very well with the observed M_T^2 distribution in the 4jVR—a sample completely independent from where the reweighting was derived—validating both the template method and the reweighting. The full magnitude of the reweighting on the total-jet-mass distribution is taken as a systematic uncertainty of the method. The total systematic on the background prediction therefore includes both the intrinsic systematic uncertainty given by the variance and the bias, as well as the difference observed in the 4jCR. The M_T^2 distribution is also shown for the 4jVR for the case in which $p_T > 250$ GeV. No reweighting is required when using the significantly higher p_T selection since the observed effects due to topological differences in the training sample compared to the kinematic sample are suppressed. In order to account for any remaining disagreement, the difference between the data and template prediction in the 4jCR is applied as a further systematic. The total uncertainty therefore includes again both the intrinsic background estimation uncertainties and the disagreement observed in the 4jCR.

One possible concern for the template technique is that it assumes that the same mechanism is responsible for generating the individual jet masses in both the control and signal regions. In order to test the extent to which a different composition of processes may affect the derived templates, the assumption that multijet events are the only background in the 3jCR and 4j regions is modified by injecting separately a sample of SHERPA $t\bar{t}$ MC simulation events (assuming SM cross sections) into the full procedure. The resulting background estimates are fully consistent with the prediction without the injection—indicating that the technique is not sensitive to contamination from top quark production—and thus no additional systematic uncertainty is assessed for the potential presence of specific background processes. A similar procedure is performed for signal processes (assuming standard g production cross-sections) and again no impact of signal contamination on the constructed background templates is observed.

Figure 10 shows the total jet mass in the 4jSR compared to the template prediction. For both SR100 and SR250, the total systematic error on the template method is also shown in the ratio plot in the lower panel of each distribution. The template predictions are clearly consistent...
TABLE V. Requirements as optimized for the six-quark model under a variety of gluino mass hypotheses when the RPV vertex has various branching ratio combinations corresponding to respective RPV terms given by \(\lambda_{ijk} \) being nonzero. The optimized signal region selection requirements are shown along with the resulting background and signal expectations and the number of observed data events. The nominal signal acceptance (including efficiency) is also shown for each result. Quoted errors represent both the statistical and systematic uncertainties added in quadrature.

<table>
<thead>
<tr>
<th>Sample (m_{\tilde{g}}) [GeV]</th>
<th>Jet-(p_T) requirements [GeV]</th>
<th>Number of jets</th>
<th>Number of (b)-tags</th>
<th>Signal (acceptance)</th>
<th>Background</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>120</td>
<td>7</td>
<td>0</td>
<td>600 \pm 230 (0.7%)</td>
<td>370 \pm 60</td>
<td>444</td>
</tr>
<tr>
<td>600</td>
<td>120</td>
<td>7</td>
<td>0</td>
<td>410 \pm 100 (1.5%)</td>
<td>370 \pm 60</td>
<td>444</td>
</tr>
<tr>
<td>800</td>
<td>180</td>
<td>7</td>
<td>0</td>
<td>13 \pm 4 (0.4%)</td>
<td>6.1 \pm 2.2</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>180</td>
<td>7</td>
<td>0</td>
<td>6.8 \pm 2.3 (1.4%)</td>
<td>6.1 \pm 2.2</td>
<td>4</td>
</tr>
<tr>
<td>1200</td>
<td>180</td>
<td>7</td>
<td>0</td>
<td>2.7 \pm 0.5 (3.0%)</td>
<td>6.1 \pm 2.2</td>
<td>4</td>
</tr>
</tbody>
</table>

(\(\text{BR}(t), \text{BR}(b), \text{BR}(c) \) = (0%, 0%, 0%))

500	80	7	2	1900 \pm 400 (2.1%)	1670 \pm 190	1560
600	120	7	1	300 \pm 60 (1.1%)	138 \pm 26	178
800	120	7	1	131 \pm 25 (4.1%)	138 \pm 26	178
1000	180	7	1	4.4 \pm 1.0 (0.9%)	2.3 \pm 1.0	1
1200	180	7	1	1.86 \pm 0.31 (2.1%)	2.3 \pm 1.0	1

(\(\text{BR}(t), \text{BR}(b), \text{BR}(c) \) = (100%, 0%, 0%))

500	80	7	1	4600 \pm 800 (5.0%)	5900 \pm 700	5800
600	100	7	1	940 \pm 190 (3.5%)	940 \pm 140	936
800	120	7	1	108 \pm 18 (3.4%)	138 \pm 26	178
1000	120	7	1	42 \pm 6 (8.5%)	138 \pm 26	178
1200	180	7	1	1.3 \pm 0.4 (1.5%)	2.3 \pm 1.0	1

(\(\text{BR}(t), \text{BR}(b), \text{BR}(c) \) = (100%, 100%, 0%))

500	80	7	2	3600 \pm 600 (3.9%)	1670 \pm 190	1560
600	80	7	2	2300 \pm 400 (8.6%)	1670 \pm 190	1560
800	120	7	2	94 \pm 15 (3.0%)	38 \pm 17	56
1000	120	7	2	37 \pm 6 (7.5%)	38 \pm 17	56
1200	140	7	2	5.5 \pm 1.0 (6.2%)	10 \pm 5	18

with the observed data. Thus there is no indication of new physics in these results.

Systematic uncertainties associated with the scale and resolution of large-\(R \) jet mass and energy [65] are significantly reduced by the use of a data-driven background estimate: residual effects may remain due to differences between the 3jCR and the 4j regions, and these are reflected in the systematic uncertainties assessed by the difference between the template prediction and observed spectrum in the 4jCR. The uncertainties due to the background estimation method are dominated by propagation of the statistical uncertainty from the 3jCR: these are typically 5%–10%, except in the highest \(M_T^2 \) bins of SR100 and SR250, where they can extend to 20%–40%. In addition, the observed difference systematic uncertainty from the 4jCR varies from 5% to 15%. Signal reconstruction—both in terms of selection efficiency and the \(M_T^2 \) spectrum predicted for a given \(m_{\tilde{g}}, m_{\tilde{\chi}_1} \) combination—is sensitive to the kinematic uncertainties associated with the final-state jets in the analysis. The impacts of these systematic uncertainties are directly assessed by varying the kinematics within the uncertainties and reported in

Sec. VIII. Jet mass scale uncertainties have the largest effect, which for SR1 range from 30% for very low \(m_{\tilde{g}} \) to 15% for very high \(m_{\tilde{g}} \). In the cases of SR100 and SR250, the impact of the jet mass scale uncertainty also dominates, and varies across the \(M_T^2 \) spectrum from 10%–20% at lower \(M_T^2 \) up to 50% for the very highest \(M_T^2 \) bin in the spectrum for low \(m_{\tilde{g}} \). The luminosity uncertainty of 3% also affects the signal only.

VIII. RESULTS AND INTERPRETATIONS

As no significant excess is observed in data in either analysis, a procedure to set limits on the models of interest is performed. A profile likelihood ratio combining Poisson probabilities for signal and background is computed to determine the confidence level (CL) for consistency of the data with the signal-plus-background hypothesis (CL_{s+b}). A similar calculation is performed for the background-only hypothesis (CL_b). From the ratio of these two quantities, the confidence level for the presence of signal (CL_s) is determined [75]. Systematic uncertainties are treated via nuisance parameters assuming Gaussian distributions. In all cases, the nominal
The total-jet-mass analysis is designed to be agnostic to the flavor composition of the signal process and to remove any reliance on MC simulations of these complex hadronic final states. The jet-counting analysis provides the opportunity to enhance sensitivity to specific heavy-flavor compositions in the final state and to explore various assumptions on the branching ratios of the benchmark signal processes studied in this paper. The results obtained from the total-jet-mass analysis in the inclusive final state are presented first, and then the specific sensitivity provided by the jet-counting analysis to the full branching ratio space is presented.

A. Total-jet-mass analysis

The observed and expected event yields are presented in Tables II, III, and IV for the three signal regions SR1, SR100 and SR250 respectively. The single-bin signal cross section and uncertainty are taken from an envelope of cross-section predictions using different PDF sets and factorization and renormalization scales, as described in Ref. [76]. As discussed in Sec. IV, the region with \((m_{\tilde{g}} - m_{\tilde{q}^0}) < 100 \text{ GeV}\) is not considered in this analysis in order to ensure that the results are insensitive to the effects of ISR, since the uncertainties cannot be assessed for the UDD decays considered here.

The total-jet-mass analysis is designed to be agnostic to the flavor composition of the signal process and to remove any reliance on MC simulations of these complex hadronic final states. The jet-counting analysis provides the opportunity to enhance sensitivity to specific heavy-flavor compositions in the final state and to explore various assumptions on the branching ratios of the benchmark signal processes studied in this paper. The results obtained from the total-jet-mass analysis in the inclusive final state are presented first, and then the specific sensitivity provided by the jet-counting analysis to the full branching ratio space is presented.
region selection (SR1) is reported in addition to the binned M_{T2} results in SR100 and SR250 in order to provide yields that can be easily reinterpreted for other signal hypotheses. In the case of the binned M_{T2} signal regions, a binned fit (where the number and size of the bins were optimized) is performed that takes into account the predictions for each M_{T2} range. This approach provides greater sensitivity to small deviations from the template predictions. The correlation of the uncertainties in the bins of the M_{T2} spectrum are accounted for by evaluating the full correlation matrix. The result leads the analysis to treat the different bins as fully uncorrelated for the variance, which is the largest component of the background uncertainties. All other uncertainties treat the bins of the M_{T2} spectrum as fully correlated.

Figure 14 shows both the expected and observed 95% CL limits in the $(m_{\tilde{g}}, m_{\tilde{\chi}_1^0})$ mass plane when the signal region that provides the best expected exclusion is used for each mass combination. The dashed black line shows the expected exclusion limits, and the yellow band represents the experimental uncertainties on this limit. The solid line shows the observed limit, with the finely dashed lines indicating the $\pm 1\sigma$ variations due to theoretical uncertainties on the signal production cross section given by renormalization and factorization scale and PDF uncertainties. All mass limits are reported conservatively assuming the $-1\sigma_{\text{theory}}$ signal production cross section. At low $m_{\tilde{g}}$, the region with gluino mass $m_{\tilde{g}} \gtrsim 750$ GeV is excluded. Excluded $m_{\tilde{g}}$ masses rise with increasing $m_{\tilde{\chi}_1^0}$.
up to a maximum exclusion of approximately $m_{\tilde{b}} \lesssim 870$ GeV at $m_{\tilde{p}_0} = 600$ GeV. No models with $m_{\tilde{p}_0} > 650$ GeV are excluded.

B. Jet-counting analysis

In order to set limits on individual branching ratios, it is necessary to refer to the structure of the couplings that are allowed. From Eq. (1), it is clear that each RPV decay produces exactly two down-type quarks of different flavor and one up-type quark. Since the cross section for gluino production is not dependent upon the λ''_{ijk} parameters, it is not possible to directly probe or set limits upon any individual λ''_{ijk} Parameter. Instead, results are categorized based upon the probability for a RPV decay to produce a t-quark, a b-quark, or a c-quark. These branching ratios are denoted by $\text{BR}(t)$, $\text{BR}(b)$, and $\text{BR}(c)$, respectively. These branching ratios are partially constrained. The branching ratios for decays including u_-, c_-, and t-quarks (all given by the flavor index i in the λ''_{ijk} couplings) must sum to one and must therefore satisfy $\text{BR}(t) + \text{BR}(c) \leq 1$. The branching ratios to decays including each down-type quark (as given by the flavor indices j and k in the λ''_{ijk} couplings) are independent of the up-type branching ratios. At most, one b-quark can be produced in such a RPV decay. Simultaneous nonzero λ''_{ijk} values can result in nontrivial branching ratio combinations.

Results using the jet-counting analysis are determined for different hypotheses on the branching ratios of RPV decays to t, b, c, and light-flavor quarks. The selection requirements for the signal regions are optimized separately for each of these hypotheses. When running the optimization, the full limit-setting procedure is performed under the assumption that the expected number of background events is observed in the data, taking all statistical and systematic uncertainties into account. The results of this optimization are provided in Table V. The first portion of Table V shows the optimization results and the comparison of the data with background predictions for the six-quark signal models under the assumption that $(\text{BR}(t), \text{BR}(b), \text{BR}(c)) = (0\%, 0\%, 0\%)$. In this simple model, it is equivalent to say that only the term given by λ_{ij}'' is nonzero. Explicitly, this flavor hypothesis forces the RPV decays to result only in light quarks. Below this, the table shows the same comparisons under the assumption that $(\text{BR}(t), \text{BR}(b), \text{BR}(c)) = (0\%, 100\%, 0\%)$ corresponding to only RPV terms given by λ_{112}' and λ_{12}''. The second half of Table V is analogous to the first, only with $\text{BR}(t) = 100\%$. The signal acceptance is largely affected by $\text{BR}(t)$ and $\text{BR}(b)$ due to the presence of signal regions with b-tagged jets. Because this search requires many high-p_T jets, increased $\text{BR}(t)$ results in a lower acceptance from larger energy sharing in a higher multiplicity of final-state objects. For this reason, the corners of the $\text{BR}(b)$ vs $\text{BR}(b)$ space are shown here. Since the sensitivity to increased $\text{BR}(c)$ comes from b-tagging configurations that are designed to efficiently select b-jets, the effect on the signal acceptance is dominated by $\text{BR}(b)$. For this reason, the focus of this discussion is on the $\text{BR}(b)$ degree of freedom. However, several results with various values of $\text{BR}(c)$ are presented below.
The data in the signal regions are shown in Figs. 12 and 13 for various flavor branching ratio hypotheses as a function of gluino mass for the six-quark model. These results show both the expected and observed cross-section limits in comparison to the predicted cross section from the theory. Under the assumption that all RPV decays are to light-flavor quarks ($\text{BR}(b) = \text{BR}(t) = \text{BR}(c) = 0\%$), gluino masses of $m_{\tilde{g}} < 853$ GeV (expected) and $m_{\tilde{g}} < 917$ GeV (observed) are excluded at the 95% CL. Alternatively for the scenario where $\text{BR}(b) = 100\%$ while the other heavy-flavor branching ratios are zero, exclusions of $m_{\tilde{g}} < 921$ GeV (expected) and $m_{\tilde{g}} < 929$ GeV (observed) are found. Similarly, for the case where $\text{BR}(b) = \text{BR}(t) = 100\%$, exclusions of $m_{\tilde{g}} < 938$ GeV (expected) and $m_{\tilde{g}} < 874$ GeV (observed) are found. More generally, excluded masses as a function of the branching ratios of the decays are presented in Figs. 14 and 15 where each bin shows the maximum gluino mass that is excluded for the given decay mode.

The event selection is optimized separately for the ten-quark model. Table VI shows the results for the ten-quark model with all UDD couplings allowed, as in the total-jet-mass analysis, when the number of b-tagged jets is also used as a variable in the optimization procedure. For the flavor-agnostic model where all couplings are equal, Fig. 16(a) shows both the expected and observed limits in the $(m_{\tilde{g}}, m_{\chi^0_1})$ mass plane when the signal region that provides the best expected exclusion is used for each mass point, not including signal regions containing b-tagged jets. The shapes of the contours are given by discontinuous changes in the optimized signal regions and fluctuations well within the given uncertainties. At $m_{\tilde{g}} \sim 100$ GeV, models with $m_{\tilde{g}} \lesssim 700$ GeV are excluded. Figure 16(b) shows the exclusion when signal regions with b-tagged jets are considered as part of the optimization and increase the sensitivity up to $m_{\tilde{g}} \lesssim 1$ TeV for moderate $m_{\tilde{g}} - m_{\chi^0_1}$ mass splittings. In the ten-quark model, there is a significant probability that the cascade decays of the gluinos produce at least one b- or t-quark, and so the requirement of a b-tagged jet improves the sensitivity of the analysis.

C. Comparisons

Model-independent upper limits on non-SM contributions are derived separately for each analysis, using the SR1 signal region for the total-jet-mass analysis. A set of generic signal models, each of which contributes only to the individual signal region, is assumed and no experimental or theoretical signal systematic uncertainties are assigned other than the luminosity uncertainty. A fit is performed in the signal regions to determine the maximum number of signal events which would still be consistent with the background estimate. The resulting limits on the number of non-SM events and on the visible signal cross section are shown in the rightmost columns of Table VII. The visible signal cross section (σ_{vis}) is defined as the product of acceptance (A), reconstruction efficiency (ϵ) and production cross section (σ_{prod}); it is obtained by dividing the upper limit on the number of non-SM events by the integrated luminosity. The results of these fits are provided in Table VII.
total-jet-mass analyses are displayed together in Fig. 17 for

The interpretations of the results of the jet-counting and
total-jet-mass analyses are displayed together in Fig. 17 for
the ten-quark model. This figure allows for the direct
comparison of the results of the various analyses. Without
b-tagging requirements, the jet-counting analysis sets
slightly lower expected limits than the total-jet-mass
analysis. With b-tagging requirements, the limits are
stronger for the jet-counting analysis. The observed limits
from the total-jet-mass analysis and jet-counting analysis
with b-tagging requirements are also comparable.

<table>
<thead>
<tr>
<th>Signal Region</th>
<th>Expected</th>
<th>Observed</th>
<th>p_0</th>
<th>$N_{\text{non-SM}}$ Expected</th>
<th>$N_{\text{non-SM}}$ Observed</th>
<th>σ_{vis} [fb] Expected</th>
<th>σ_{vis} [fb] Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle n_{\text{jet}}, p_T^{\text{jet}}, n_{b\text{-tags}} \rangle = (7, 120 \text{ GeV}, 0)$</td>
<td>160$^{+40}_{-34}$</td>
<td>176</td>
<td>0.39</td>
<td>49</td>
<td>64</td>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td>$\langle n_{\text{jet}}, p_T^{\text{jet}}, n_{b\text{-tags}} \rangle = (7, 180 \text{ GeV}, 0)$</td>
<td>370 ± 60</td>
<td>444</td>
<td>0.12</td>
<td>44</td>
<td>38</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>$\langle n_{\text{jet}}, p_T^{\text{jet}}, n_{b\text{-tags}} \rangle = (7, 120 \text{ GeV}, 1)$</td>
<td>6.1 ± 2.2</td>
<td>4</td>
<td>≥ 0.5</td>
<td>19</td>
<td>10</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>$\langle n_{\text{jet}}, p_T^{\text{jet}}, n_{b\text{-tags}} \rangle = (7, 180 \text{ GeV}, 1)$</td>
<td>138 ± 26</td>
<td>178</td>
<td>0.09</td>
<td>56</td>
<td>42</td>
<td>2.8</td>
<td>2.1</td>
</tr>
<tr>
<td>$\langle n_{\text{jet}}, p_T^{\text{jet}}, n_{b\text{-tags}} \rangle = (7, 80 \text{ GeV}, 2)$</td>
<td>2.3 ± 1.0</td>
<td>1</td>
<td>≥ 0.5</td>
<td>4</td>
<td>4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>$\langle n_{\text{jet}}, p_T^{\text{jet}}, n_{b\text{-tags}} \rangle = (7, 120 \text{ GeV}, 2)$</td>
<td>1670 ± 190</td>
<td>1560</td>
<td>≥ 0.5</td>
<td>38</td>
<td>38</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>$\langle n_{\text{jet}}, p_T^{\text{jet}}, n_{b\text{-tags}} \rangle = (7, 120 \text{ GeV}, 2)$</td>
<td>38 ± 17</td>
<td>56</td>
<td>0.17</td>
<td>36</td>
<td>52</td>
<td>1.8</td>
<td>2.6</td>
</tr>
</tbody>
</table>

IX. CONCLUSIONS

A search is presented for heavy particles decaying
into complex multijet final states using an integrated
luminosity of $20.3 \pm 0.6 \text{ fb}^{-1}$ of $\sqrt{s} = 8 \text{ TeV}$ pp
collisions with the ATLAS detector at the LHC. Two
strategies are used for both background estimation
and signal discrimination. An inclusive data-driven
analysis using the total jet mass with a template method
for background estimation is performed as well as a jet-
counting analysis that includes exclusive heavy-flavor
signal regions and provides limits on different branching
ratios for the benchmark SUSY RPV UDD decays. For
the ten-quark model, results from both analyses are
presented with comparable conclusions. When the jet-
counting analysis includes sensitivity to heavy flavor
given by b-tagging requirements, mass exclusions are
further increased.

Exclusion limits at the 95% CL are set extending up to
$m_{\tilde{g}} = 917 \text{ GeV}$ in the case of pair-produced gluino
decays to six light quarks and up to $m_{\tilde{g}} = 1 \text{ TeV}$ in the case of
cascade decays to ten quarks for moderate $m_{\tilde{g}} - m_{\tilde{\chi}^0}$
mass splittings. Limits are also set on different branching
ratios by accounting for all possible decay modes allowed by
the λ^{ij} couplings in full generality in the context of R-parity-
violating supersymmetry. These results represent the first
direct limits on many of the models considered as well as
the most stringent direct limits to date on those models
previously considered by other analyses.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the
LHC, as well as the support staff from our institutions
without whom ATLAS could not be operated efficiently.

[34] B. Allanach, A. Dedes, and H. K. Dreiner, Bounds on R-parity violating couplings at the weak scale and at the GUT scale, Phys. Rev. D 60, 075014 (1999).

SEARCH FOR MASSIVE SUPERSYMMETRIC PARTICLES …

PHYSICAL REVIEW D 91, 112016 (2015)

Department of Physics and Astronomy, University College London, London, United Kingdom
Department of Physics, Louisiana Tech University, Ruston LA, USA
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Physiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, USA
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Group of Particle Physics, University of Montreal, Montreal, Québec, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli, Italy
Dipartimento di Fisica, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York, New York, USA
Ohio State University, Columbus, Ohio, USA
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Petersburg Nuclear Physics Institute, Gatchina, Russia
INFN Sezione di Pisa, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
Laboratorio de Instrumentacao e Física Experimental de Partículas - LIP, Lisboa, Portugal
Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
Department of Physics, University of Coimbra, Coimbra, Portugal
Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
Deceased.

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at TRIUMF, Vancouver, British Columbia, Canada.

Also at Department of Physics, California State University, Fresno, California, USA.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.

Also at Tomsk State University, Tomsk, Russia.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at Louisiana Tech University, Ruston, Louisiana, USA.

Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.

Also at Department of Physics, National Tsing Hua University, Taiwan.

Also at Department of Physics, The University of Texas at Austin, Austin, Texas, USA.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.

Also at Georgian Technical University (GTU), Tbilisi, Georgia.

Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.

Also at Manhattan College, New York, New York, USA.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at International School for Advanced Studies (SISSA), Trieste, Italy.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina, USA.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Stanford University, Stanford, California, USA.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.