Optimization of treatment protocols to prevent de novo development of antibiotic resistance in Pseudomonas aeruginosa

Feng, Yanfang

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Optimization of treatment protocols to prevent *de novo* development of antibiotic resistance in *Pseudomonas aeruginosa*
Optimization of treatment protocols to prevent *de novo* development of antibiotic resistance in *Pseudomonas aeruginosa*

Yanfang Feng
Optimization of treatment protocols to prevent de novo development of antibiotic resistance in \textit{Pseudomonas aeruginosa}

Yanfang Feng

Copyright ©2016 Yanfang Feng

ISBN 978-94-028-0344-0

All rights reserved. No part of this publication may be reproduced in any form without permission from the author, or where appropriate of the publisher involved.

The work described in this thesis was performed in the group of Molecular Biology and Microbial Food Safety at the Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, the Netherlands. The research was financially supported by the Chinese Scholarship Council and the Netherlands Food and Consumer Product Safety Authority.

The cover picture, a chess play between Ms. Yanfang Feng and Mr. \textit{Pseudomonas aeruginosa}, was kindly drawn by QianQian Zhang for this thesis. The idea was adapted from Lei Chen and Yan Liang (http://www.eurekalert.org/multimedia/pub/84598.php). This drawing was used to illustrate the resourceful \textit{Pseudomonas aeruginosa} could rapidly come up with the novel solution to survive whenever a new treatment strategy was applied by human being, just like what was shown by the author in this thesis.

Printed by: Ipskamp Drukkers, Enschede, The Netherlands.
Optimization of treatment protocols to prevent de novo development of antibiotic resistance in Pseudomonas aeruginosa

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

Prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op maandag 31 oktober 2016 te 14:00 uur

door

Yanfang Feng

geboren te Shaanxi, China
Promotiecommissie

Promotors:
Prof. dr. S. Brul, Universiteit van Amsterdam
Prof. dr. B.H. ter Kuile, Universiteit van Amsterdam & de Nederlandse Voedsel en Warenautoriteit

Copromotor:
Dr. C. Schultsz, Academisch Medisch Centrum, Universiteit van Amsterdam

Overige leden:
Prof. dr. H.A. Verbrugh, Erasmus Medisch Centrum, Erasmus Universiteit Rotterdam
Prof. dr. O.P. Kuipers, Rijksuniversiteit Groningen
Prof. dr. C.M.J.E. Vandenbroucke-Grauls, VU Medisch Centrum, Vrije Universiteit Amsterdam
Prof. dr. K.J. Hellingwerf, Universiteit van Amsterdam
Prof. dr. L.W. Hamoen, Universiteit van Amsterdam
Dr. S.A.J. Zaat, Academisch Medisch Centrum, Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Table of contents

Chapter 1: General Introduction .. 7

Chapter 2: Development of antibiotic resistance during simulated treatment of Pseudomonas aeruginosa in chemostats 17

Chapter 3: Experimental simulation of the effects of an initial antibiotic treatment on a subsequent treatment after initial therapy failure ... 33

Chapter 4: Dynamics of mutations during development of resistance by Pseudomonas aeruginosa against five antibiotics 51

Chapter 5: Optimization of therapy against Pseudomonas aeruginosa with ceftazidime and meropenem using chemostats as model for infections ... 69

Chapter 6: General discussion ... 85

References ... 95

Summary/Samenvatting .. 111

List of publications ... 117

Acknowledgements .. 119