Insights into the bacterial and fungal ecology of endodontic infections
Persoon, I.F.

Citation for published version (APA):
Persoon, I. F. (2016). Insights into the bacterial and fungal ecology of endodontic infections

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Sunset at the dried out shallows in the Waddenzee, the Netherlands.

The exceptional conditions of the shallows allow an intricate ecosystem and are on the UNESCO World Heritage List. In this chapter, similar to the sunset, this thesis comes to an end.
SUMMARY: INSIGHTS INTO THE BACTERIAL AND FUNGAL ECOLOGY OF ENDODONTIC INFECTIONS

The research presented in this thesis aims to give further insight into the complexity of root canal infections and into their interactions with the host as well as the interactions within the infection itself. A better understanding of the aetiopathogenesis of apical periodontitis aids in preventing it and in developing successful treatment strategies.

The first study evaluated the bacterial ecology of primary root canal infections (chapter 2a). Twenty-three extracted teeth were processed by cryo-pulverization. Bacterial communities of apical and coronal root halves were profiled using tagged 454 pyrosequencing. Analysis revealed immense diversity of the infections and a different ecology of in apical and coronal roots. Infections in apical roots had a higher diversity and contained more species than coronal roots. Also, apical roots contained more Proteobacteria and fastidious obligate anaerobes, suggesting a distinct ecological niche in the apical region. This may explain the difficulty of antimicrobial treatment of the infection and stresses the need for new treatment strategies.

Some of the bacteria found in this study are capable of forming spores, which enables them to survive harsh environments. Thus far, no study has identified bacterial spores present in the root canal system. In a follow-up pilot-study, 15 root canal infections were examined for the actual presence of this treatment-resistant bacterial phenotype using paper point sampling (chapter 2b). Samples were incubated at 80°C to eliminate vegetative cells. Subsequently, spore germination was determined by anaerobic and aerobic cultivation. Examination by microscopy and by cultivation in chopped meat broth revealed no bacterial spores. Absence of spore-forming bacteria was confirmed by 16S rRNA sequencing of the 6 isolated bacilli, which identified Propionibacterium acnes and Propionibacterium avidum. Further research could use more sensitive techniques applied on a larger sample size in order to definitively dismiss the presence of bacterial spores within root canal infections.

The role of bacteria in causing apical periodontitis has been established, while the role of other microorganisms is studied less thoroughly and less consistently. In a systematic review and meta-analysis of the literature, the prevalence and diversity of fungi in root canal infections was studied (chapter 3). After screening of 1 041 titles and abstracts and full-text reading of 167 articles, 54 studies were included. The overall prevalence of fungi in root canal infections was 7.5% and Candida albicans was the most frequently isolated species. Subgroup analyses revealed no factor influencing the prevalence. Further in vivo studies using better standardized
techniques should give a more detailed and accurate representation of the prevalence and nature of fungi in root canal infections.

The next study used Illumina sequencing of both the bacteriome and mycobiome to give insight into the bacteria and fungi present in root canal infections (chapter 4). Twenty-six extracted teeth were processed by cryo-pulverization. The previously found immense bacterial diversity was confirmed, although no differences were observed between apical and coronal root infections. Fungi were present in 57% of the teeth. *Candida* and *Malassezia* were the most prevalent fungi. Fungal diversity was lower than in the salivary microbiome. Moreover, fungal presence is accompanied by a distinct bacteriome. Root segments positive for fungi contained a more acidogenic bacteriome. Bacterial-fungal interaction may complicate the infection. Therefore, more research into the interaction between bacteria and fungi in root canal infections is necessary.

The fungal-bacterial interaction and its effect on the inflammatory response was further studied using an *in vitro* model (chapter 5). Immune cells were stimulated with *C. albicans* and *Enterococcus faecalis* biofilms, either untreated or treated with the irrigants sodium hypochlorite (NaOCl) or chlorhexidine. Only untreated *E. faecalis* biofilms stimulated Toll-like receptors (TLRs). No stimulation was observed when the bacteria were treated or when they were co-cultured with *C. albicans*. Furthermore, *C. albicans* failed to stimulate TLRs on its own. The interplay between the two microorganisms and the host resulted in decreased TLR stimulation, which may lead to a modification of the innate immune response. This interplay will have consequences for treatment efficacy.

Since root canal infections appear to be more diverse and complex than previously considered, effective treatment is essential. Because contemporary root canal treatment is unable to remove the full microbial community, a novel strategy using the vanadium chloroperoxidase (VCPO) enzyme was tested (chapter 6). VCPO uses available substrates to generate antimicrobial reaction products. The VCPO reaction products were used to treat 24-hour *E. faecalis* biofilms and were similarly effective in reducing the viability of four different strains of *E. faecalis*. Thus, VCPO may provide an added benefit to current endodontic treatment strategies, possibly as an antimicrobial dressing.

The enzyme was further optimized for the local pH of the root canal system and tested for its biocompatibility (chapter 7). Reaction products generated by the modified VCPO inactivated 24-hour biofilms of *E. faecalis* after 5 minutes and even more after 30 minutes. Additionally, cytotoxicity tests demonstrated preliminary biocompatibility. Therefore, an interappointment dressing containing VCPO could aid in improving current endodontic treatment through continuous and local
generation of antimicrobials.

In conclusion of this thesis, the bacteriome and mycobiome of root canal infections were found to be complex and this has consequences for their interaction with the host. Future research should study the mechanisms underlying the functioning of the microbiome of root canal infections, and if and how the microbiome interacts with the host. If a detrimental effect on the host is evident, more effective strategies to eliminate the infection and preserve oral function and well-being should be developed, possibly using VCPO.
SAMENVATTING: INZICHT IN DE BACTERIËLE EN SCHIMMELECOLOGIE VAN WORTELKANAALINFECTIES

In dit proefschrift is beoogd inzicht te krijgen in de complexiteit van wortelkanaalinfecties en de interacties in de infectie zelf en met de gastheer. Meer begrip in de ontstaanswijze van parodontitis apicalis (wortelpuntontsteking) kan bijdragen aan de preventie hiervan en de ontwikkeling van succesvolle behandelstrategieën.

In het eerste onderzoek werd de bacteriële ecologie van wortelkanaalinfecties bestudeerd (hoofdstuk 2a). Drieëntwintig tanden met wortelkanaalinfecties werden getrokken en cryogeen verpulverd. Door middel van 454-pyrosequencing (DNA-analyse) werd de bacteriële samenstelling van de apicale en coronale wortelhelften in kaart gebracht. De infecties waren zeer divers van samenstelling. De bacteriële samenstelling van de apicale wortelhelften was diverser en bevatte meer soorten bacteriën dan die van de coronale wortelhelften. Ook bevatten apicale wortelhelften meer proteobacteriën en anaerobe bacteriën, wat wijst op een afzonderlijke ecologische niche in het apicale deel van de wortel. Dit kan verklaren waarom antimicrobiële behandeling van wortelkanaal Infecties soms onvoldoende effectief is, waaruit voortvloeit dat ontwikkeling van nieuwe behandelstrategieën noodzakelijk is.

In de voorgaande studie werden enkele bacteriën gevonden die sporen kunnen vormen waardoor de bacteriën onder extreme omstandigheden kunnen overleven. Tot nu toe zijn er geen bacteriesporen aangetoond in wortelkanaalinfecties. In een pilot-onderzoek werden vijftien wortelkanaalinfecties bestudeerd op de aanwezigheid van bacteriesporen (hoofdstuk 2b). De monsters werden genomen met papierstiften en daarna dertig minuten bij 80°C weggezet om vegetatieve bacteriën af te doden. Vervolgens werd de ontkieming van sporen bepaald door de behandelde monsters op te kweken. Onder de microscoop waren geen sporen zichtbaar in de monsters. Evenmin konden sporen worden aangetoond in selectieve kweken in vleesextractmedium. Dit negatieve resultaat werd bevestigd door 16S-rRNA-sequencing (andere vorm van DNA-analyse) van de zes geïsoleerde, staafvormige bacteriën. Dit leverde Propionibacterium acnes en Propionibacterium avidum op. Om definitief vast te stellen of bacteriesporen aanwezig zijn in wortelkanaalinfecties zijn gevoeligere technieken op grotere aantallen monsters nodig.

Uit eerder onderzoek is gebleken dat bacteriën parodontitis apicalis veroorzaken, maar het is nog niet duidelijk in hoeverre andere micro-organismen, zoals schimmels, hieraan bijdragen. De prevalentie en diversiteit van schimmels
in wortelkanalinfecties werden in een systematisch overzicht van de literatuur in kaart gebracht en vervolgens geanalyseerd in een meta-analyse (hoofdstuk 3). Na het bestuderen van 1041 titels en samenvattingen en het volledig doorlezen van 167 geselecteerde artikelen, werden 54 studies opgenomen. Uit deze studies bleek dat er in 7,5% van de wortelkanalinfecties schimmels aanwezig waren. De soort *Candida albicans* werd het vaakst gevonden. Er waren geen factoren die invloed hadden op de prevalentie. Uit dit overzicht blijkt dat er behoefte is aan experimenteel vervolgonderzoek dat gebruikmaakt van meer gestandaardiseerde technieken, zodat er een gedetailleerder en nauwkeuriger beeld gegeven kan worden van de prevalentie en de verschillende soorten schimmels in wortelkanalinfecties.

In vervolgonderzoek werd met Illumina-sequencing (DNA-analyse) de bacteriële en schimmelsamenstelling van wortelkanalinfecties onderzocht (hoofdstuk 4). Zesentwintig tanden met wortelkanalinfecties werden getrokken en cryogeen verpulverd. De genoemde grote bacteriële diversiteit die eerder werden aangetroffen, werd bevestigd, hoewel er nu geen verschil werd gevonden tussen de bacteriële samenstelling in de apicale en coronale wortelhelften. Schimmels waren aanwezig in 57% van de wortelkanalinfecties. De schimmelsoorten *Candida* en *Malassezia* werden het meest gevonden. De samenstelling van schimmels in wortelkanalinfecties was minder divers dan in speeksel. Daarnaast bleek er een verband te bestaan tussen schimmels en een specifieke bacteriesamenstelling met meer zuurvormende bacteriën. De interactie tussen bacteriën en schimmels kan de infectie complexer maken. Op dit moment is er nog weinig bekend over deze interactie in het wortelkanaal.


Omdat de microbiële samenstelling van wortelkanalinfecties diverser is en zich ingewikkelder gedraagt dan eerder gedacht, is de ontwikkeling van een effectieve behandeling essentieel. Aangezien de huidige behandelingen niet alle
micro-organismen uit het wortelkanaalsysteem kunnen verwijderen, werd een nieuwe strategie met het enzym vanadiumchloroperoxidase (VCPO) onderzocht (hoofdstuk 6). VCPO gebruikt vrij beschikbare moleculen om antimicrobiële producten te maken. Biofilms van *E. faecalis* werden behandeld met VCPO-reactieproducten. Deze producten waren alle even effectief in het afdoden van vier verschillende stammen van *E. faecalis*. Zodoende kan VCPO in de toekomst mogelijk bijdragen aan de desinfectie tijdens een reguliere wortelkanaalbehandeling, bijvoorbeeld door het als antimicrobeel medicament in te sluiten tussen twee behandelzittingen.

Het enzym werd aangepast voor toepassing bij de lokale pH van het wortelkanaal en getest op de compatibiliteit met de gastheer (hoofdstuk 7). Biofilms van *E. faecalis* werden behandeld met reactieproducten van gemodificeerd VCPO. Deze reactieproducten doodden 99,7% van de bacteriën af na vijf minuten en 99,9% na dertig minuten. Daarnaast werd met behulp van cytotoxiciteitstesten de voorlopige compatibiliteit met de gastheer aangetoond. Het insluiten van VCPO kan dus bijdragen aan de verbetering van huidige wortelkanaalbehandelingen doordat het enzym langdurig en lokaal antimicrobiële reactieproducten kan aanmaken.

Samengevat, in dit proefschrift is beschreven dat de bacteriële en schimmelsamenstelling van wortelkanaalinfecties complexer is dan eerder werd aangenomen. Dit kan gevolgen hebben voor de interactie van de micro-organismen met de gastheer. Toekomstig onderzoek kan zich richten op het werktijdsmechanisme binnen de microbiële populatie van wortelkanaalinfecties. Daarnaast kan onderzocht worden of en hoe de micro-organismen en de gastheer elkaar beïnvloeden. Indien er een nadelig effect van de micro-organismen op de gastheer is, dan zullen effectievere behandelstrategieën moeten worden ontwikkeld, met een mogelijke rol voor het VCPO-enzyme.
REFERENCES


Bengtsson-Palme J, Ryberg M, Hartmann M et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other


Cousido MC, Tomás M, Tomás I et al. Effect of a neutralising agent on the evaluation


Ferrari PHP, Cai S, Bombana AC. Effect of endodontic procedures on enterococci,


Hancock III HH, Sigurdsson A, Trope M, Moiseiwitsch J. Bacteria isolated after


Hulsmann M, Hahn W. Complications during root canal irrigation--literature review


Huycke MM, Abrams V, Moore DR. *Enterococcus faecalis* produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. *Carcinogenesis* 2002; 23: 529-536.


Kantz WE, Henry CA. Isolation and classification of anaerobic bacteria from intact


Macedo RG, Wesselink PR, Zaccheo F, Fanali D, Van der Sluis LWM. Reaction rate
of NaOCl in contact with bovine dentine: effect of activation, exposure time, concentration and pH. *Int Endod J* 2010; 43: 1108-1115.


References


Ng Y-L, Spratt D, Sriskantharajah S, Gulabivala K. Evaluation of protocols for field


Paiva SSM, Siqueira JF, Jr, Rôças IN et al. Supplementing the antimicrobial effects of chemomechanical debridement with either passive ultrasonic irrigation or a final rinse with chlorhexidine: a clinical study. *J Endod* 2012; 38: 1202-1206.


Peters LB, Wesselink PR. Periapical healing of endodontically treated teeth in one and two visits obturated in the presence or absence of detectable microorganisms.


Quast C, Pruesse E, Knittel K et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. *Nucleic Acids Res* 2007; 35: 7188-7196.


Rolig AS, Parthasarathy R, Burns AR et al. Individual members of the microbiota disproportionately modulate host innate immune responses. *Cell Host Microbe*


Sedgley CM, Nagel AC, Shelburne CE et al. Quantitative real-time PCR detection of
Shade A, Jones SE, Caporaso JG et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 2014; 5: e01371-01314.
Soejima T, Iida K, Qin T et al. Photoactivated ethidium monoazide directly cleaves


Van der Waal S, Connert T, Haapasalo M et al. Free available chlorine concentration in sodium hypochlorite solutions obtained from dental practices and intended
for endodontic irrigation: are the expectations true? Quintessence Int 2014; 45: 467-474.


