Combined measurement of the Higgs boson mass in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS experiments

DOI
10.1103/PhysRevLett.114.191803

Publication date
2015

Document Version
Final published version

Published in
Physical Review Letters

License
CC

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments

G. Aad et al.

(Received 25 March 2015; published 14 May 2015)

A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is $m_H = 125.09 \pm 0.21$ (stat) ± 0.11 (syst) GeV.

DOI: 10.1103/PhysRevLett.114.191803 PACS numbers: 14.80.Bn, 13.85.Qk

The study of the mechanism of electroweak symmetry breaking is one of the principal goals of the CERN LHC program. In the standard model (SM), this symmetry breaking is achieved through the introduction of a complex doublet scalar field, leading to the prediction of the Higgs boson H [1–6], whose mass m_H is, however, not predicted by the theory. In 2012, the ATLAS and CMS Collaborations at the LHC announced the discovery of a particle with Higgs-boson-like properties and a mass of about 125 GeV [7–9]. The discovery was based primarily on mass peaks observed in the $\gamma\gamma$ and $ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-$ (denoted $H \rightarrow ZZ \rightarrow 4\ell$ for simplicity) decay channels, where one or both of the Z bosons can be off shell and where ℓ and ℓ' denote an electron or muon. With m_H known, all properties of the SM Higgs boson, such as its production cross section and partial decay widths, can be predicted. Increasingly precise measurements [10–13] have established that all observed properties of the new particle, including its spin, parity, and coupling strengths to SM particles are consistent within the uncertainties with those expected for the SM Higgs boson.

The ATLAS and CMS Collaborations have independently measured m_H using the samples of proton-proton collision data collected in 2011 and 2012, commonly referred to as LHC Run 1. The analyzed samples correspond to approximately 5 fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 7$ TeV, and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV, for each experiment. Combined results in the context of the separate experiments, as well as those in the individual channels, are presented in Refs. [12,14–16].

This Letter describes a combination of the Run 1 data from the two experiments, leading to improved precision for m_H. Besides its intrinsic importance as a fundamental parameter, improved knowledge of m_H yields more precise predictions for the other Higgs boson properties. Furthermore, the combined mass measurement provides a first step towards combinations of other quantities, such as the couplings. In the SM, m_H is related to the values of the masses of the W boson and top quark through loop-induced effects. Taking into account other measured SM quantities, the comparison of the measurements of the Higgs boson, W boson, and top quark masses can be used to directly test the consistency of the SM [17] and thus to search for evidence of physics beyond the SM.

The combination is performed using only the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ decay channels, because these two channels offer the best mass resolution. Interference between the Higgs boson signal and the continuum background is expected to produce a downward shift of the signal peak relative to the true value of m_H. The overall effect in the $H \rightarrow \gamma\gamma$ channel [18–20] is expected to be a few tens of MeV for a Higgs boson with a width near the SM value, which is small compared to the current precision. The effect in the $H \rightarrow ZZ \rightarrow 4\ell$ channel is expected to be much smaller [21]. The effects of the interference on the mass spectra are neglected in this Letter.

The ATLAS and CMS detectors [22,23] are designed to precisely reconstruct charged leptons, photons, hadronic jets, and the imbalance of momentum transverse to the direction of the beams. The two detectors are based on different technologies requiring different reconstruction and calibration methods. Consequently, they are subject to different sources of systematic uncertainty.

The $H \rightarrow \gamma\gamma$ channel is characterized by a narrow resonant signal peak containing several hundred events per experiment above a large falling continuum background. The overall signal-to-background ratio is a few...
percent. Both experiments divide the $H \to \gamma\gamma$ events into different categories depending on the signal purity and mass resolution, as a means to improve sensitivity. While CMS uses the same analysis procedure for the measurement of the Higgs boson mass and couplings [15], ATLAS implements separate analyses for the couplings [24] and for the mass [14]; the latter analysis classifies events in a manner that reduces the expected systematic uncertainties in m_H.

The $H \to ZZ \to 4\ell$ channel yields only a few tens of signal events per experiment, but has very little background, resulting in a signal-to-background ratio larger than 1. The events are analyzed separately depending on the flavor of the lepton pairs. To extract m_H, ATLAS employs a two-dimensional (2D) fit to the distribution of the four-lepton mass and a kinematic discriminant introduced to reject the main background, which arises from ZZ continuum production. The CMS procedure is based on a three-dimensional fit, utilizing the four-lepton mass distribution, a kinematic discriminant, and the estimated event-by-event uncertainty in the four-lepton mass. Both analyses are optimized for the mass measurement and neither attempts to distinguish between different Higgs boson production mechanisms.

There are only minor differences in the parametrizations used for the present combination compared to those used for the combination of the two channels by the individual experiments. These differences have almost no effect on the results.

The measurement of m_H, along with its uncertainty, is based on the maximization of profile-likelihood ratios $\Lambda(\alpha)$ in the asymptotic regime [25,26]:

$$\Lambda(\alpha) = \frac{L(\alpha, \hat{\theta}(\alpha))}{L(\hat{\alpha}, \theta)},$$

(1)

where L represents the likelihood function, α the parameters of interest, and θ the nuisance parameters. There are three types of nuisance parameters: those corresponding to systematic uncertainties, the fitted parameters of the background models, and any unconstrained signal model parameters not relevant to the particular hypothesis under test. Systematic uncertainties are discussed below. The other two types of nuisance parameters are incorporated into the statistical uncertainty. The θ terms are profiled, i.e., for each possible value of a parameter of interest (e.g., m_H), all nuisance parameters are refitted to maximize L. The $\hat{\alpha}$ and $\hat{\theta}$ terms denote the unconditional maximum likelihood estimates of the best-fit values for the parameters, while $\hat{\theta}(\alpha)$ is the conditional maximum likelihood estimate for given parameter values α.

The likelihood functions L are constructed using signal and background probability density functions (PDFs) that depend on the discriminating variables: for the $H \to \gamma\gamma$ channel, the diphoton mass, and, for the $H \to ZZ \to 4\ell$ channel, the four-lepton mass (for CMS, also its uncertainty) and the kinematic discriminant. The signal PDFs are derived from samples of Monte Carlo (MC) simulated events. For the $H \to ZZ \to 4\ell$ channel, the background PDFs are determined using a combination of simulation and data control regions. For the $H \to \gamma\gamma$ channel, the background PDFs are obtained directly from the fit to the data. The profile-likelihood fits to the data are performed as a function of m_H and the signal-strength scale factors defined below. The fitting framework is implemented independently by ATLAS and CMS, using the ROOFT [27], ROOSTATS [28], and HISTFACTORY [29] data modeling and handling packages.

Despite the current agreement between the measured Higgs boson properties and the SM predictions, it is pertinent to perform a mass measurement that is as independent as possible of SM assumptions. For this purpose, three signal-strength scale factors are introduced and profiled in the fit, thus reducing the dependence of the results on assumptions about the Higgs boson couplings and about the variation of the production cross section (σ) times branching fraction (BF) with the mass. The signal strengths are defined as $\mu = (\sigma_{\text{exp}} \times \text{BF}_{\text{exp}})/(\sigma_{\text{SM}} \times \text{BF}_{\text{SM}})$, representing the ratio of the cross section times branching fraction in the experiment to the corresponding SM expectation for the different production and decay modes. Two factors, $\mu_{\gamma\gamma}^{ggF+tH}$ and $\mu_{VBF+VH}^{\gamma\gamma}$, are used to scale the signal strength in the $H \to \gamma\gamma$ channel. The production processes involving Higgs boson couplings to fermions, namely gluon fusion (ggF) and associated production with a top quark-antiquark pair ($t\bar{t}H$), are scaled with the $\mu_{ggF+\bar{t}H}$ factor. The production processes involving couplings to vector bosons, namely vector boson fusion (VBF) and associated production with a vector boson (VH), are scaled with the μ_{VBF+VH} factor. The third factor $\mu_4^{\ell\ell}$ is used to scale the signal strength in the $H \to ZZ \to 4\ell$ channel. Only a single signal-strength parameter is used for $H \to ZZ \to 4\ell$ events because the m_H measurement in this case is found to exhibit almost no sensitivity to the different production mechanisms.

The procedure based on the two scale factors $\mu_{\gamma\gamma}^{ggF+\bar{t}H}$ and $\mu_{VBF+VH}^{\gamma\gamma}$ for the $H \to \gamma\gamma$ channel was previously employed by CMS [15] but not by ATLAS. Instead, ATLAS relied on a single $H \to \gamma\gamma$ signal-strength scale factor. The additional degree of freedom introduced by ATLAS for the present study results in a shift of about 40 MeV in the ATLAS $H \to \gamma\gamma$ result, leading to a shift of 20 MeV in the ATLAS combined mass measurement.

The individual signal strengths $\mu_{\gamma\gamma}^{ggF+\bar{t}H}$, $\mu_{VBF+VH}^{\gamma\gamma}$, and $\mu_4^{\ell\ell}$ are assumed to be the same for ATLAS and CMS, and are profiled in the combined fit for m_H. The corresponding profile-likelihood ratio is

$$\Lambda(m_H) = \frac{L(m_H, \hat{\mu}_{\gamma\gamma}^{ggF+\bar{t}H}(m_H), \hat{\mu}_{VBF+VH}^{\gamma\gamma}(m_H), \hat{\mu}_4^{\ell\ell}(m_H), \hat{\theta}(m_H))}{L(\hat{m}_H, \hat{\mu}_{\gamma\gamma}^{ggF+\bar{t}H}, \hat{\mu}_{VBF+VH}^{\gamma\gamma}, \hat{\mu}_4^{\ell\ell}, \hat{\theta})}. $$

(2)
Slightly more complex fit models are used, as described below, to perform additional compatibility tests between the different decay channels and between the results from ATLAS and CMS.

Combining the ATLAS and CMS data for the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels according to the above procedure, the mass of the Higgs boson is determined to be

$$m_H = 125.09 \pm 0.24 \text{ GeV}$$

$$= 125.09 \pm 0.21 \text{ (stat) ± 0.11 (syst) GeV},$$ \hspace{1cm} (3)

where the total uncertainty is obtained from the width of a negative log-likelihood ratio scan with all parameters profiled. The statistical uncertainty is determined by fixing all nuisance parameters to their best-fit values, except for the three signal-strength scale factors and the $H \rightarrow \gamma\gamma$ background function parameters, which are profiled. The systematic uncertainty is determined by subtracting in quadrature the statistical uncertainty from the total uncertainty. Equation (3) shows that the uncertainties in the m_H measurement are dominated by the statistical term, even when the Run 1 data sets of ATLAS and CMS are combined. Figure 1 shows the negative log-likelihood ratio scans as a function of m_H, with all nuisance parameters profiled (solid curves), and with the nuisance parameters fixed to their best-fit values (dashed curves).

The signal strengths at the measured value of m_H are found to be $\mu_{ggF+iH} = 1.15^{+0.28}_{-0.25}$, $\mu_{VBF+VH} = 1.17^{+0.58}_{-0.53}$, and $\mu_{4\ell} = 1.40^{+0.30}_{-0.25}$. The combined overall signal strength μ (with $\mu_{ggF+iH} = \mu_{VBF+VH} = \mu_{4\ell} \equiv \mu$) is $\mu = 1.24^{+0.18}_{-0.16}$.

The results reported here for the signal strengths are not expected to have the same sensitivity, nor exactly the same values, as those that would be extracted from a combined analysis optimized for the coupling measurements.

The combined ATLAS and CMS results for m_H in the separate $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels are

$$m_H^{\gamma\gamma} = 125.07 \pm 0.29 \text{ GeV}$$

$$= 125.07 \pm 0.25 \text{ (stat) ± 0.14 (syst) GeV}$$ \hspace{1cm} (4)

and

$$m_H^{ZZ} = 125.15 \pm 0.40 \text{ GeV}$$

$$= 125.15 \pm 0.37 \text{ (stat) ± 0.15 (syst) GeV}. \hspace{1cm} (5)$$

The corresponding likelihood ratio scans are shown in Fig. 1. For the $H \rightarrow ZZ \rightarrow 4\ell$ channel, the systematic uncertainty is dominated by the absolute scale uncertainty in the momentum measurement for the muons and in the momentum and energy measurements for the electrons. Large samples (> 107 events) of dilepton decays of the J/ψ, $\Upsilon(nS)$, and Z resonances are used by both experiments to evaluate the absolute scales and to correct for residual misalignments in the inner tracker systems [14,16].

The systematic uncertainty in the ATLAS m_H result from $H \rightarrow ZZ \rightarrow 4\ell$ decays was conservatively set to 60 MeV in Ref. [14] to account for the limited numerical precision in its estimate. A more precise procedure, resulting in a reduced systematic uncertainty of 40 MeV, is used here. For CMS, conservative systematic uncertainties of 0.1% for the $H \rightarrow ZZ \rightarrow 4\ell$ and $2\mu2e$ channels, and 0.3% for the $H \rightarrow ZZ \rightarrow 4\ell$ channel, were obtained in Ref. [16] and are used here.

A summary of the results from the individual analyses and their combination is presented in Fig. 2.

The observed uncertainties in the combined measurement can be compared with expectations. The latter are evaluated by generating two Asimov data sets [26], where an Asimov data set is a representative event sample that provides both the median expectation for an experimental result and its expected statistical variation, in the asymptotic approximation, without the need for an extensive MC-based calculation. The first Asimov data set is a “prefit” sample, generated using $m_H = 125.0 \text{ GeV}$ and the SM predictions for the couplings, with all nuisance parameters fixed to their nominal values. The second Asimov data set is a “postfit” sample, in which m_H, the three signal strengths μ_{ggF+iH}, μ_{VBF+VH}, and $\mu_{4\ell}$, and all nuisance parameters are fixed to their best-fit estimates from the data. The expected uncertainties for the combined mass are

$$\delta m_{\text{prefit}} = \pm 0.24 \text{ GeV}$$

$$= \pm 0.22 \text{ (stat) ± 0.10 (syst) GeV} \hspace{1cm} (6)$$

FIG. 1 (color online). Scans of twice the negative log-likelihood ratio $-2\ln \Lambda(m_H)$ as functions of the Higgs boson mass m_H for the ATLAS and CMS combination of the $H \rightarrow \gamma\gamma$ (red), $H \rightarrow ZZ \rightarrow 4\ell$ (blue), and combined (black) channels. The dashed curves show the results accounting for statistical uncertainties only, with all nuisance parameters associated with systematic uncertainties fixed to their best-fit values. The 1 and 2 standard deviation limits are indicated by the intersections of the horizontal lines at 1 and 4, respectively, with the log-likelihood scan curves.
results in an increase of the Higgs boson mass that is about 70 MeV larger than the nominal result with a comparable uncertainty. The increase in the central value reflects the combined effect of the systematic uncertainties. The (red) vertical line and corresponding (gray) shaded column indicate the central value and the total uncertainty of the combined measurement, respectively. (black error bars) uncertainties are indicated. The (red) vertical line and corresponding (gray) shaded column indicate the central value and the total uncertainty of the combined measurement, respectively.

FIG. 2 (color online). Summary of Higgs boson mass measurements from the individual analyses of ATLAS and CMS and from the combined analysis presented here. The systematic (narrower, magenta-shaded bands), statistical (wider, yellow-shaded bands), and total (black error bars) uncertainties are indicated. The (red) vertical line and corresponding (gray) shaded column indicate the central value and the total uncertainty of the combined measurement, respectively.

for the prefit case and

$$\delta m_{H_{\text{postfit}}} = \pm 0.22 \text{ GeV}$$

$$= \pm 0.19 \text{ (stat)} \pm 0.10 \text{ (syst)} \text{ GeV} \quad (7)$$

for the postfit case, which are both very similar to the observed uncertainties reported in Eq. (3).

Constraining all signal yields to their SM predictions results in an m_H value that is about 70 MeV larger than the nominal result with a comparable uncertainty. The increase in the central value reflects the combined effect of the higher-than-expected $H \rightarrow ZZ \rightarrow 4\ell$ measured signal strength and the increase of the $H \rightarrow ZZ$ branching fraction with m_H. Thus, the fit assuming SM couplings forces the mass to a higher value in order to accommodate the value $\mu = 1$ expected in the SM.

Since the discovery, both experiments have improved their understanding of the electron, photon, and muon measurements [16,30–34], leading to a significant reduction of the systematic uncertainties in the mass measurement. Nevertheless, the treatment and understanding of systematic uncertainties is an important aspect of the individual measurements and their combination. The combined analysis incorporates approximately 300 nuisance parameters. Among these, approximately 100 are fitted parameters describing the shapes and normalizations of the background models in the $H \rightarrow \gamma\gamma$ channel, including a number of discrete parameters that allow the functional form in each of the CMS $H \rightarrow \gamma\gamma$ analysis categories to be changed [35]. Of the remaining almost 200 nuisance parameters, most correspond to experimental or theoretical systematic uncertainties.

Based on the results from the individual experiments, the dominant systematic uncertainties for the combined m_H result are expected to be those associated with the energy or momentum scale and its resolution: for the photons in the $H \rightarrow \gamma\gamma$ channel and for the electrons and muons in the $H \rightarrow ZZ \rightarrow 4\ell$ channel [14–16]. These uncertainties are assumed to be uncorrelated between the two experiments since they are related to the specific characteristics of the detectors as well as to the calibration procedures, which are fully independent except for negligible effects due to the use of the common Z boson mass [36] to specify the absolute energy and momentum scales. Other experimental systematic uncertainties [14–16] are similarly assumed to be uncorrelated between the two experiments. Uncertainties in the theoretical predictions and in the measured integrated luminosities are treated as fully and partially correlated, respectively.

To evaluate the relative importance of the different sources of systematic uncertainty, the nuisance parameters are grouped according to their correspondence to three broad classes of systematic uncertainty: (1) uncertainties in the energy or momentum scale and resolution for photons, electrons, and muons (“scale”), (2) theoretical uncertainties, e.g., uncertainties in the Higgs boson cross section and branching fractions, and in the normalization of SM background processes (“theory”), (3) other experimental uncertainties (“other”).

First, the total uncertainty is obtained from the full profile-likelihood scan, as explained above. Next, parameters associated with the scale terms are fixed and a new scan is performed. Then, in addition to the scale terms, the parameters associated with the theory terms are fixed and a scan performed. Finally, in addition, the other parameters are fixed and a scan performed. Thus the fits are performed iteratively, with the different classes of nuisance parameters cumulatively held fixed to their best-fit values. The uncertainties associated with the different classes of nuisance parameters are defined by the difference in quadrature
between the uncertainties resulting from consecutive scans. The statistical uncertainty is determined from the final scan, with all nuisance parameters associated with systematic terms held fixed, as explained above. The result is

\[
m_H = 125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (scale)} \pm 0.02 \text{ (other)} \\
\pm 0.01 \text{ (theory) GeV,}
\]

(8)

from which it is seen that the systematic uncertainty is indeed dominated by the energy and momentum scale terms. The result in Eq. (8) is consistent with the values of \(m_H\) derived from the less precise \(WW\) and \(\tau\tau\) Higgs boson decay modes [37–40].

The relative importance of the various sources of systematic uncertainty is further investigated by dividing the nuisance parameters into yet-finer groups, with each group associated with a specific underlying effect, and evaluating the impact of each group on the overall mass uncertainty. The matching of nuisance parameters to an effect is not strictly rigorous because nuisance parameters in the two experiments do not always represent exactly the same effect and in some cases multiple effects are related to the same nuisance parameter. Nevertheless, the relative impact of the different effects can be explored. A few experiment-specific groups of nuisance parameters are defined. For example, ATLAS includes a group of nuisance parameters to account for the inaccuracy of the background modeling for the \(H \to \gamma\gamma\) channel. To model this background, ATLAS uses specific analytic functions in each category [14] while CMS simultaneously considers different background parametrizations [35]. The systematic uncertainty in \(m_H\) related to the background modeling in CMS is estimated to be negligible [15].

The impact of groups of nuisance parameters is evaluated starting from the contribution of each individual nuisance parameter to the total uncertainty. This contribution is defined as the mass shift \(\delta m_H\) observed when reevaluating the profile-likelihood ratio after fixing the nuisance parameter in question to its best-fit value increased or decreased by 1 standard deviation (\(\sigma\)) in its distribution. For a nuisance parameter whose PDF is a Gaussian distribution, this shift corresponds to the contribution of that particular nuisance parameter to the final uncertainty. The impact of a group of nuisance parameters is estimated by summing in quadrature the contributions from the individual parameters.

The impacts \(\delta m_H\) due to each of the considered effects are listed in Table I. The results are reported for the four individual channels, both for the data and (in parentheses) the prefit Asimov data set. The row labeled “Systematic uncertainty (sum in quadrature)” shows the total sums in quadrature of the individual terms in the table. The row labeled “Systematic uncertainty (nominal)” shows the corresponding total systematic uncertainties derived using the subtraction in quadrature method discussed in connection with Eq. (3). The two methods to evaluate the total systematic uncertainty are seen to agree within 10 MeV, which is comparable with the precision of the estimates. The two rightmost columns of Table I list the contribution of each group of nuisance parameters to the uncertainties in the combined mass measurement, for ATLAS and CMS separately.

The statistical and total uncertainties are summarized in the bottom section of Table I. Since the weight of a channel in the final combination is determined by the inverse of the squared uncertainty, the approximate relative weights for the combined result are 19% (\(H \to \gamma\gamma\)) and 18% (\(H \to ZZ \to 4\ell\)) for ATLAS, and 40% (\(H \to \gamma\gamma\)) and 23% (\(H \to ZZ \to 4\ell\)) for CMS. These weights are reported in the last row of Table I, along with the expected values.

Figure 3 presents the impact of each group of nuisance parameters on the total systematic uncertainty in the mass measurement of ATLAS, CMS, and the combination. For the individual ATLAS and CMS measurements, the results in Fig. 3 are approximately equivalent to the sum in quadrature of the respective \(\delta m_H\) terms in Table I multiplied by their analysis weights, after normalizing these weights to correspond to either ATLAS only or CMS only. The ATLAS and CMS combined results in Fig. 3 are the sum in quadrature of the combined results in Table I.

The results in Table I and Fig. 3 establish that the largest systematic effects for the mass uncertainty are those related to the determination of the energy scale of the photons, followed by those associated with the determination of the electron and muon momentum scales. Since the CMS \(H \to \gamma\gamma\) channel has the largest weight in the combination, its impact on the systematic uncertainty of the combined result is largest.

The mutual compatibility of the \(m_H\) results from the four individual channels is tested using a likelihood ratio with four masses in the numerator and a common mass in the denominator, and thus three degrees of freedom. The three signal strengths are profiled in both the numerator and denominator as in Eq. (1). The resulting compatibility, defined as the asymptotic \(p\) value of the fit, is 10%. Allowing the ATLAS and CMS signal strengths to vary independently yields a compatibility of 7%. This latter fit results in an \(m_H\) value that is 40 MeV larger than the nominal result.

The compatibility of the combined ATLAS and CMS mass measurement in the \(H \to \gamma\gamma\) channel with the combined measurement in the \(H \to ZZ \to 4\ell\) channel is evaluated using the variable \(\Delta m_Z \equiv m_{H\gamma\gamma} - m_{H4\ell}^\text{fit}\) as the parameter of interest, with all other parameters, including \(m_H\), profiled. Similarly, the compatibility of the ATLAS combined mass measurement in the two channels with the CMS combined measurement in the two channels is evaluated using the variable \(\Delta m_{Z\gamma\gamma}^\text{expt} \equiv m_{H\gamma\gamma}^\text{ATLAS} - m_{H\gamma\gamma}^\text{CMS}\). The observed results, \(\Delta m_Z = -0.1 \pm 0.5\) GeV and \(\Delta m_{Z\gamma\gamma}^\text{expt} = 0.4 \pm 0.5\) GeV, are both consistent with zero within 1\(\sigma\). The difference between the mass values in
TABLE I. Systematic uncertainties δm_H (see text) associated with the indicated effects for each of the four input channels, and the corresponding contributions of ATLAS and CMS to the systematic uncertainties of the combined result. “ECAL” refers to the electromagnetic calorimeters. The numbers in parentheses indicate expected values obtained from the prefit Asimov data set discussed in the text. The uncertainties for the combined result are related to the values of the individual channels through the relative weight of the individual channel in the combination, which is proportional to the inverse of the respective uncertainty squared. The top section of the table divides the sources of systematic uncertainty into three classes, which are discussed in the text. The bottom section of the table shows the total systematic uncertainties estimated by adding the individual contributions in quadrature, the total systematic uncertainties evaluated using the nominal method discussed in the text, the statistical uncertainties, the total uncertainties, and the analysis weights, illustrative of the relative weight of each channel in the combined m_H measurement.

<table>
<thead>
<tr>
<th>Scale uncertainties:</th>
<th>Uncertainty in ATLAS results (GeV): observed (expected)</th>
<th>Uncertainty in CMS results (GeV): observed (expected)</th>
<th>Uncertainty in combined result (GeV): observed (expected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS ECAL nonlinearity or CMS photon nonlinearity</td>
<td>0.14 (0.16)</td>
<td>0.10 (0.13)</td>
<td>0.02 (0.04)</td>
</tr>
<tr>
<td>Material in front of ECAL</td>
<td>0.15 (0.13)</td>
<td>0.07 (0.07)</td>
<td>0.03 (0.03)</td>
</tr>
<tr>
<td>ECAL longitudinal response</td>
<td>0.12 (0.13)</td>
<td>0.02 (0.01)</td>
<td>0.02 (0.03)</td>
</tr>
<tr>
<td>ECAL lateral shower shape</td>
<td>0.09 (0.08)</td>
<td>0.06 (0.06)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>Photon energy resolution</td>
<td>0.03 (0.01)</td>
<td>0.01 (<0.01)</td>
<td>0.02 (<0.01)</td>
</tr>
<tr>
<td>ATLAS $H \rightarrow \gamma \gamma$ vertex and conversion reconstruction</td>
<td>0.05 (0.05)</td>
<td>0.01 (0.01)</td>
<td></td>
</tr>
<tr>
<td>CMS electron energy scale and resolution</td>
<td>0.05 (0.04)</td>
<td>0.05 (0.05)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>Muon momentum scale and resolution</td>
<td>0.03 (0.04)</td>
<td>0.12 (0.09)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>Other uncertainties:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATLAS $H \rightarrow \gamma \gamma$ background modeling</td>
<td>0.04 (0.03)</td>
<td></td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>0.01 (<0.01)</td>
<td><0.01 (<0.01)</td>
<td>0.01 (<0.01)</td>
</tr>
<tr>
<td>Additional experimental systematic uncertainties</td>
<td>0.03 (<0.01)</td>
<td><0.01 (<0.01)</td>
<td>0.01 (<0.01)</td>
</tr>
<tr>
<td>Theory uncertainties:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic uncertainty (sum in quadrature)</td>
<td>0.27 (0.27)</td>
<td>0.04 (0.04)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>Systematic uncertainty (nominal)</td>
<td>0.27 (0.27)</td>
<td>0.04 (0.05)</td>
<td><0.01 (<0.01)</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>0.43 (0.45)</td>
<td>0.52 (0.66)</td>
<td>0.11 (0.10)</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>0.51 (0.52)</td>
<td>0.52 (0.66)</td>
<td>0.24 (0.24)</td>
</tr>
<tr>
<td>Analysis weights</td>
<td>19% (22%)</td>
<td>18% (14%)</td>
<td>40% (46%)</td>
</tr>
</tbody>
</table>

The two experiments is $\Delta m_{\text{exp}} = 1.3 \pm 0.6$ GeV (2.1σ) for the $H \rightarrow \gamma \gamma$ channel and $\Delta m_{\text{exp}} = -0.9 \pm 0.7$ GeV (1.3σ) for the $H \rightarrow ZZ \rightarrow 4\ell$ channel. The combined results exhibit a greater degree of compatibility than the results from the individual decay channels because the Δm_{exp} value has opposite signs in the two channels.

The compatibility of the signal strengths from ATLAS and CMS is evaluated through the ratios $\lambda_F = \mu_\text{ATLAS} / \mu_\text{CMS}$, $\lambda_{\text{ATLAS}}^{\gamma}\gamma = \mu_{\text{ATLAS}}^{\gamma}\gamma \bar{H} / \mu_{\text{CMS}}^{\gamma}\gamma \bar{H}$, and $\lambda_{\text{ATLAS}}^{\ell}\ell = \mu_{\text{ATLAS}}^{\ell}\ell / \mu_{\text{CMS}}^{\ell}\ell$. For this purpose, each ratio is individually taken to be the parameter of interest, with all other nuisance parameters profiled, including the remaining two ratios for the first two tests. We find $\lambda_F = 1.21^{+0.30}_{-0.24}$, $\lambda_{\text{ATLAS}}^{\gamma}\gamma = 1.3^{+0.8}_{-0.5}$, and $\lambda_{\text{ATLAS}}^{\ell}\ell = 1.3^{+0.5}_{-0.5}$, all of which are consistent with unity within 1σ. The ratio $\lambda_V = \mu_{\text{VBF+VH}} / \mu_{\text{VBF+VH}}^{\gamma}\gamma \bar{H}$ is omitted because the ATLAS mass measurement in the $H \rightarrow \gamma \gamma$ channel is not sensitive to $\mu_{\text{VBF+VH}} / \mu_{\text{VBF+VH}}^{\gamma}\gamma \bar{H}$.

The correlation between the signal strength and the measured mass is explored with 2D likelihood scans as functions of μ and m_H. The three signal strengths are assumed to be the same: $\mu_{\text{VBF+VH}}^{\gamma}\gamma \bar{H} = \mu_{\text{VBF+VH}}^{\ell}\ell = \mu_{\text{VBF+VH}}^{\ell}\ell$, and thus the ratios of the production cross sections times branching fractions are constrained to the SM.
predictions. Assuming that the negative log-likelihood ratio $-2 \ln \Lambda(\mu, m_H)$ is distributed as a χ^2 variable with two degrees of freedom, the 68% confidence level (C.L.) confidence regions are shown in Fig. 4 for each individual measurement, as well as for the combined result.

In summary, a combined measurement of the Higgs boson mass is performed in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ channels using the LHC Run 1 data sets of the ATLAS and CMS experiments, with minimal reliance on the assumption that the Higgs boson behaves as predicted by the SM.

The result is

$$m_H = 125.09 \pm 0.24 \text{ GeV}$$

$$= 125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (syst)} \text{ GeV},$$

where the total uncertainty is dominated by the statistical term, with the systematic uncertainty dominated by effects related to the photon, electron, and muon energy or momentum scales and resolutions. Compatibility tests are performed to ascertain whether the measurements are consistent with each other, both between the different decay channels and between the two experiments. All tests on the combined results indicate consistency of the different measurements within 1σ, while the four Higgs boson mass measurements in the two channels of the two experiments agree within 2σ. The combined measurement of the Higgs boson mass improves upon the results from the individual experiments and is the most precise measurement to date of this fundamental parameter of the newly discovered particle.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS and CMS could not be operated efficiently. We acknowledge the support of ANPCyT (Argentina); YerPhI (Armenia); ARC (Australia); BMWFW and FWF (Austria); ANAS (Azerbaijan); SSTC (Belarus); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES.
and MIZ
MSTD and MESTD (Serbia); MSSR (Slovakia); ARRS
MNiSW, MSHE, NCN, and NSC (Poland); GRICES and
Zealand); BRF and RCN (Norway); PAEC (Pakistan);
(C Morocco); FOM and NWO (Netherlands); MBIE (New
CONACYT, SEP, and UASLP-FAI (Mexico); CNRST
Lithuania); MOE and UM (Malaysia); CINVESTAV,
JINR; MSIP, and NRF (Republic of Korea); LAS
Center (Israel); INFN (Italy); MEXT and JSPS (Japan);
JINR; MSIP, and NSF (Republic of Korea); LAS
(Lithuania); MOE and UM (Malaysia); CINVESTAV,
CONACYT, SEP, and UASLP-FAI (Mexico); CNRST
(Morocco); FOM and NWO (Netherlands); MBIE (New
Zealand); BRF and RCN (Norway); PAEC (Pakistan);
MNIsw, MSHE, NCN, and NSC (Poland); GRICES and
FCT (Portugal); MNE/IFA (Romania); MES of Russia,
MON, RosAtom, RAS, and RFBR (Russian Federation);
MSTD and MESTD (Serbia); MSSR (Slovakia); ARRS
and MIZŠ (Slovenia); DST/NRF (South Africa); MINECO,
SEIDI, and CPAN (Spain); SRC and Wallenberg
Foundation (Sweden); ETH Board, ETH Zurich, PSI,
SER, SNSF, UniZH, and Cantons of Bern, Genève, and
Zurich (Switzerland); NSC (Taipei); MST (Taiwan);
ThePCenter, IPST, STAR, and NSTDA (Thailand);
TUBITAK and TAEK (Turkey); NASU and SFFR
(Ukraine); STFC and the Royal Society and Leverhulme
Trust (U.K.); DOE and NSF (U.S.). In addition, we
gratefully acknowledge the crucial computing support from
all WLCG partners, in particular from CERN and the Tier-1
and Tier-2 facilities worldwide.

[1] F. Englert and R. Brout, Broken Symmetry and the Mass of
[2] P. W. Higgs, Broken symmetries, massless particles and
13, 585 (1964).
[7] ATLAS Collaboration, Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS
[8] CMS Collaboration, Observation of a new boson at a mass
of 125 GeV with the CMS experiment at the LHC, Phys.
[9] CMS Collaboration, Observation of a new boson with mass
near 125 GeV in pp collisions at \(\sqrt{s} = 7 \) and 8 TeV, J. High
production and couplings in diboson final states with the
Higgs boson using ATLAS data, Phys. Lett. B 726, 120
(2013).
[12] CMS Collaboration, Precise determination of the mass of
the Higgs boson and tests of compatibility of its couplings
with the standard model predictions using proton collisions
published)].
[13] CMS Collaboration, Constraints on the spin-parity and
anomalous HVV couplings of the Higgs boson in proton
(to be published)].
mass from the \(H \to \gamma\gamma \) and \(H \to ZZ^* \to 4\ell \) channels in pp
collisions at center-of-mass energies of 7 and 8 TeV with the
[15] CMS Collaboration, Observation of the diphoton decay of
the 125 GeV Higgs boson and measurement of its proper-
[16] CMS Collaboration, Measurement of the properties of a
Higgs boson in the four-lepton final state, Phys. Rev. D 89,
092007 (2014).
[17] M. Baak et al. (Gfitter Group), The global electroweak fit at
NNLO and prospects for the LHC and ILC, Eur. Phys. J. C
74, 3046 (2014).
[18] L. J. Dixon and M. S. Siu, Resonance-Continuum Interfer-
ence in the Diphoton Higgs Signal at the LHC, Phys. Rev.
Lett. 90, 252001 (2003).
from interference with background, Phys. Rev. D 86,
073016 (2012).
[20] L. J. Dixon and Y. Li, Bounding the Higgs Boson Width
approximation for a light Higgs boson signal, J. High
[22] ATLAS Collaboration, The ATLAS experiment at the
CERN Large Hadron Collider, J. Instrum. 3, S08003
(2008).
[23] CMS Collaboration, The CMS experiment at the CERN
production in the diphoton decay channel in pp collisions
at center-of-mass energies of 7 and 8 TeV with the ATLAS
Rep. CMS NOTE 2011/005, ATL-PHYS-PUB 2011-11,
[26] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymp-
totic formulae for likelihood-based tests of new physics,
[27] W. Verkerke and D. P. Kirkby, The ROOFIT toolkit for
data modeling, in Proceedings of the 13th International

[34] CMS Collaboration, Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV, arXiv:1502.02702.

37 INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy
38 Dipartimento di Fisica, Università della Calabria, Rende, Italy
39 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
40 Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
41 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
42 Physics Department, Southern Methodist University, Dallas, Texas, USA
43 DESY, Hamburg and Zeuthen, Germany
44 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
45 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
46 Department of Physics, Duke University, Durham, North Carolina, USA
47 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
48 INFN Laboratori Nazionali di Frascati, Frascati, Italy
49 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
50 Section de Physique, Université de Genève, Geneva, Switzerland
51 INFN Sezione di Genova, Genova, Italy
52 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
53 Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
54 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton, Virginia, USA
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
58 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
60 ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
62 Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
63 Department of Physics, The University of Hong Kong, Hong Kong, China
64 Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
65 Department of Physics, Indiana University, Bloomington, Indiana, USA
66 Department of Physics, Leopold-Franzens-Universität, Innsbruck, Austria
67 University of Iowa, Iowa City, Iowa, USA
68 Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
69 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
70 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
71 Graduate School of Science, Kobe University, Kobe, Japan
72 Faculty of Science, Kyoto University, Kyoto, Japan
73 Kyoto University of Education, Kyoto, Japan
74 Department of Physics, Kyushu University, Fukuoka, Japan
75 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
76 Physics Department, Lancaster University, Lancaster, United Kingdom
77 INFN Sezione di Lecce, Lecce, Italy
78 Dipartimento di Matematica e Fisica, Università di Salento, Lecce, Italy
79 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
80 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
81 School of Physics and Astronomy, University College London, London, United Kingdom
82 Louisiana Tech University, Ruston, Louisiana, USA
83 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
84 Fysiska institutionen, Lunds universitet, Lund, Sweden
85 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
86 Institut für Physik, Universität Mainz, Mainz, Germany
87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
88 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
89 Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
90 Department of Physics, McGill University, Montreal, Quebec, Canada
88 School of Physics, University of Melbourne, Victoria, Australia
89 Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
90 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
91 INFN Sezione di Milano, Milano, Italy
92 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
94 Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
95 Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
96 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
97 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
98 National Research Nuclear University MEPhI, Moscow, Russia
99 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
100 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
101 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
102 Nagasaki Institute of Applied Science, Nagasaki, Japan
103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
104 INFN Sezione di Napoli, Napoli, Italy
105 Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
108 Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York, New York, USA
111 The Ohio State University, Columbus, Ohio, USA
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
114 Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, United Kingdom
121 INFN Sezione di Pavia, Pavia, Italy
122 Dipartimento di Fisica, Università di Pavia, Pavia, Italy
123 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
124 National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
125 INFN Sezione di Pisa, Pisa, Italy
126 Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
128 Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisboa, Portugal
129 Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
126c Departamento de Física, Physics Department, University of Coimbra, Coimbra, Portugal
126d Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
126e Departamento de Física, Universidade do Minho, Braga, Portugal
126f Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain), Portugal
128 Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
129 Czech Technical University in Prague, Praha, Czech Republic
130 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
131 State Research Center Institute for High Energy Physics, Protvino, Russia
132 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132a INFN Sezione di Roma, Roma, Italy
132b Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
132c INFN Sezione di Roma Tor Vergata, Roma, Italy
133a INFN Sezione di Roma Tor Vergata, Roma, Italy
134b Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
135a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
135b Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat, Morocco
135c Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
135d Faculté des Sciences, Université Mohamed Premier and LPPTM, Oujda, Morocco
135e Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Énergie Atomique et aux Énergies Alternatives), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
138 Department of Physics, University of Washington, Seattle, Washington, USA
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
143 SLAC National Accelerator Laboratory, Stanford, California, USA
144a Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
144b Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145a Department of Physics, University of Cape Town, Cape Town, South Africa
145b Department of Physics, University of Johannesburg, Johannesburg, South Africa
145c School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145d Department of Physics, Stockholm University, Sweden
145e The Oskar Klein Centre, Stockholm, Sweden
146 Physics Department, Royal Institute of Technology, Stockholm, Sweden
147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
149 School of Physics, University of Sydney, Sydney, Australia
150 Institute of Physics, Academia Sinica, Taipei, Taiwan
151 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
154 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
155 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
156 Department of Physics, University of Toronto, Toronto, Ontario, Canada
157 TRIUMF, Vancouver, British Columbia, Canada
158 Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
159 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
160 Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
161 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
162 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
163 INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
164 ICTP, Trieste, Italy
165 Dipartimento di Chimica, Fisica e Ambienti, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana, Illinois, USA
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica y Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
171 Department of Physics, University of Warwick, Coventry, United Kingdom
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin Madison, Wisconsin, USA
175 Fachhochschule für Technik und Wissenschaften, Dresden, Germany
176 Department of Physics, Yale University, New Haven, Connecticut, USA
177 Yerevan Physics Institute, Yerevan, Armenia
178 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
179 Yerevan Physics Institute, Yerevan, Armenia
180 Institut für Hochenergiephysik der OeAW, Wien, Austria
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Maryland, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin, Madison, Wisconsin, USA

Deceased.
Also at Department of Physics, King’s College London, London, United Kingdom.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at Novosibirsk State University, Novosibirsk, Russia.
Also at TRIUMF, Vancouver, BC, Canada.
Also at Department of Physics, California State University, Fresno, CA, USA.
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
Also at Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal.
Also at Tomsk State University, Tomsk, Russia.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
Also at Università di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Canada.
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at Louisiana Tech University, Ruston, LA, USA.
Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
Also at Department of Physics, National Tsing Hua University, Taiwan.
Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA.
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
Also at CERN, Geneva, Switzerland.
Also at Georgian Technical University (GTU), Tbilisi, Georgia.
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
Also at Manhattan College, New York, NY, USA.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at School of Physics, Shandong University, Shandong, China.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
Also at Section de Physique, Université de Genève, Geneva, Switzerland.
Also at International School for Advanced Studies (SISSA), Trieste, Italy.
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Department of Physics, Stanford University, Stanford, CA, USA.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
Also at Vienna University of Technology, Vienna, Austria.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Centre National de la Recherche Scientifique (CNRS)–IN2P3, Paris, France.
Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Ain Shams University, Cairo, Egypt.