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�. I����
������

Quality of care occupies center stage for healthcare providers. Competition, scarcity
of resources and funding force providers to balance this ambition with e
ciency
and a productive utilization of sta	, specialists and facilities. A method that helps
providers to achieve a trade-o	 in this force-�eld is appointment scheduling. This
dissertation deals with the design of optimal appointment schedules.

As an introductory example, consider a familiar situation: a dental practice. At
the practice, clients arrive on their appointed arrival times. Since the treatment of
the preceding client may be longer than anticipated, it may happen that a next client,
upon arrival, needs to wait in the waiting room. Alternatively, the treatment of the
preceding client may be shorter than scheduled, and as a consequence it may be the
dentist who �nds herself sitting idle for some time, waiting for the next client to ar-
rive. Thus, variability and unpredictability in the treatment times result in waiting
time for clients and idle time for the dentist.

Clients deem waiting time undesirable, as it negatively a	ects their perceived
quality of service (Huang 1994, Anderson et al. 2007). Idle time has a negative im-
pact on the utilization, which is measured as the percentage of available hours that
the dentist e	ectively treats clients. A low utilization, as the result of much idle time,
implies that the dentist sees fewer clients in the time available, and hence it degrades
the dentist�s e	ective capacity. In addition, a lower utilization implies that the �xed
costs of the dentist and other resources (in terms of facilities, assistants and equip-
ment) are spread over a smaller number of clients, and therefore leads to a higher
per-client cost (�unit-cost�).

The issue of appointment scheduling is not only relevant in the context of man-
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INTRODUCTION

aging the dentist�s or other healthcare provider�s available time, but also plays an
important role when setting up procedures to optimally utilize ��� or �� scanners,
operating rooms, and so forth. The commonality in these examples is that a scarce
resource acts as a server handling patients (clients). Often the server uses an appoint-
ment schedule to regulate the demand to the resource�s capacity.

This thesis is on appointment scheduling, with a focus on its application in health-
care. We structure the problem and establish a solid mathematical framework that
facilitates the design of schedules. Within this framework, we propose di	erent eval-
uation techniques to generate schedules that �nd a suitable balance between the in-
terests of the patients and the provider. We assess the resulting schedules against
methods that were earlier proposed and commonly used.

1.1 Healthcare operations

Most hospitals are not-for-pro�t in nature and exist to serve their communities. The
rising expenditures for healthcare, however, have created general awareness that their
performance should be evaluated in terms of the delivered care relative to the ex-
penses incurred, see Porter (2010). This in turn has drawn attention to the perfor-
mance of the operating and management practices involved. Two in�uential reports
of the Institute of Medicine (2001, 2006) have urged the use of operational manage-
ment methods and information technologies to improve the quality and e
ciency in
hospitals, and healthcare applications of operations management theory and tech-
niques have become a thriving �eld.

In an evaluation of the needs of theU.S. healthcare system by Berwick et al. (2008),
the authors conclude that there are three directions for improvement: the customer
experience of the healthcare service, the quality of healthcare and the cost of health-
care. A healthcare provider is therefore confronted with opposing ambitions: on the
one hand there is a need to control (or even reduce) costs, on the other hand, there is
great pressure to improve service quality. The trade-o	 described in the introductory
example, between waiting time for clients at a dentist and idle time for the resources,
is a manifestation of this challenge. The challenge is more involved to the extent that
there are more variability and unpredictability, for example caused by the random-
ness in the service-time durations and demand �uctuations. A good appointment
schedule is one that �nds an e
cient balance between idle and waiting times.

Healthcare services can be classi�ed into three categories as described by Gupta
and Denton (2008): primary care, specialty care and elective surgery. Predictability
and variability are relatively minor in primary care, whereas in specialty care and
surgery they are a major complication for scheduling, and greatly depend on the sort
of diagnosis and type of surgery.

In primary care physicians mostly divide their available clinic time into appoint-
ment slots of �xed given lengths between 10 to 30 minutes. The service time needed
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is quite predictable. For example, it is known that new intakes require two time slots
while follow-up visits require only one slot. In order to maintain continuity of care,
patients are treated by a single, dedicated physician. Challenges in primary care are
how to respond to walk-ins (unscheduled patients that require treatment) and un-
planned understa
ng (e.g., physician illness or emergency leaves) such that the im-
pact on the patients� waiting times is limited. No-shows (patients who do not show
up for their appointments) are not so prevalent in primary care due to the fact that
appointments for primary care are often made a couple of days ahead.

Specialty care, also known as secondary care, delivers more specialized health
services, such as medical imaging (��� or �� scan), urgent care and other services in
which the help of a specialist is needed. Providers are highly specialized physicians
(specialists). Many specialty clinics require a referral from a primary care provider.
The service time of a diagnosis or treatment depends greatly on the medical condi-
tion of the patient and the speci�c diagnosis. Although there is variability in service
times, many facilities use an appointment schedule with �xed slot length. Since the
specialist is a more expensive resource, a high utilization is desirable. The challenge
for appointment scheduling is to realize high utilization, to reduce unit-cost and at
the same time have su
cient leeway for emergency cases.

Elective surgery occurs either in an inpatient setting (admitted to a ward) or out-
patient setting (poly-clinically). Surgery requires an operating room, one or more
surgeons, supporting personnel and equipment, all of which are highly expensive re-
sources. To utilize these resources e
ciently there are two approaches focused on
the usage of the operating room. The �rst approach is to reserve the operating room
for a speci�c surgeon for an extended period of time, during which she may use the
operating room; this is called block-scheduling. The second approach is called open-
scheduling, in which surgeons make requests for speci�c time slots. The time slots
needed for a speci�c type of surgery are usually based on historical averages by type
and provider. Both approaches are viable, and can be used simultaneously. Open-
scheduling has the advantage of more �exibility to deal with variation in demand
and emergency patients, while block-scheduling is more e
cient as the changeover
times of personnel and equipment are reduced.

1.2 Dealing with variation in healthcare operations

Primary care, specialty care and elective surgery each have their own characteristics
of variability and unpredictability, which make it challenging to synchronize supply
(availability of healthcare providers and other resources) and demand (patients� re-
quests for care). Variability and unpredictability are greatly reduced by scheduling
demand. Scheduling appointments for patients at pre-set times is the most common
choice for matching supply and demand, except for emergency care. The advantage
of appointment scheduling is that it levels out patient demand over the available
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INTRODUCTION

time, thus making it easier to deploy resources e
ciently without creating long wait-
ing times. Emergency care is a form of unscheduled demand in which the healthcare
service is started whenever an emergency patient shows up.

Designing an appointment schedule would be straightforward if patients showed
up on time, service times were constant or perfectly predictable, and no-shows, walk-
ins, cancelations and other disruptions did not occur. The challenge is to design
schedules to handle such variability as well as possible, with as little waiting and idle
times as possible. Appointment scheduling is therefore an instance of the more gen-
eral problem of dealing with process variability; see Hopp and Spearman (2008). A
sensible �rst step is to try to reduce variability anduncertainty. Somehospitals, for in-
stance, bring down no-shows and last-minute cancelations by employing reminders
and/or sanctions (Barron 1980, Johnson et al. 2007). A second step is to counterbal-
ance variability by �exibility. Healthcare providers sometimes handle peak loads by
stretching their working day or shrinking lunch time, or they may put unanticipated
idle time to e	ective use by catching up on administrative work or other pending
tasks.

After variability has been reduced or counterbalanced as far as possible, the vari-
ability bu�ering law ofHopp and Spearman (2008) predicts that the remaining variabil-
ity will be absorbed by a combination of three bu	ers. In the �rst place, the provider
may build up in advance an inventory of �nished �products� as a bu	er to absorb
peaks in workload. This is rarely an option, however, for the type of services that we
consider, because products in our setting are treatments and diagnoses. Therefore,
production cannot start until patient and provider come together. This leaves us with
two other types of bu	ering:

� A queue of patients waiting to get served.

� An excess of unutilized capacity of the healthcare provider (which implies idle
time).

As a consequence, a schedule�s performance degradation due to variability is a com-
bination of waiting time for patients and idle time for servers, which act as commu-
nicating vessels. On the one hand, it is e
cient for a healthcare provider if there are
some patients waiting, which act as a bu	er of work on standby that prevents that the
provider has idle time when treatments are shorter than anticipated or patients do
not show up. On the other hand, it is convenient for the patient if the waiting room
is empty and the provider is sitting idle ready to start treating a next patient.

1.3 Literature review

The appointment scheduling literature focuses on �nding heuristics (rules of thumb)
and proposing approaches to derive (close-to-)optimal appointment schedules, be-
cause the problem itself is analytically intractable as concluded by Robinson and
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Chen (2003). However, various analytical approaches succeed, under speci�c con-
ditions, in �nding computational methods to evaluate and optimize appointment
schedules. A clear trend is that early work, mid 20th century, is focused on empirical
and simulation studies. In such studies current practices are observed and their per-
formance is compared to alternatives, either in a simulation model or sometimes in
a real clinical setting. Later the focus of attention has shifted to more computational
studies. A plausible explanation for this shift are the technological advances over
the last decades that have introduced a variety of new numerical techniques. These
techniques are proposed by researchers to quantify the performance of and optimize
appointment schedules.

Comprehensive literature reviews are given by C‚ ay�rl� and Veral (2003), Mond-
schein andWeintraub (2003) and Gupta and Denton (2008). We provide an overview
of the �eld of appointment scheduling by the facets of the appointment scheduling
problem that we are to consider. Our review is not exhaustive and therefore each
chapter will contain a separate introduction containing references relevant to its con-
tents.

1.3.1 Static versus dynamic appointment scheduling

Most healthcare services use an appointment book in which the patients� appoint-
ments are scheduled in advance (before the session starts). In such a setting the prob-
lem of designing the appointment schedule is merely a static problem, whereas in a
dynamical setting requests for appointments are assigned during a session (e.g., Fries
and Marathe 1981, Liao et al. 1993, Klassen and Rohleder 1996, Liu and Liu 1998a).
Since 2000 there has been great interest for dynamical scheduling in practice, insti-
gated by open-access and advanced-access policies. In these policies, patients are
seen the same day or make an appointment in the near future, for example studied
by Liu et al. (2010).

The potential bene�ts of open-access scheduling are that it may reduce no-shows
and cancelations and improve access to healthcare providers (Murdock et al. 2002,
Gallucci et al. 2005, Steinbauer et al. 2006). However, open-access scheduling makes
it more di
cult to control and predict patient demand, and therefore, capacity man-
agement may be much more di
cult; see discussions in Green and Savin (2008),
Robinson and Chen (2010) and Liu et al. (2010). Appointment scheduling in the static
setting is still the more common and relevant problem to study.

1.3.2 Situational characteristics in appointment scheduling

Literature identi�es situational characteristics (clinical environments) that should be
taken into account in designing an appointment schedule. A �rst characteristic is the
structure of the service process. Literature on appointment scheduling often con-
siders a single-server process in which patients, typically 10 to 30, are being served
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during a session. There are healthcare services that require a sequence of activities,
such as an x-ray followed by a consult, such as studied in Rising et al. (1973) and
Swisher et al. (2001).

A second situational characteristic are the stochastic properties of service times. In
healthcare operations it has been observed that the service times vary greatly across
type of care and specialty. Furthermore, studies �nd that the service times follow a
uni-modal and rightly-skewed distribution (Bailey 1952, Welch 1964, Goldman et al.
1969, Brahimi and Worthington 1991). For simplicity, it is assumed in literature that
the service times are independent and identically distributed, which is an assump-
tion that is contradicted by various empirical studies (Bailey 1952, Rising et al. 1973,
Babes and Sarma 1991) as health service providers tend to increase their speed when
multiple patients are waiting.

Another important characteristic for the design of an appointment schedule is the
no-show probability, which introduces uncertainty in the workload. In a comparison
study of situational characteristics, Ho and Lau (1999) conclude that the no-show
probability and the number of patients are the most in�uential factors determining
the performance of an appointment schedule. Zacharias and Pinedo (2014) study
how no-shows can be handled by overbooking slots. In addition, the walk-in proba-
bility is another situational characteristic that increases unpredictability in the work-
load and varies per type of care considered. The e	ects of both factors have exten-
sively been studied (Fetter and Thompson 1966, Vissers and Wijngaard 1979, Vissers
1979, C‚ ay�rl� et al. 2006, Luo et al. 2012, C‚ ay�rl� et al. 2012).

Lastly, punctuality can also be a crucial situational characteristic (C‚ ay�rl� andVeral
2003). On the one hand, we have unpunctuality of patients, where literature mostly
assumes that patients arrive early (rather than late). Furthermore, in C‚ ay�rl� et al.
(2006) it is claimed that patients� tardiness is a less critical factor in the design of ap-
pointment schedules. In simulation studies their unpunctuality is modeled by an
extra random variable, but in analytical or numerical studies patients are typically
assumed to be punctual. On the other hand, also tardiness of providers may be con-
sidered.

1.3.3 Appointment rules with �xed block length

The literature of appointment scheduling originated under the paradigm where the
available time (session) is divided into a number of intervals (blocks) spread evenly
over the session. The pioneering works by Bailey (1952), Welch and Bailey (1952)
and Welch (1964) introduce heuristics where the session is divided in blocks with
lengths equal to the average service time. The �rst block starts with two or more
scheduled patients and all subsequent blocks are assigned to only one patient. By
simulation they found that starting a session with 2 patients works surprisingly well;
the birth of the famous Bailey-Welch rule. White and Pike (1964), Soriano (1966),
Fetter andThompson (1966), andRockart andHofmann (1969) further study this kind
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of heuristics. For example, Soriano (1966) introduces the heuristic to have the block
length equal to twice the average service time and schedule two patients per block.
Fries and Marathe (1981), Liao et al. (1993), Liu and Liu (1998b), Vanden Bosch et al.
(1999), and Zacharias and Pinedo (2014) generalize this heuristic by determining the
optimal number of patients to be scheduled for each block (still with constant block
lengths).

1.3.4 Appointment rules with variable block length

As realized by Charnetski (1984), a clear shortcoming of heuristics with �xed inter-
val lengths is that variability can only be taken into account by scheduling more (or
fewer) patients per block. Charnetski proposes a heuristic based on setting block
lengths equal to the average service time plus a multiple of the standard deviation
in service times. Thus, the focus in scheduling is no longer to determine how many
patients to schedule in a block, but rather to decide how long the blocks should be.
In the same spirit, Ho and Lau (1992, 1999) study and compare sophisticated alterna-
tives to traditional appointment rules in a comprehensive simulation study. Interest-
ingly, they conclude that such ruleswith variable block lengthswork better in speci�c
situations, but that across a range of situational characteristics the Bailey-Welch rule
(with 2 patients scheduled in the �rst block) has themost robust performance. Robin-
son and Chen (2003) propose a well performing heuristic in which two parameters,
the block length of the �rst patient and the equally-sized block lengths for the re-
maining patients, are optimized (cf. an optimized version of the Bailey-Welch rule).
Yang et al. (1998) propose an appointment rule that has been optimized over a given
set of situational characteristics, which is further enriched in C‚ ay�rl� et al. (2012) by
implementing no-shows and walk-ins.

1.3.5 Appointment schedules generated by optimization

The appointment rules discussed above have the main advantage of being simple,
implying that no or just a few parameters are to be optimized. In its most general
form, however, the scheduling problem has as many degrees of freedom as there are
patients to be scheduled in a session, with the decision variables being the scheduled
arrival epochs of all individual patients. The resulting objective function is typically
hard to evaluate, but this problem can be solved by choosing tractable service-time
distributions, such as the exponential (Healy 1992, Stein and C�ot·e 1994, Hassin and
Mendel 2008, Kaandorp andKoole 2007), phase-type (Wang 1997, Vanden Bosch et al.
1999, Vanden Bosch and Dietz 2000) or beta distribution (Lau and Lau 2000).

Also discretized versions of the service-times or schedules can be used and this
facilitates a fast evaluation of schedules for optimization (e.g., Brahimi andWorthing-
ton 1991, Vanden Bosch et al. 1999, Vanden Bosch and Dietz 2000, Swisher et al. 2001,
Kaandorp and Koole 2007, De Vuyst et al. 2011). Other, less obvious approaches are:
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modeling the problem as a (two-stage) stochastic linear program (Denton and Gupta
2003); minimizing maximum loss (Mak et al. 2015); considering the problem sequen-
tially, introduced by Weiss (1990) and studied in detail by Kemper et al. (2014).

The focus in many of these studies is more on the computational approach and
less on a realistic characterization of the healthcare environment, or they fail to give
operational, well-structured tools for practitioners.

1.3.6 Challenges

Literature has shown various trends, such as a tendency to focus on novel compu-
tational approaches without taking actual healthcare settings into consideration, or
producing approaches that are very narrow in the situations in which they can be
used.

In our view an approach to appointment scheduling should ful�ll a number of re-
quirements. In the �rst place it should be fast, in that it should be possible to generate
optimal schedules in minimal computational time. If the underlying algorithm can
be performed fast, then it facilitates sensitivity analysis: we can study and quantify
the impact of a change in the weight in the objective function, or in the random ser-
vice times. In the second place, the procedure should be robust: it should not overly
depend on detailed distributional information. In many studies it is assumed that in
principle the service-time distribution is fully known, whereas in practicemaybe only
the �rst twomoments can be estimated; e.g., C‚ ay�rl� andVeral (2003),Mak et al. (2015).
In the third place, the methodology should be �exible in the sense that it should be
able to incorporate additional features such as no-shows, walk-ins, and restrictions
on the possible values of the appointment durations (to cover the situation that slots
are multiples of e.g. 5 minutes).

1.4 Motivation and objectives

The goal of this thesis is to develop an approach to the appointment scheduling prob-
lem that is capable of capturing speci�c and realistic characteristics of healthcare op-
erations and that outperforms existingmethods. Wemotivate our approach and clar-
ify the various objectives to be solved by our procedure. Additionally, we sketch the
model considered throughout this dissertation: the appointment scheduling prob-
lem is cast in a queueing-theoretic framework.

1.4.1 Problem structuring

The design of an appointment schedule consists of determining the individual sched-
uled arrival times for a certain number of patients. The chosen arrival times de-
termine a trade-o	 in idle and waiting times for patients and healthcare providers,
which arises due to variability in service times and uncertainty in the workload. The
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acteristics. Ideally, one method uniformly outperforms all other approaches, across
all scenarios. In practice however, one could see that the speci�c circumstances dic-
tate which of the candidate techniques works best.

1.5 Outline

We now proceed by providing an outline of the thesis. Each of the Chapters 2 up to 5
covers a speci�c aspect of the appointment scheduling problem that we introduced.
The �ndings are combined inChapter 6, which presents a very general andpractically
applicable technique. This techniquewas implemented in awebtool that is presented
in Chapter 7.

Chapter 2 deals with the problem in which the distribution of the individual pa-
tients is given and the planner is confronted with the task to determine the arrival
epochs of the patients. We demonstrate how to generate schedules that have certain
optimality properties. We express the performance of a schedule in terms of its as-
sociated utility, which incorporates both waiting times and idle times. In a �rst class
of schedules (referred to as the simultaneous approach), the arrival epochs are chosen
such that the sum of the utilities of all patients as well as the service provider aremin-
imized. In a second class (sequential approach), the arrival epoch of a next patient is
scheduled given the scheduled arrival epochs of all previous patients. Our approach
is applied in several examples, that provide insight in the impact of the variability
of the service times on the schedule; it also shows the impact of the utility function
selected.

In Chapter 3, we compare the optimal schedules generated by the approach pre-
sented in Chapter 2 with a number of easily-evaluated heuristics. In our setup it is
assumed throughout that a given fraction of the patients does not show up. Our re-
sults are particularly useful in situations in which there is signi�cant variation in the
service times, which is the case in various healthcare-related settings.

Chapter 4 deals with multi-node appointment-based service systems that arise
in a broad variety of healthcare settings (for example an outpatient clinic or a den-
tist). Where most existing algorithms speci�cally consider the situation of the patient
undergoing a single service, in many practical situations multiple services have to be
sequentially performed. Modeling the service system as a tandem queue, the main
objective of this chapter is to generate schedules that soundly balance the interests of
patients (i.e., low waiting times) and sta	 (i.e., low idle times). Importantly, follow-
ing up on prior work for the single-node queue, as given in Chapter 2, we advocate a
phase-type based technique that can deal with any service-time distribution (which
may, in addition, vary across patients). Relying on a novel recursive scheme to eval-
uate the sojourn-time distribution of patients in such tandem systems, we show how
optimal schedules can be computed. Our technique is illustrated by extensive nu-
merical experimentation, also leading to practical guidelines that apply to a broad
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range of parameter settings.
In Chapter 5 we try an alternative approach to schedule patients in continuous

time using the actual service-time distributions as opposed to approximations and
hypothesized distributions (the approach in the preceding chapters). As the opti-
mal schedule is notoriously hard to derive within reasonable computation times, we
develop the lag order approximationmethod, that sets the patient�s optimal appoint-
ment time based on only a part of his predecessors. We show that a lag order of two,
i.e., taking two predecessors into account, results in nearly optimal schedules but the
required computation time may be relatively long. We illustrate our approximation
method with an appointment scheduling problem in a CT-scan process.

Chapter 6 presents our ultimate model, which combines various aspects of the
lessons learned in the previous chapters. We �rst consider the situations with a rela-
tively large number of patients having stochastically identical service times (station-
ary schedules). We give accurate closed-form approximations that either exploit the
distributional form of speci�c phase-type distributions or explicit heavy-tra
c re-
sults. We then focus on the situation with a limited number of patients, for which
we develop an approach for generating optimal schedules including relevant phe-
nomena such as no-shows, walk-ins and overtime. Finally, we present an easy-to-use
webtool, which allows healthcare providers to generate appointment schedules that
signi�cantly outperform existing approaches. A detailed instruction on how to use
the webtool is given in Chapter 7.

Finally, Chapter 8 provides a summary of the dissertation.

1.6 Scienti�c contribution

Chapter 2 has appeared as an article in Queueing Systems (Kuiper et al. 2015), which
originated from my master thesis project under supervision of Dr. Benjamin Kem-
per and Prof. Michel Mandjes. The modeling and approach has been joint work, and
most of the numerical results were attributed to me. I had the lead in the work of
Chapter 3, which compares and relates our approach, extended with no-shows, to
well-known heuristics. The content of Chapter 3 is published in Quality and Reliabil-
ity Engineering International (Kuiper andMandjes 2015b). Prof. Mandjes also came up
with the idea to extend our work to tandem-type systems and together we explored
this line of research, where I extended the numerical procedures to facilitate opti-
mization of these systems, resulting in a publication in Omega (Kuiper and Mandjes
2015a).

Chapter 5 is based on an article that has been published in the European Journal
of Operational Research (Vink et al. 2015). The article was initially written as a spin-
o	 of the master thesis project of Wouter Vink M.Sc. supervised by Dr. Kemper
and Dr. Sandjai Bhulai. Their submission was rejected, but with my help (providing
additional numerical work and rewriting the paper) a revision has led to publication.
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The content of Chapter 6 has been combined work with Prof. Mandjes, Ruben
Brokkelkamp M.Sc. and Prof. Jeroen de Mast. As a result of our previous research
Prof. Mandjes and I found interesting patterns in the steady-state solutions. This pro-
vided a basis for new research, which, with the help of BrokkelkampM.Sc., were un-
covered. Furthermore, Prof. Mandjes introduced heavy-tra
c analysis and Prof. De
Mast aided in structuring the problem in the concepts of operations management.
His writings also inspired my thoughts for topics to be included in this introduction.
Brokkelkamp M.Sc. also played a signi�cant role in making the webtool work. At
this stage the manuscript, called E�cient procedures for appointment scheduling (Kuiper
et al. 2016), has been submitted for publication.
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The goal of this chapter is to study the computational feasibility of scheduling algo-
rithms that minimize an objective function that depends on idle and waiting times.
The objective function under study requires knowledge of the �rst and second mo-
ments of the idle times and waiting times. Relying on a phase-type approximation,
we analyze this problem in two environments. First, a transient environment, where
a �nite number of clients are scheduled, and second, in a steady-state environment,
corresponding to the situation that the number of stochastically identical clients to
be scheduled tends to in�nity.

2.1 Introduction

An optimized schedule is such that the system�s risk (the expectation of a loss func-
tion that involves both waiting times and idle times) is minimized, thus realizing an
optimal trade o	 between the interest of the providers and the clients (patients). Here,
a schedule is the vector of appointed arrival times. In queueing-theoretic terms: the
planner is given the distributions of the service times, and then it is her task to de-
termine the corresponding optimal (that is, disutility-minimizing) arrival epochs. In
our work we limit ourselves to the situation in which the sequence of the arrivals is
�xed.
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Consider independent and identically distributed (i.i.d.) service times. In case
the number of clients is relatively low, the optimal interarrival times may vary sub-
stantially (realize that the �rst client �nds the system empty with certainty). If, to the
contrary, there aremany clients, the schedule will converge to a steady state: the opti-
mal interarrival times of successive clients will be constant. By making a connection
to appropriately chosen D/G/1 queues (with the service times following a phase-
type distribution), we demonstrate how to determine the corresponding stationary
schedules, both in the simultaneous and sequential approach.

Methodologically, our work is related to Wang (1997) (also using phase-type dis-
tributions), Lau and Lau (2000) (using beta distributions), Hassin and Mendel (2008)
(using the exponential distribution) and De Vuyst et al. (2011) (using discretized ver-
sions of the service, idle, waiting and sojourn times). The phase-type and beta distri-
butions are particularly attractive, as they allow a selection of the parameters in such
a way that, e.g., the �rst moments match with those estimated from measurements.
In this chapter we will assess the di	erences between these candidate approaches.

This chapter is organized as follows. In Section 2.2 we introduce our mathemat-
ical model, and de�ne the risk functions considered. The approach is presented in
Section 2.3. Section 2.4 demonstrates our approach for transient schedules, while
Section 2.5 considers the stationary counterpart. In Section 2.6 we discuss the poten-
tial and limitations of our approach; in particular, we show that the error due to the
phase-type �t is small. Section 2.7 concludes and suggests ideas for future work.

Various graphs illustrate a number of interesting e	ects. We quantify the follow-
ing features: (i) the convergence of transient schedules to their stationary counter-
parts; (ii) the impact of the choice of the risk function on the schedule; (iii) the impact
of the service times� variability on the schedule. Also the di	erences between the
simultaneous and sequential approach are studied in greater detail. Evidently, re-
placing a non-phase-type distribution by its phase-type counterpart introduces an
error; a simulation study shows that the impact of this error is negligible.

2.2 Background and model

Themathematical treatment of the appointment scheduling problemwith one server
dates back to at least the seminal works of Bailey (1952) andWelch and Bailey (1952).
Since then, a sizeable number of papers has appeared in the operations research lit-
erature. The results in these papers tend to be rather case-speci�c, in terms of the
service-time distribution under consideration as well as the risk function chosen.
One often relies on simulations to overcome the inherent computational complexi-
ties. Such an approach has clear limitations: it evidently lacks general applicability,
and, more importantly, it does not provide us with structural insights and general-
izable solutions. Our aim is therefore: develop an approach that works for general
service times, general risk functions, and that is numerically feasible.
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A common way to reason about an appointment scheduling problem is to de�ne
for each arrival i a so-called risk. This risk is the expectation of a loss function that
re�ects the idle time (Ii) and the waiting time (Wi) of each client i. A natural choice
is Eg(Ii)+Eh(Wi), where it makes sense to choose non-decreasing loss functions g(•)
and h(•)with g(0) = h(0) = 0. Observe that these risks clearly depend on the arrival
epochs ti and service times Bi; more precisely, the risk associated to the i-th client
depends on the arrival epochs t1 up to ti and service timesB1 up toBi�1. The optimal
schedule corresponding to the simultaneous approach then follows from solving the
minimization problem over the arrival epochs only

min
t1,...,tn

n�

i=1

(Eg(Ii) + Eh(Wi)) , (2.1)

whereas its sequential counterpartminimizesEg(Ii)+Eh(Wi) over ti, with t1, . . . , ti�1

given.

In this chapter we focus on a quadratic and a linear loss function, but, importantly,
the setup carries over to any loss function in the class de�ned above. For a quadratic
loss the risk is de�ned by

R(q,�)
i (t1, . . . , ti) := �EI2

i + (1� �)EW 2
i , i = 1, . . . , n and � � (0, 1).

Due to the well-known Lindley recursion (Lindley 1952),

Ii = max{ti � ti�1 �Wi�1 �Bi�1, 0}, (2.2)

and
Wi = max{Wi�1 +Bi�1 � ti + ti�1, 0}. (2.3)

Let Si := Wi+Bi denote the sojourn time of the i-th client, with distribution function
FSi(•). In addition, de�ne by xi�1 := ti� ti�1 the time between the (i� 1)-st and i-th
arrival. Then, with (2.2) and (2.3) in mind, wemay write the system�s risk (in relation
to the i-th client) as

R(q,�)
i (t1, . . . , ti�1, ti�1 + xi�1) := �EI2

i + (1� �)EW 2
i

= �E (xi�1 � Si�1)
2 1xi�1>Si�1 (2.4)

+(1� �)E (Si�1 � xi�1)
2 1xi�1<Si�1 .

This is a nonnegative convex function of xi�1. Below we specialize to the case of
equal weights, that is, � = 1

2 . In that case the risk related to the i-th client reduces to
1
2 E (Si�1 � xi�1)

2 (where we can leave out the factor 1
2 ). For � �= 1

2 there is no such a
simpli�cation of the expressions. The computation time required to determine opti-
mal schedules does not depend on the choice of�, however: all cases can be evaluated
in essentially the same amount of computation time. At the end of Section 2.5.3 we
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assess the e	ect of the weights in steady state.
In the case of a linear loss function, the risk associated with the i-th client equals

the sum of the expected waiting time and the expected idle time. Again, due to (2.2)
and (2.3), we obtain, again with � � (0, 1),

R(�,�)
i (t1, . . . , ti�1, ti�1 + xi�1) := �EIi + (1� �)EWi

= �E (xi�1 � Si�1)1xi�1>Si�1 (2.5)

+(1� �)E (Si�1 � xi�1)1xi�1<Si�1 ,

which is a nonnegative convex function of xi�1. Again, we consider in this chapter
only the case of equal weights, so that the risk related to the i-th client reduces to
1
2 E|Si�1 � xi�1| (where again we can leave out the factor 1

2 ).

2.3 The phase-type approach

As argued earlier in this chapter, the main problem when generating schedules of a
realistic size concerns the fact that neither explicit expressions are available for the
expected idle and waiting times (or the corresponding second moments), nor for the
distributions of the sojourn times � these are needed to be able to evaluate the risk
(which then needs to be optimized, either sequentially or simultaneously). This sec-
tion proposes an approach to circumvent this problem, by replacing the service times
by a phase-type counterpart (of relatively lowdimension). For these approximate ser-
vice times, we can evaluate the �rst and second moments of the client�s sojourn time
and therefore, through (2.4) and (2.5), client i�s risk associated with Ii and Wi, as it
will turn out.

The approach we propose in this chapter consists of three steps:

1: Based on the mean and variance of the service times (or, equivalently, the mean
and the coe
cient of variation), we �t a phase-type distribution.

2: With a recursive procedure we derive, for each client, the sojourn-time distri-
bution (for the �tted phase-type distribution).

3: The phase-type based sojourn-time distribution enables us to evaluate the ob-
jective function. Relying on standard numerical packages, we can then solve the
simultaneous optimization problem as stated in (2.1). In the sequential coun-
terpart it su
ces to compute the expected value (in case of a quadratic loss) or
median (in case of a linear loss) of the clients� sojourn times.

In this section we provide further details on our approach; in Section 2.4 and Section
2.5 we demonstrate the resulting procedure in transient (relatively few clients) and
steady-state (relatively many clients) settings.
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2.3.1 Phase-type �t of the service-time distribution

In the �rst step of our approachwe use phase-type distributions to �t the service-time
distributions in the system under study. Phase-type distributions are mixtures and
convolutions of exponential distributions and include (mixtures of) Erlang distribu-
tions and hyperexponential distributions. It is well known from the literature that
they can approximate any positive distribution arbitrarily accurately, see e.g. Tijms
(1986) and Asmussen et al. (1996).

The reason to use phase-type distributions is twofold. In the �rst place, due the
enforcedMarkovianity, the resulting system often enables the computation of explicit
expressions for various queueing-related metrics, such as the waiting times distribu-
tion (where �explicit� means in terms of eigenvalues/eigenvectors of an associated
eigensystem). In the second place, restricting ourselves to a phase-type distribu-
tion of a certain dimension, estimating this distribution from data can be done via
a (semi-)parametric density estimation procedure.

In our study we use the idea presented in Tijms (1986) to match the �rst and
second moment of the service-time distribution, or, equivalently, the mean and the
squared coe�cient of variation (���). The ��� of the random variableX is de�ned as its
variance divided by the square of themean. In line with Kemper andMandjes (2012),
we choose to match a mixture of two Erlang distributions in case the actual service-
time distribution has an ��� smaller than 1, and a hyperexponential distribution in
case of an ��� larger than (or equal to) 1. More precisely:

� In case ��� < 1 we match the service-time distribution with a mixture of two
Erlang distributions with the same scale parameter, denoted as EK�1,K(µ; p).
A sample from this distribution is obtained by sampling from an Erlang distri-
bution with K � 1 phases and mean (K � 1)/µ with probability p, and from
an Erlang distribution withK phases and meanK/µwith probability 1� p. Its
n-th moment is given by

E
�
En

K�1,K
�
= p

(K + n� 2)!
(K � 2)!

1
µn + (1� p)

(K + n� 1)!
(K � 1)!

1
µn ,

with p � [0, 1]. The corresponding ��� equals

K � p2

(K � p)2 ,

which lies between 1/K and 1/(K � 1) forK � {2, 3, . . .}. We can thus uniquely
identify an EK�1,K(µ; p) distribution matching the �rst two moments of the
target distribution, as long as ��� < 1.

� In case ��� � 1 we match the service-time distribution with a speci�c exam-
ple of the hyperexponential distribution, namely a mixture of two exponential
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distributions, denoted byH2(µ; p), with µ = (µ1, µ2). Its n-th moment is given
by

E [Hn
2 ] = p

n!
µn

1
+ (1� p)

n!
µn

2
.

We impose the additional condition of balanced means, see Eq. (A.16) in Tijms
(1986). That is, we require µ1 = 2pµ and µ2 = 2(1 � p)µ for some µ > 0. The
corresponding ��� equals (2p(1� p))�1, which is larger than (or equal to) 1. It
can be veri�ed that

p =
1
2

�

1–
�

���� 1
���+ 1

�

.

It is readily checked that for the special case ��� = 1, the �t results in an expo-
nential distribution (with p = 1

2 ).

2.3.2 Recursive procedure to derive sojourn-time distributions

We now present a procedure to compute the sojourn-time distribution of any speci�c
client, in case the service times are of phase type. We concentrate on mixtures of Er-
langs (i.e., EK�1,K(µ; p)) and hyperexponentials (i.e.,H2(µ; p)), as these are the ones
to which we �tted our service-time distributions. The procedure works, however,
for any phase-type distribution; see e.g. Wang (1997). We assume that the service
times are i.i.d., but the procedure can be extended to independent, non-identically
distributed phase-type service times, at the expense of rather involved notation.

A phase-type distribution is characterized by an m � N, an m-dimensional row
vector � with nonnegative entries adding up to 1, and S = (sij)mi,j=1 an (m × m)-
dimensional matrix such that sii < 0, sij � 0 and

�m
j=1 sij � 0 for any i � {1, . . . ,m}.

� In case ��� < 1, we use an EK�1,K(µ; p) distribution. Then m = K, and the
vector � such that �1 = 1 and �i = 0 for i = 2, . . . ,K. In addition sii = �µ for
i = 1, . . . ,K and si,i+1 = �sii = µ for i = 1, . . . ,K�2, while sK�1,K = (1�p)µ;
all other entries are 0.

� In case ��� � 1, we use a H2(µ; p) distribution (as explained in Section 2.3.1).
Then m = 2, and �1 = p = 1� �2. Also, sii = �µi, for i = 1, 2, while the other
two entries of S equal 0.

For more background on phase-type distributions, see Asmussen (2003).
Next, we brie�y describe the algorithm, presented in Wang (1997), that deter-

mines the clients� sojourn-time distributions. To this end, we consider the bivariate
process {Ni(t),Ki(t), t � 0} for client i = 1, . . . , n. Here Ni(t) is the number of
clients in front of the i-th arriving client, t time units after her arrival. Obviously,
Ni(t) � {0, . . . , i � 1}. The second component, Ki(t) � {1, . . . ,m}, represents the
phase of the client being served, t time units after the arrival of the i-th client, where
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Ni(t) = 0 refers to the case that the last arriving client is being served. We also intro-
duce the probabilities, for t � 0, i = 1, . . . , n, j = 0, . . . , i� 1, and k = 1, . . . ,m,

p(i)
j,k(t) = P (Ni(t) = j,Ki(t) = k) .

In addition, the following vector (of dimension mi) plays a crucial role

P i(t) :=
	
p(i)
i�1,1(t), . . . , p

(i)
i�1,m(t), p(i)

i�2,1(t), . . . , p
(i)
i�2,m(t), . . . , p(i)

0,1(t), . . . , p
(i)
0,m(t)



.

The sojourn-time distribution of the i-th client can be computed from P i(t) through
the identity (with emi an all-one vector of dimension mi):

Fi(t) := P(Si � t) = 1�
i�1�

j=0

m�

k=1

p(i)
j,k(t) = 1� P i(t)emi.

For the �rst client arriving at t1 = 0, we have that P 1(t) = � exp(St) (which is an
m-dimensional vector). For the second client, arriving x1 after the �rst client, we have

P 2(t) = (P 1(x1),�F1(x1)) exp(S2t), t � 0,

which is an object of dimension 2m; here, with s := �Sem and 0m,m an (m × m)-
dimensional all-zero matrix,

S2 :=
�

S s�
0m,m S

�
.

The sojourn-time distributions of the other clients can be found recursively in a sim-
ilar manner. To this end, de�ne the matrix T i of dimension (i� 1)m×m as

T i := (0m,m,0m,m, . . . ,0m,m, s�)T,

so that

Si :=
�

Si�1 T i

0m,(i�1)m S

�
.

Then the vectorP i(t) (dimensionmi) can be found fromP i�1(t) (dimensionm(i�1))
by the recursion

P i(t) = (P i�1(xi�1),�Fi�1(xi�1)) exp(Sit), t � 0.

Realize that in our examples the matrix S is upper triangular, and hence so are the
matrices Si. As a consequence, the eigenvalues can be read o	 from the diagonal.
This property facilitates easy computation of the matrix exponent exp(Sit). In case
of the EK�1,K(µ; p) all eigenvalues are µ.
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2.3.3 Optimal schedules for sequential and simultaneous approach

Above we explained how to approximate any distribution on [0,�) by a phase-type
distribution of relatively low dimension (either a mixture of Erlang distributions or a
hyperexponential distribution, depending on the value of the ���). We also showed
how to compute the corresponding sojourn-time distributions. The next step is to use
these �ndings to determine optimal schedules, for the sequential and simultaneous
optimization approach, and for quadratic and linear loss functions, as inKemper et al.
(2014).

The sequential optimization approach

In the sequential optimization approach, we minimize for each arriving client i the
corresponding risk. This means that we minimize the expected loss over ti, for given
values of t1(= 0), . . . , ti�1. In suggestive notation, the optimization program

min
ti

Ri(ti | ti�1, . . . , t1) = min
ti

Eg(Ii) + Eh(Wi).

As we argued earlier, to solve this sequential optimization problem, we only need
to know the sojourn-time distribution of the previous arrival, Si�1, given t1, . . . , ti�1

(Kemper et al. 2014). We now show in greater detail how this works for the weighted-
linear and the weighted-quadratic loss function.
Weighted-linear loss function. Let the risk for each arrival be aweighted expected linear
loss over the idle time and waiting time, i.e.,

min
ti

R(�,�)
i (ti|ti�1, . . . , t1) = min

ti
�EIi + (1� �)EWi, i = 1, . . . , n, � � (0, 1).

Given (2.5) we may write for i = 2, . . . , n and again for � � (0, 1)

min
xi�1

�E (xi�1 � Si�1)1xi�1>Si�1 + (1� �)E (Si�1 � xi�1)1xi�1<Si�1 ,

where the interarrival time xi�1 equals ti � ti�1.
Then the optimal interarrival time x�

i�1 can be found by solving the �rst-order
equation

�FSi�1(x)� (1� �)


1� FSi�1(x)

�
= FSi�1(x)� 1 + � = 0.

This leads to the optimal schedule

t�1 := 0 and t�i :=
i�1�

j=1

F�1
Sj

(1� �) , i = 2, . . . , n.

For � = 1
2 we obtain that client i is scheduled to arrive after a time that equals the
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2.3 THE PHASE-TYPE APPROACH

sum of the medians of the sojourn times of all previous clients.
Weighted-quadratic loss function. Let the risk for each arrival be a weighted expected
quadratic loss over the idle time and waiting time

min
ti

R(q,�)
i (ti|ti�1, . . . , t1) = min

ti
�EI2

i + (1� �)EW 2
i , i = 1, . . . , n, � � (0, 1).

Given (2.4) we write for i = 2, . . . , n and again for � � (0, 1), with xi�1 = ti � ti�1,

min
xi�1

�E (xi�1 � Si�1)
2 1xi�1>Si�1 + (1� �)E (Si�1 � xi�1)

2 1xi�1<Si�1 .

As above, the optimal interarrival time x�
i�1 follows from the �rst-order equation,

which now reads

�(x� ESi�1)� (1� 2�)
� �

x
P(Si�1 > s)ds = 0.

For � = 1
2 we obtain the optimal schedule

t�1 := 0 and t�i :=
i�1�

j=1

ESj , i = 2, . . . , n.

This means that for � = 1
2 we obtain that client i is scheduled to arrive after a time

that equals the sum of the means of the sojourn times of all previous clients.

The simultaneous optimization approach

In case of a simultaneous optimization approach we set the optimal schedule that
jointly minimizes

min
t1,...,tn

R(t1, . . . , tn) = min
t1,...,tn

n�

i=1

(Eg(Ii) + Eh(Wi)) .

It is known that this joint optimization in general has no tractable solution, as was the
case in the sequential approach. Only in case of an exponential service-time distribu-
tion and a linear loss function it has a tractable solution, see Wang (1997). Therefore,
we rely on numerical analysis software to �nd the optimal schedule.

In the next sections we present numerical examples that feature schedules gen-
erated by our approach. Section 2.4 concentrates on the situation of a relatively low
number of clients, whereas Section 2.5 uses results for the steady-state of the D/G/1
queue (with phase-type service times) to analyze the situation of a relatively high
number of clients. In Section 2.6 we discuss the potential and limitations of our ap-
proach; in particular, we show that the error due to the phase-type �t is small.
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2.4 Optimal scheduling in a transient environment

If the number of clients in the schedule, n, is relatively high, and their service times
are i.i.d., then one will obtain schedules with more or less constant interarrival times.
This section presents results for optimal schedules in the opposite case, i.e., situations
in which the number of clients is relatively low. Particularly at the beginning of the
schedule (and in the simultaneous approach also at the end) it is expected that the
optimal interarrival times will vary substantially. Our experiments show that, for the
loss functions and the range of ��� values that we consider, this �transient e	ect� has
signi�cant impact up to, say, n = 25 clients.

Normalizing time such that the mean service time equals 1, we use four di	erent
values of the ��� (��� � {0.1225, 0.7186, 1.0000, 1.6036}). These can be considered
typical for services and healthcare processes, see Kemper and Mandjes (2012). The
latter three values are used in Wang (1997). We added ��� = 0.1225 = 0.352 to be
consistent with the healthcare literature, where it is reported that the �� ranges from
0.35 up to 0.85 (C‚ ay�rl� and Veral 2003).

Based on our approach as proposed in Section 2.3, we �rst �nd the corresponding
phase-type service-time distribution, thenwe derive for each arrival the sojourn-time
distribution, and �nally we compute the optimal schedule (for the sequential and
simultaneous approach, with linear and quadratic loss functions).

� We model an ��� = 0.1225 < 1 with an EK�1,K(µ; p) distribution with param-
etersK = 9 (realize that ��� � [ 1

9 ,
1
8 ]), µ = 8.3958 and p = 0.6042.

� Wemodel an ��� = 0.7186 < 1with anEK�1,K(µ; p) distribution with parame-
ters K = 2, µ = 1.6003 and p = 0.3997. The resulting parameters are � = (1, 0)
and

S =
�
�1.6003 0.9606

0 �1.6003

�
.

� We model an ��� = 1with an exponential distribution with parameter µ = 1.

� We model an ��� = 1.6036 with a H2(µ; p) distribution under the condition of
balanced means and with parameters chosen by the matching method explained
above. The resulting parameters are � = (p, 1� p) = (0.7407, 0.2593) and

S =
�
�1.4815 0

0 �0.5185

�
.

Note that for all cases the mean service time is given by

��S�1em = 1,

(em is the all-ones vector) as desired.
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(a) Linear loss, phase-type �t.
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(b) Quadratic loss, phase-type �t.

Figure 2.1: The optimal schedule in x�
i s by sequential optimization for di	erent ��� s.

The sojourn-time distribution of each client is then found by performing the sec-
ond step of our approach, as explained in Section 2.3. Next, based on these sojourn-
time distributions we compute the optimal interarrival times x�

i through both the
sequential approach and the simultaneous approach. Both approaches are studied
in case of an equally weighted (� = 1

2 ) linear loss function and an equally weighted
quadratic loss function. In our experiments for the simultaneous case, we study var-
ious schedule sizes (n = 5, 10, . . . , 25 arrivals).

The results for the sequential approach are shown in Figure 2.1. From these �g-
ures we observe for linear loss that in case ��� > 1 the interarrival times in the be-
ginning of the scheme (up to the 5-th arrival) are smaller than the interarrival times
for the cases ��� = 1 or ��� < 1. Later in the schedule (from arrival 10 onwards)
the optimal interarrival times are approximately identical in size (that is, the curves
for di	erent ��� values are close together), but increasing in the value of the ���. In
case of a quadratic loss only the �rst and second interarrival time are close together,
but from arrival 3 onwards the interarrival times di	er substantially; again they are
increasing in the ���, as expected. Overall, for any ��� the quadratic loss yields larger
optimal interarrival times than the linear loss.

The �ve graphs in Figures 2.2, 2.3, 2.4, and 2.5 show the optimal schedules for
n = 5, 10, . . . , 25 arrivals under simultaneous optimization. From these �gures we
observe two interesting features. First, we observe that the interarrival times tend to
increase in the value of the ���, and, again, for any of the ��� values the quadratic
loss leads to larger interarrival times than linear loss.

Second, the simultaneous approach leads to schemes for which the optimal inter-
arrival times increase in the beginning and decrease towards the end of the scheme.
The short interarrival times in the beginning of the schedule are essentially due to
the fact that there the risk of waiting is relatively low. The short interarrival times at
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(a) Linear loss, phase-type �t.
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(b) Quadratic loss, phase-type �t.

Figure 2.2: The optimal schedules in x�
i s by simultaneous optimization for ��� = 0.1225 < 1.
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(a) Linear loss, phase-type �t.
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(b) Quadratic loss, phase-type �t.

Figure 2.3: The optimal schedules in x�
i s by simultaneous optimization for ��� = 0.7186 < 1.

the end can be explained from the fact that, despite a potentially substantial risk of
high waiting times, there are few clients su	ering from this (e.g., the last client hav-
ing a large service time does not a	ect the waiting time of any subsequent clients). In
the middle part the interarrival times are nearly constant indicating that the system
is not a	ected by start- or end-of-session e	ects. The steady-state solution, the top
horizontal line, is added in each case. In all settings the system seems to converge
fast to the steady state. This justi�es considering the steady-state solution in which
all transient e	ects are neglected; see Section 2.5 for more results.

The pattern described above is the so-called dome shape, which was also found in
the literature. The dome shape was found in Hassin and Mendel (2008) and Wang
(1993), who minimized the expected waiting times and expected session-end time.
Robinson and Chen (2003) and Vink et al. (2015) found it when minimizing the com-
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(a) Linear loss.
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(b) Quadratic loss.

Figure 2.4: The optimal schedules in x�
i s by simultaneous optimization for ��� = 1.

bination of expected waiting and idle times. In Kaandorp and Koole (2007) also ex-
pected overtime is added to the latter minimization problem; for a more detailed
discussion on the e	ect of overtime on the schedule, see Section 2.6.4. Furthermore,
optimal interarrival times computed by the recursive beta distribution approxima-
tion, as advocated in Lau and Lau (2000), show a dome-shape pattern as well. In
Section 2.6.3 we further compare this method with the phase-type approach. In ad-
dition, in case of a linear loss function the dome-shape pattern is also found when
minimizing expected quadratic waiting and idle times, see Kemper et al. (2014).

2.5 Optimal scheduling in a steady-state environment

In the previous section we showed that our approach enables us to derive optimal
interarrival times for di	erent levels of ���, for both the sequential and simultaneous
optimization, and for various risk functions and scheme sizes. Note that we chose
the equally weighted linear and quadratic loss (that is, � = 1

2 ), which we continue to
do in this section, apart from Section 2.5.3 in which also the e	ect of � on the optimal
schedule will be studied. The primary goal of this section is to analyze the case of a
large number of clients with i.i.d. service times. In this situation the schedules have
constant interarrival times, and we show in detail how to determine these.

To study the steady-state interarrival time, given the value of the service-time dis-
tribution�s ���, we need to derive the steady-state sojourn-time distribution of the
corresponding D/G/1 queue, with the service times having either a mixture of Er-
lang distributions or hyperexponential distribution. We �rst show howwe derive the
steady-state sojourn-time distribution for various ��� values; then we model the op-
timal interarrival time as a function of the ��� for both sequential and simultaneous
optimization using the loss functions mentioned above.
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(a) Linear loss, phase-type �t.
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(b) Quadratic loss, phase-type �t.

Figure 2.5: The optimal schedules in x�
i s by simultaneous optimization for ��� = 1.6036 > 1.

We �rst point out that the optimality condition, that determines the optimal inter-
arrival time x�, depends on the choice of the speci�c case (simultaneous vs. sequen-
tial, linear vs. quadratic). This optimality condition is a relation that involves both
the distribution of the steady-state sojourn time S and the interarrival time x�. We
�rst observe that (using the Lindley recursion, and the fact that Wi and Ii cannot be
both positive)

Eg(Ii) + Eh(Wi) = E�(Si�1 � xi�1),

with �(•) de�ned through

�(x) := g(�x)1{x<0} + h(x)1{x�0}.

In case of the sequential optimization approach, Kemper et al. (2014) proves that for
any convex loss function the optimal interarrival time solves

dE�(S � x)
dx

= 0.

In the transient case we have to take the sojourn-time distributions of the individ-
ual clients, whereas in the steady-state case we have to take the stationary sojourn-
time distribution. This representation leads to some appealing results: for equally
weighted loss functions we obtain for linear loss the median of the sojourn time, i.e.,
x� = F�1

S

 1

2

�
, and for quadratic loss the mean of the sojourn time, i.e., x� = ES.

In case of the simultaneous optimization approach, we are to evaluate, for large n,

min
x1,...,xn

n�

i=1

E�(Si(x)� xi) � n •min
x

E�(S(x)� x).
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We write S(x) rather than S to emphasize that the sojourn times depend on the in-
terarrival time x. The optimal interarrival time then follows from the �rst-order con-
dition

d
dx

E�(S(x)� x) = 0.

For linear loss this yields the condition

d
dx

E|S(x)� x| =
d
dx

�� �

x
(t� x)fS(x)(t) dt+

� x

0
(x� t)fS(x)(t) dt

�
= 0, (2.6)

whereas for quadratic loss we obtain

d
dx

E (S(x)� x)2 =
d
dx



ES(x)2 � 2xES(x) + x2�

= 0. (2.7)

The above formula suggests that the linear case requires knowledge of the distribu-
tion function of S(x), but, interestingly, only ES(x) is needed. This can be seen as
follows. Note that

n�

i=1

(EIi + EWi) =
n�

i=1

((EIi + EBi) + (EWi + EBi))� 2
n�

i=1

EBi.

Now realize that, in addition to Wi + Bi = Si, we also have that for the total length
of the schedule

n�

i=1

(Ii +Bi) = tn + Sn,

which can be recognized as themakespan. Realizing that the value of
�n

i=1 EBi does
not a	ect the optimization, we conclude that minimizing the linear loss is equivalent
to minimizing

�n
i=1 ESi + tn + ESn. Because tn � (n � 1)x, we are to minimize

ES(x) + x.

2.5.1 Steady-state results in case ��� = 1

We illustrate the steady-state results in case of ��� = 1, since it leads to pleasingly ex-
plicit results. Based on results of a G/M/1 queue (Tijms 1986), we have the following
expression for the sojourn-time distribution in case ��� = 1

P(S � x) = 1� e�µ(1��x)x, x � 0, (2.8)

where �x � (0, 1) solves �x = e�(µ�µ�x)x.

Results for a sequential approach. In case the loss function is assumed linear, we solve
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x� = F�1
S (1/2). We �nd

x = F�1
S

�
1
2

�
=

log 2
µ(1� �x)

and FS(x) =
1
2
= 1� �x,

leading to an optimal schedule with interarrival times

x� =
2 log 2

µ
�

1.3862
µ

.

For the case of quadratic loss we solve

x = ES =
1

µ(1� �x)
and log �x = �1,

and obtain
x� =

e
µ(e� 1)

�
1.5820

µ
.

These limiting results are in line with those corresponding to the transient schemes
in Figure 2.1a. For schedules of more than, say, 15 clients, the middle part of the
schedule is close to the steady-state schedule. In this sequential setup quadratic loss
leads to larger optimal interarrival times than linear loss.

Results for a simultaneous approach. To obtain the steady-state results in the simultane-
ous case and linear loss we solve the �rst order condition (2.6)

d
dx

�� �

x
(t� x)fS(x)(t) dt+

� x

0
(x� t)fS(x)(t) dt

�

=
d
dx

1� 2e�µ(1��x)x � µ(1� �x)x
µ(�x � 1)

= ���
x
1 + �x(log �x � 2)

µ(�x � 1)2�x

=
1 + (log �x � 2)�x

µ(�x � 1)(1� �x + �x log �x)
= 0,

where we used that

��
x =

µ�x(�x � 1)
1� µ�xx

and x =
log �x

µ(�x � 1)
.

This equation is solved for �x � 0.32, and we obtain

x� �
1.6803

µ
.

The case of quadratic loss can be dealt with analogously; now the �rst-order condi-
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tion (2.7) needs to be solved. We eventually obtain

x� �
1.8466

µ
.

Again these limiting results agree well with the results of large transient schemes,
see Figure 2.1b. We observe that, as in the sequential approach, in the simultaneous
approach quadratic loss leads to larger optimal interarrival times than linear loss.

2.5.2 Steady-state results in case ��� �= 1

As pointed out in Section 2.3, in the �rst step of our approach we �t a phase-type
distribution to our service-time distribution. The special case of ��� = 1 (i.e., expo-
nentially distributed service times) was dealt with in the previous subsection; now
we focus on the cases in which ��� �= 1.

Steady-state analysis for the D/EK�1,K/1 queue

As presented in Section 2.3.1, we use the EK�1,K(µ, p) distribution to approximate
service-time distributions with an ��� between 1/K and 1/(K�1), forK � {2, 3, . . .}.
We analyze the resultingD/EK�1,K/1 queue through the sequence (N0, N1, . . .)with
N0 = 0 (the system starts empty), and Ni referring to the number of phases in the
system just before the i-th arrival. These phases are exponentially distributed with
mean 1/µ.

First observe that (N0, N1, . . .) follows a (discrete-time) Markov chain. The tran-
sition probabilities pm,n = P (Ni+1 = n |Ni = m) can easily be expressed in terms of
the parameters K, p, µ, and the interarrival time x. Writing P = (pm,n)�m,n=0 for the
transition matrix, the steady-state distribution of N follows from:

a = aP . (2.9)

In addition the normalization constraint a0 + a1 + a2 + . . . = 1 needs to be imposed.
Based on the limiting probabilities a, we can derive the steady-state sojourn-time dis-
tribution and its moments, and hence we can deal with the various �rst-order condi-
tions of Section 2.5. In order to solve (2.9), we truncate the state space to {0, . . . ,M}.
Since the an decay roughly exponentially in n (with a decay rate that can be evaluated
explicitly), it is not hard to select an appropriate value forM . Generally speaking, we
saw in this ��� < 1 regime that the choice M = 10 + K works well in nearly all
situations.

Now with the sojourn-time distribution

P (S � t) = P (W +B � t) =
� t

0
FW (t� u)fB(u) du (2.10)
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and the vector a that solves (2.9), we may write

P (S � t) = a0FB(t) +
M�

m=1

am
� t

0
µ
(µ(t� u))m�1

(m� 1)!
e�µ(t�u)fB(u) du,

ES = EW + EB =
M�

m=0

am
�
p
m+K � 1

µ
+ (1� p)

m+K
µ

�
,

ES2 = EW 2 + 2EW EB + EB2

=
M�

m=1

am
m(m+ 1)

µ2 + 2
M�

m=1

am
�
p
m
µ
K � 1

µ
+ (1� p)

m
µ
K
µ

�

+
�
p
K(K � 1)

µ2 + (1� p)
(K + 1)K

µ2

�
.

Steady-state results for the D/H2/1 queue

Mimicking the procedure described in Section 2.5.2, we now sketch a procedure to
generate the steady-state sojourn-time distribution of aD/H2/1 system, so as to cover
the case ��� > 1. To do so, we analyze the queue through the sequence

((N0,K0), (N1,K1), . . .) with (Ni,Ki) = (m, k)

meaning that the number of clients in the system just before the i-th arrival ism, and
the phase of the client in service is k; if k = 1 the client in service is served with
rate µ1, and if k = 2 with rate µ2. Evidently, (Ni,Ki) � {0, 1, 2, . . .} × {1, 2}, and
(Ni,Ki) = (0, 0) corresponds to the empty system.

Again we truncate the state-space (in terms of the number of clients) to M , gen-
erate the transition probability matrix P , and solve (2.9). De�ne am,k as the steady-
state probability of m clients in the system just before an arrival epoch, jointly with
the phase of the client in service being k. We then evaluate (2.10), which leads to the
following expressions. Writing (Hj,2)j for a sequence of i.i.d. samples from aH2(µ; p)
distribution, and assuming thatB(k) has an exponential distribution with mean 1/µk

(k = 1, 2) we obtain for the distribution function:

P (S � t) = a0,0FB(t) +
M�1�

m=0

2�

k=1

am,k

� t

0
P

�

�
m�

j=1

Hj,2 +B(k) < t� u

�

� fB(u) du.

This expression can be evaluated further. With D a binomial distribution with pa-
rameters m and p, we have that

m�

j=1

Hj,2
d=

D�

i=1

B(1)
i +

m�D�

i=1

B(2)
i ,
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where B(k)
i are i.i.d. copies of B(k). For the corresponding �rst and second moment

we obtain (with EH2 = p/µ1 + (1� p)/µ2)

ES =
M�1�

m=0

�
am,1

�
mEH2 +

1
µ1

�
+ am,2

�
mEH2 +

1
µ2

��
+ EH2,

ES2 =
M�1�

m=0

�

am,1

m�

j=0

�
m
j

� �
(j + 1)(j + 2)

µ2
1

+ 2
(j + 1)(m� j)

µ1µ2
+

(m� j)(m� j + 1)
µ2

2

�

+am,2

m�

j=0

�
m
j

� �
j(j + 1)

µ2
1

+ 2
j(m� j + 1)

µ1µ2
+

(m� j + 1)(m� j + 2)
µ2

2

��

+ 2
M�1�

m=0

�
am,1

�
mEH2 +

1
µ1

�
+ am,2

�
mEH2 +

1
µ2

��
EH2 +

�
2p1

µ2
1

+
2p2

µ2
2

�
.

Evidently, by lettingM grow largewe get arbitrarily close to the true vector of station-
ary probabilities. We validated that the choice ofM = 25works well for the range of
��� � (0, 3) when � equals 1

2 . However, when � is closer to 1 the truncation level M
should be suitably increased.

2.5.3 Computational results in a steady-state environment

In this section we studied the optimal interarrival time as a function of the service-
time distribution�s ��� � (0, 3). We did this for the sequential and the simultaneous
optimization approach, in case of both an (equally weighted) linear loss function and
an (equally weighted) quadratic loss function. From these results, depicted in Figure
2.6, we conclude that the steady-state optimal interarrival time is increasing in the ���
for any of the four scenarios considered, as expected. In line with earlier �ndings, we
observe that for each approach and for any ��� � (0, 3) the quadratic loss function
yields larger optimal interarrival times than the linear loss function. Furthermore,
for any ��� � (0, 3) the sequential approach yields smaller optimal interarrival times,
for both quadratic and linear loss. Loosely speaking, this says that the sequential
approach favors the service provider, since smaller interarrival times lead to smaller
idle times.

Given an arbitrary ���, we now consider the e	ect of the weight parameter, �.
Since an increasing � results in more weight assigned to the service provider�s time,
the interarrival times will decrease. Indeed, this is observed in Figure 2.7, where
we plotted the dependence of the steady-state solutions resulting from the various
optimization programs. We did these computations for ��� = 0.5625, that is, the co-
e
cient of variation (��) equalling 0.75. This value is in [0.35, 0.85], which, according
to C‚ ay�rl� and Veral (2003) is the common range for the ��.

We observe that the solution curves of the simultaneous optimization and its se-
quential counterpart have a similar shape. When � tends to 1, the occupation rate
approaches 1, so that we need to increase the truncation levelM to reliably compute
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the steady-state solution. For this reason we setM to 50when generating Figure 2.7.
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Figure 2.6: An overview of the optimal steady-state interarrival times x� for four di	erent
optimization settings as a function of the ���, where we takeM = 25.

2.6 Discussion

In this section we systematically study di	erent aspects of the schedules we devel-
oped. (i) In the �rst place we consider the robustness of our approach (both steady
state and transient), so as to assess the e	ect of replacing generally distributed non-
negative service times by their phase-type counterparts. (ii) Secondly, we compare
our approach with the approach based on the characteristics of the beta distribution
introduced by Lau and Lau (2000). (iii) Furthermore, we brie�y discuss the e	ect
of overtime in two transient settings. (iv) Also, we provide an account of the com-
putational e	ort (in terms of computation time) for the various approaches. (v) We
conclude this section with a comparison of the sequential and simultaneous opti-
mization approach, in terms of the disutilities perceived by the individual agents.

2.6.1 Robustness of phase-type approach in steady state

To study the robustness of our approach for the optimal steady-state interarrival
times as presented in the previous section, we apply our approach to a D/G/1 set-
ting in which the service-time distribution is non-phase-type. We concentrate on the
Weibull distribution and the lognormal distribution, as often seen in practice (Babes
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Figure 2.7: An overview of the optimal steady-state interarrival times x� for four di	erent
optimization settings as a function of �, where we takeM = 50.

and Sarma 1991, Klassen and Rohleder 1996, Vink et al. 2015). In our study we as-
sume again that the ��� = 0.5625 (contained in the interval identi�ed by C‚ ay�rl� and
Veral (2003)).

Our study is set up as follows. We consider the following 2-parameter distribu-
tions:

� the Weibull distribution, with density

kxk�1

�k e�( x
� )k

with parameters k � 1.3476, and � � 1.0902, and

� the lognormal distribution, with density

1
x
	
2��2

e�
(ln x�µ)2

2�2

with parameters µ = � 1
2 log 1.5625 and � =

	
log 1.5625,

which both lead to ��� = 0.5625.
For all four scenarios (sequential or simultaneous approach, and quadratic or lin-

ear loss) we determined the optimal interarrival times by simulation, as follows. For a
given steady-state interarrival time x, we simulate the queueing system using 100 000
clients (with a �warm-up� corresponding to 1 000 clients), to estimate the value of the
loss function for this speci�c x. In the loop around this routine, we identify the x
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that minimizes the loss; this is done using �������s minimization routine. We per-
form this optimization 100 times, and estimate the �real� optimal interarrival time and
risk, �x and �R, by the average of the optimal interarrival times of the 100 individual
experiments.

We compare these results with the optimal interarrival times resulting from our
phase-type based technique with the ���, i.e., 0.5625. In Table 2.1, we compare for
the lognormal service-time distribution both the optimal interarrival time and the
risk per client in steady state. The values resulting from the phase-type-based ap-
proach are denoted by x� and R�. Finally, xe and Re refer to an approach where one
assumes exponential service times instead (with mean 1 and ��� = 1). In a similar
way, in Table 2.2 we compare for the Weibull service-time distribution the optimal
interarrival time and the risk per client in steady state.

Setting �x |�x� x�| |�x� xe| �R | �R�R�| | �R�Re|

Sim. & quad. 1.6661 0.0631 0.1804 1.2866 0.0190 0.1075
Sim. & lin. 1.5085 0.0033 0.1718 0.8680 0.0002 0.0464
Seq. & quad. 1.4398 0.0156 0.1422 1.6147 0.0646 0.2937
Seq. & lin. 1.2749 0.0326 0.1114 1.0826 0.0724 0.1726

Table 2.1: The Monte Carlo optimal steady-state interarrival times and risk in case of
lognormal service times compared with our approach and with an approach based on
exponential service times.

Setting �x |�x� x�| |�x� xe| �R | �R�R�| | �R�Re|

Sim. & quad. 1.5946 0.0084 0.2519 1.0307 0.0005 0.2099
Sim. & lin. 1.5058 0.0007 0.1745 0.8260 0.0001 0.0488
Seq. & quad. 1.4223 0.0019 0.1597 1.2395 0.0051 0.2078
Seq. & lin. 1.3138 0.0063 0.0725 0.9542 0.0114 0.0878

Table 2.2: The Monte Carlo optimal steady-state interarrival times and risk in case of Weibull
service times compared with our approach and with an approach based on exponential
service times.

From Tables 2.1 and 2.2 we observe that the phase-type approximation has just
a modest impact on the accuracy of the the optimal interarrival time and risk. It
also shows that the na¤�ve approach of assuming exponential distributed service times
(thus completely ignoring ��� values di	erent from 1) leads to large deviations from
the optimal scheme.
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2.6.2 Robustness of phase-type approach in transient environment

To study the robustness of the phase-type approach in a transient environment, we
considered the same service-time distributions as used in Section 2.6.1: Weibull and
lognormal. We took n = 15 clients to be scheduled resulting in 14 interarrival times.
Again, we ranMonte Carlo simulation experiments to determine the optimal interar-
rival times and associated total risk (de�ned as the aggregate of the risks of all indi-
vidual clients). In this case, however, the simulations were more involved than in the
steady-state counterpart. For a given schedule (x1, . . . , x14) we estimate the risk (by
using 100 000 repetitions). Then we apply �������s optimization procedure to iden-
tify the schedule that minimizes the risk. This optimization is performed 100 times.
We estimate the �real� optimal interarrival times and total risk (�x1, . . . , �x14 and �R) by
the average of the 100 individual schedules.

In Table 2.3 we compare the simulation results with the phase-type approach and
the assumption of exponential service times in case of optimization with a linear loss
function, while in Table 2.4 we do the same in case of optimization with a quadratic
loss function. Similar to Section 2.6.1, the values resulting from the approach based
on the phase-type approximation method are denoted by x�

i andR�, whereas xe
i and

Re refer to the optimal arrival times and risk assuming exponential service times.
As in Section 2.6.1 we see that the phase-type approach results in a signi�cant

gain, in terms of the total risk, compared to the results obtained when assuming ex-
ponential service times. We did not include simulations related to the sequential op-
timization, since these are only a	ected by a start-of-session e	ect resulting in rapid
convergence to steady state, as seen in Figure 2.1. Therefore these simulations are
redundant.

2.6.3 Comparison with the approach by Lau and Lau

Instead of using phase-type distributions to compute optimal schedules, one can opt
for using a recursive method based on the beta distribution, see Lau and Lau (2000).
This approach involves four parameters, which are set by matching the �rst four mo-
ments of the service-time distributions. In Table 2.5we compare for bothmethods the
optimized schedules in terms of arrival times, expected waiting times and expected
idle times per client. The clients� (n = 20) service times are i.i.d. with mean 1, vari-
ance 0.25, skewness 1, and kurtosis 4; the risk per client to be minimized isR(�,10/11)

i ,
i.e., � = 10

11 . These settings are chosen such that they match the problem considered
by Lau and Lau (2000). To compare the total risk found by Lau and Lau (2000), de-
noted by ECs, the risk per client Ri can be scaled arbitrarily, since it does not a	ect
the optimal schedule (cf. Equation (2.5)). Noting that R1 = 0we have

20�

i=2

R(�,10/11)
i =

10
11

�
20�

i=2

EIi +
1
10

20�

i=2

EWi

�

=
10
11

ECs.
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Setting Lognormal service times Weibullian service times

i �xi |�xi � x�
i | |�xi � xe

i | �xi |�xi � x�
i | |�xi � xe

i |

1 1.0101 0.0546 0.0031 1.0739 0.0093 0.0634
2 1.3546 0.0543 0.1625 1.4188 0.0100 0.0983
3 1.4282 0.0322 0.1789 1.4652 0.0062 0.1418
4 1.4551 0.0232 0.1796 1.4808 0.0049 0.1539
5 1.4702 0.0158 0.1767 1.4879 0.0041 0.1590
6 1.4762 0.0137 0.1775 1.4918 0.0041 0.1620
7 1.4773 0.0130 0.1766 1.4916 0.0046 0.1622
8 1.4748 0.0128 0.1751 1.4898 0.0045 0.1602
9 1.4666 0.0147 0.1751 1.4834 0.0049 0.1583
10 1.4530 0.0189 0.1740 1.4739 0.0042 0.1531
11 1.4312 0.0231 0.1694 1.4579 0.0047 0.1427
12 1.3911 0.0321 0.1606 1.4283 0.0059 0.1234
13 1.3066 0.0461 0.1364 1.3606 0.0080 0.0823
14 1.0884 0.0535 0.0379 1.1525 0.0106 0.0262
Total risk �R | �R�R�| | �R�Re| �R | �R�R�| | �R�Re|

5.6083 0.0093 0.2201 5.5264 0.0003 0.1637

Table 2.3: The Monte Carlo optimal times and risk in simultaneous optimization of linear risk
in a transient environment with lognormal or Weibull service times compared with our
approach and with an approach based on exponential service times.

We �nd that the phase-type �t approach based on the �rst two moments µ = 1,
��� = 0.25 gives nearly identical results, in terms of the optimal schedule and the
corresponding waiting and idle times. Furthermore, in case of a linear loss function
the phase-type �t approach uses explicit expressions for the expected idle and wait-
ing times, so that it should perform at roughly the same speed as the method by Lau
and Lau.

Themajor strength of the phase-type approach is that it requires only the �rst two
moments of the service-time distribution. This tends to be su
cient to determine
the optimal schedule (see the discussion in C‚ ay�rl� and Veral 2003, Section 2.5). In
addition, estimating higher moments such as skewness and kurtosis requires a large
sample size to obtain accurate estimates.

2.6.4 The e�ect of overtime on the schedule

In our optimization problemwe only considered the minimization of risk in terms of
waiting and idle time. This allowed us to study the di	erence between the sequen-
tial and simultaneous approach, and for both cases how they are a	ected by the ���.
Another performance measure in healthcare, which could be modeled easily, is the
overtime O. Overtime is de�ned as the actual session-end time ��� minus the sched-
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Setting Lognormal service times Weibullian service times

i �xi |�xi � x�
i | |�xi � xe

i | �xi |�xi � x�
i | |�xi � xe

i |

1 1.2672 0.0099 0.0897 1.2550 0.0044 0.1019
2 1.5221 0.0124 0.1753 1.5087 0.0041 0.1887
3 1.5955 0.0309 0.1878 1.5597 0.0056 0.2236
4 1.6244 0.0413 0.1895 1.5762 0.0073 0.2378
5 1.6388 0.0481 0.1878 1.5831 0.0078 0.2435
6 1.6442 0.0505 0.1875 1.5859 0.0078 0.2458
7 1.6461 0.0521 0.1865 1.5862 0.0082 0.2464
8 1.6452 0.0528 0.1851 1.5846 0.0078 0.2457
9 1.6397 0.0513 0.1847 1.5804 0.0082 0.2440
10 1.6281 0.0473 0.1850 1.5730 0.0080 0.2401
11 1.6084 0.0418 0.1834 1.5598 0.0069 0.2321
12 1.5711 0.0327 0.1788 1.5329 0.0057 0.2170
13 1.4937 0.0184 0.1636 1.4723 0.0036 0.1851
14 1.3033 0.0039 0.1047 1.2994 0.0020 0.1085
Total risk �R | �R�R�| | �R�Re| �R | �R�R�| | �R�Re|

8.1236 0.0364 0.5801 6.7542 0.0012 0.9764

Table 2.4: The Monte Carlo optimal times and risk in simultaneous optimization of quadratic
risk in a transient environment with lognormal or Weibull service times compared with our
approach and with an approach based on exponential service times.

uled end time T , that is

O := max{���� T , 0} = max

�
n�

i=1

(Ii +Bi)� T , 0

�

.

To stress that O depends on the value of T , we add a subscript and write OT . To
study the e	ect of overtime we extend the simultaneous optimization approach with
expected overtime. We focus on linear risk, in a schedule of n = 15 clients (cf. Equa-
tion (2.5)), i.e., we consider

min
t1,...,tn

15�

i=1

Ri + �EOT = min
t1,...,tn

15�

i=1

(�EIi + (1� �)EWi) + �EOT .

Take � = 0.5 (equal weights) and �/� = 1.5, which models the situation in which
overtime is valued roughly 50%higher than idle time (C‚ ay�rl� et al. 2012). In Figure 2.8
we see the in�uence of overtime on the schedule; here the service times are chosen
by the phase-type approach, so as to generate a distribution with mean 1 and ��� =
0.5625 as in Section 2.6.1. We consider for both linear as quadratic loss four cases,
where T � 15 varies. A special case is O15 where all clients must be served with
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Method Beta distribution approach Phase-type approach

Client (i) Arrival times EWi EIi Arrival times EWi EIi

2 0.542 0.477 0.022 0.535 0.489 0.024
5 3.395 0.792 0.068 3.424 0.780 0.069
10 8.603 0.969 0.072 8.635 0.951 0.077
15 13.785 1.146 0.070 13.815 1.127 0.065
20 18.467 1.698 0.017 18.514 1.644 0.021
�

EWi or
�

EIi 19.514 1.139 19.165 1.160

Total risk 2.810 2.798

Table 2.5: The optimized schedules for the beta distribution approach and phase-type �t
approach. The schedules minimize the total risk

�
R(�,10/11)

i as de�ned in Equation (2.5).

their expected service time in order to avoid overtime a queue with load 1. Indeed,
we see that the schedule gets tighter when the scheduled session-end time decreases.
Including overtime has a similar e	ect as assigning a higher weight to the idle times
in the risk function, viz. result in tighter schedules. When T tends to in�nity we are
in the case of our original models optimized in Section 2.4.
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(b) Quadratic loss.

Figure 2.8: The e	ect of overtime on the schedule with simultaneous optimization over linear
and quadratic loss, n = 15, with the corresponding steady-state solutions.

2.6.5 Computational e�ort of the various numerical approaches

We now give a brief account of the computational e	ort required to evaluate the
schedules, and further describe how our code has been set up. A general remark
is that, for obvious reasons, determining steady-state schedules is substantially less
expensive than determining transient schedules. In our numerical experiments, we
generated transient schedules of up to 25 clients. All programming was done in
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������, bene�ting from its built-in function for determining roots, its minimization
routine, and its numerical integration routine. As a result the code to be developed
was relatively minimal. The most complicated cases (25 clients, ��� > 1) required a
computation time of a few minutes, but usually the computations were considerably
faster.

The structure of the code is as follows. Here x is the steady-state interarrival time,
whereas x = (x1, . . . , xn�1) is the transient schedule.

1. Determine the phase-type �t (hyperexponential or Erlang mixture) for given
mean and ���.

2. The corresponding loss function is computed as follows.

(i) Regarding the steady state, for a given x, the equilibrium probabilities are
found through the embeddedMarkov chain, choosing the truncation level
suitably. These probabilities yield the steady-state distribution of thewait-
ing time for an arriving client, see Section 2.5. Then one computes the
steady-state sojourn-time distribution by evaluating the convolution of the
waiting time and service time.

(ii) In the transient case one uses the recursive method outlined in Section 2.3
to evaluate the sojourn-time distribution for given x.

Wenowevaluate the chosen loss function (sequential or simultaneous approach,
and quadratic or linear loss).

3. Given the loss function, we perform the minimization. In the sequential ap-
proach this is implemented by solving the �rst order condition.

Obviously, the computational e	ort can be substantially reduced by tailoring the soft-
ware more directly to our speci�c needs, e.g. by using 3rd generation programming
environments (such as �++). Also, a signi�cant reduction of the computational e	ort
can be achieved by using optimal values of a previously calculated, �nearby� scenario
as starting values when determining a next schedule; this idea can be exploited for
instance when generating optimal schedules for a range of ��� values.

2.6.6 Comparison of sequential and simultaneous approaches

In this section we study the expected waiting time and idle time associated with each
individual client, so as to compare the impact of the chosen approach (i.e., sequential
vs. simultaneous). In Figures 2.9 and 2.10 we do so for linear loss, whereas Figures
2.11a and 2.11b relate to quadratic loss. The graphs in the �gures are labeled as in
Figure 2.1: that is, the plus signs refer to an ��� = 1.6036, the crosses refer to an
��� = 1.0000, the squares to an ��� = 0.7186, and the circles to an ��� = 0.1225. In
all experiments we focus on n = 15 clients and hence 14 interarrival times, but other
values of n show very similar behavior.
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(a) Linear loss, sequential approach.
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(b) Linear loss, simultaneous approach.

Figure 2.9: The optimal idle times by sequential and simultaneous approach for the various
��� values, in case of a linear loss.

Figures 2.9a and 2.9b show the idle times for each arrival for the sequential (2.9a) and
simultaneous (2.9b) optimization approach, with linear loss. From these results we
observe that the mean idle times in the sequential approach are in general smaller
than those in the simultaneous approach. Furthermore, the patterns of the mean
idle times resonate the patterns of the optimal individual interarrival times � see
Figure 2.1a for the sequential approach, and Figures 2.2a, 2.3a, 2.4a, and 2.5a for the
simultaneous approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

i

E
W

i

(a) Linear loss, sequential approach.
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(b) Linear loss, simultaneous approach.

Figure 2.10: The optimal waiting times by sequential and simultaneous approach for the
various ��� values, in case of a linear loss.

Next, Figures 2.10a and 2.10b show themeanwaiting times for both approaches, with
linear loss. From these results we observe that the individual waiting times are larger
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in case of the sequential approach. This means that, together with the results of the
idle times, we conclude that the sequential approach favors the service provider. Fur-
thermore, we observe that the individual waiting times are more variable for the si-
multaneous approach than for the sequential approach; this salient feature illustrates
the di	erence in �fairness� between both schemes.
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(a) Quadratic loss, sequential approach; the curves
corresponding to the mean idle and waiting times
lie on top of each other.
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(b) Quadratic loss, simultaneous approach; top
curves are mean idle times, bottom curves are mean
waiting times.

Figure 2.11: The optimal waiting times by sequential and simultaneous approach for the
various ��� values, in case of a quadratic loss.

Finally, we discuss the mean idle and waiting times for quadratic loss, as shown in
Figures 2.11a and 2.11b. From the sequential results of Figure 2.11a, we observe that
for each arrival the mean idle time equals the mean waiting time. This follows from
the risk function presented in (2.4) with � = 1

2 , and its corresponding �rst order
condition. The optimal interarrival time follows from E(Si�1 � xi�1) = 0 for clients
i = 2, . . . , n, entailing that x� is chosen so that EIi = EWi.

From the simultaneous results of Figure 2.11b, we again conclude that the mean
idle times are larger than for the sequential approach; at the same time, the mean
waiting times are smaller. From this observation it is seen that also for quadratic
loss the sequential approach favors the server. Also, we see that the dome shape is
re�ected in the pattern of the mean idles times; cf. Figures 2.2b, 2.3b, 2.4b, and 2.5b;
and the mean waiting times of each individual arrival are more variable than for the
sequential approach, in line with what we observed for linear loss. The fact that the
mean idle time equals the mean waiting time for the �nal arrival essentially follows
from the fact that the �nal arrival is �sequentially� scheduled, since no subsequent
client is to be scheduled.

43



COMPUTATIONAL APPROACH FOR A SINGLE SERVER

2.7 Conclusion

This chapter presents an approach for generating optimal appointment schedules.
In our procedure we replace service-time distributions by their phase-type counter-
parts, and then (either sequentially or simultaneously) optimize a utility function.
The procedures are backed by a series of numerical experiments, that also shed light
on the impact of the utility function and the service-times� variability (expressed in
terms of the squared coe
cient of variation, ���) on the optimal interarrival times.

These numerical studies provide evidence for the feasibility of the procedure. At
the same timewe assessed its robustness; in particular it was shown that approximat-
ing non-phase-type distributions (Weibull, lognormal) by phase-type distributions,
based on a two-moment �t, hardly a	ects the optimality of the produced schedule.

There are various directions for future research. (i) In the �rst place the setup can
be made more realistic, that is, more in line with speci�c conditions in healthcare
settings. For instance, ideally schedules should be �exible enough to be able to deal
with walk-ins. This requires the possibility to adapt the schedule on the �y. (ii) In
the second place one could think of situations with multiple servers, in which it also
needs to be determined to which server each client is assigned. In addition, it would
be interesting to study settings where clients have to undergo multiple (rather than
just one) services. (iii) In the numerical examples we considered the situation of all
clients having the same service-time distribution. It is readily checked, however, that
the modeling framework does not require such a uniformity: all computations can
be performed for heterogeneous service times as well.
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Themain contribution of this chapter is the generation of appointment schedules that
incorporate random service times and no-shows. Therefore, we extend the approach
presented in Chapter 2. More precisely, we adapt the phase-type approach presented
in Chapter 2 to incorporate no-shows. In addition, we provide a comparison of such
schedules with those resulting from straightforward heuristics (with environments
in which the parameters match those observed in practice). We consider the problem
in a transient environment, where a �nite number of clients (patients) are scheduled.

3.1 Introduction

When appointment scheduling research took o	, computational power was limited,
and one therefore primarily focused on heuristics. Perhaps the most classical ex-
ample is the �equidistant� schedule in which the block lengths (slot sizes) equal the
clients� average service time. However, as is known from the pioneering work of
Welch and Bailey (Welch and Bailey 1952), such a scheme performs poorly in many
cases; to remedy this, they propose to overbook the �rst slot with an additional client.
It was shown byHo and Lau (1992) that this rule, often referred to as the Bailey-Welch
rule, is fairly robust over a broad range of situations. It has been proven by Kemper
et al. (2014), however, that equidistant schedules ultimately lead to longwaiting times
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when the number of clients grows large (with themeanwaiting time of the n-th client
roughly behaving as

	
n). In that regime the Bailey-Welch rule may lead to schedules

that are highly unattractive to clients.

In many studies one relies on extensive, and often case-speci�c, simulations (see
e.g., Bailey 1952, Welch and Bailey 1952, Ho and Lau 1992, 1999). A more generic
approach is to assume a speci�c service-time distribution that allows explicit expres-
sions for the waiting-time and idle-time distributions, so as to analytically generate
schedules. The easiest distribution to work with is the exponential distribution, as
studied by Hassin and Mendel (2008), but this choice, corresponding with ��� = 1,
typically overestimates the variability. One has therefore looked into methods in
which the service-time distribution is �tted by a distribution which provides more
freedom but that still allows a (semi-)analytic solution. More speci�cally, a �t with
the beta distributionwas advocated by Lau and Lau (2000), whereas a phase-type dis-
tribution was proposed by e.g. Wang (1997) and Kuiper et al. (2015), see also Chapter
2. In the latter reference the validity of the phase-type approach, in which the �rst
two moments of the service-time distribution are �t, has been thoroughly examined
for typical service-time distributions observed in healthcare. A �nal option is to rely
on discrete-time versions of the continuous schedules, thus facilitating a very fast
evaluation of any schedule; see e.g. Brahimi and Worthington (1991) and De Vuyst
et al. (2011).

A fundamentally di	erent approachwas followedbyZacharias andPinedo (2014).
In that setup service times are deterministic and equal to the block length (both nor-
malized to 1) and the only stochastic component in the model is the no-show proba-
bility. No-shows are indeed a prevalent problem inmany healthcare scheduling prac-
tices and no-show percentages are typically 5-30%, as reported by C‚ ay�rl� and Veral
(2003). Moreover, in an assessment by Ho and Lau (1992) of environmental factors
that a	ect appointment schedules, it was found that no-shows and the service-time
variability have a profound impact on the performance of the appointment schedule,
which motivates why a proper design should take both stochastic characteristics into
account.

The remainder of the chapter is organized as follows. In Section 3.2 we introduce
the concept of a risk function that balances the interests of the service provider (doctor)
and the clients, and then we extend the phase-type approach given in Chapter 2. The
framework thus obtained enables us to evaluate an optimal schedule, i.e., the sched-
ule that minimizes the risk function. Then, in Section 3.3 we apply commonly used
scheduling heuristics and numerically compare themwith the optimal schedule. We
conclude this chapter with a discussion of the results in Section 3.4.
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3.2 Modeling approach

In this section we outline the stochastic model and the method used for evaluation
and optimization of appointment schedules. The main focus is on extending the
framework given in Chapter 2 to a setup that incorporates clients� no-shows. This
extension is non-trivial as there are some subtleties to be dealt with. First we de-
scribe the risk function that represents the expected loss per client in terms of mean
idle times and mean waiting times. Then we describe the phase-type approach, and
point out how the recursive method should be adapted to deal with no-shows. We
assume clients and the physician, specialist or surgeon (also referred to as provider)
to be punctual.

3.2.1 Framework, risk function

In mathematical terms, the appointment scheduling problem aims at determining
suitable epochs t1 up to tn at which the n clients are scheduled to arrive. We denote
by V := (t1, . . . , tn) the resulting schedule. In this chapter, the service times B1 up
to Bn are assumed independent and identically distributed (but this assumption can
be alleviated). We write Ii for the server�s (random) idle time prior to the i-th arrival,
and Wi for the (random) waiting time of the i-th client.

The risk associatedwith client i, de�ned as weighted sum of the expected idle and
the expected waiting time, is given by

R(�)
i (t1, . . . , ti) = � EIi + (1� �)EWi,

where the � � (0, 1) is a weight factor that re�ects the importance of the provider�s
(idle) time versus the clients� (waiting) time. Note that the random variables Ii and
Wi are a	ected by the arrival epochs t1, . . . , ti of the preceding clients. The aggregate
risk is given by

R(�)(t1, . . . , tn) =
n�

i=1

R(�)
i =

n�

i=1

(� EIi + (1� �)EWi). (3.1)

Since we consider expected idle and waiting times, we do not have to compute explicit
idle and waiting-time distributions to evaluate Eqn. (3.1). Instead, we rely on the
de�nition of the sojourn time as the sum of waiting and service time:

Si = Wi +Bi, (3.2)

and also on the fact that the total duration of a session (themakespan) equals the sum
of idle and service times:

ti + Si =
i�

j=1

(Ij +Bj) . (3.3)
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If we take the expected value in Eqns. (3.2) and (3.3), we end up with a formula for
the expected waiting time and a recursion for the expected idle time of the i-th client
in terms of his expected sojourn time:

EWi = ESi � EB;

EIi = ti + ESi � iEB �
i�1�

j=1

EIj .

We thus conclude that the sojourn-time distribution (and in particular its mean) en-
ables a recursive algorithm to �nd the mean waiting times and the mean idle times,
with which we can evaluate our objective function.

Next, we propose to approximate the service-time distributions by phase-type
distributions. It is well known that phase-type distributions, which are mixtures and
convolutions of exponential distributions, can be used to approximate any positive
distribution with arbitrary precision, see e.g. Tijms (1986) and Asmussen et al. (1996).

3.2.2 Phase-type distribution

Weapproximate the service-time distribution ofB by a phase-type counterpart based
on the mean and the ���, in the way proposed by Tijms (1986). The candidate dis-
tributions that we rely on are mixtures of Erlang distributions EK�1,K(µ; p) and the
hyperexponential distributionH2(µ; p). These phase-type distribution are character-
ized by anm � N, anm-dimensional (row) vector�with nonnegative entries adding
up to 1, and an (m×m)-dimensional matrix S = (sij)mi,j=1 such that sii < 0, sij � 0
and

�m
j=1 sij � 0 for any i � {1, . . . ,m}. For the two speci�c phase-type distributions

mentioned above the representations in terms ofm, �, and S are:

� In case ��� < 1, we use an EK�1,K(µ; p) distribution. In this case m = K, and
the vector � is such that �1 = 1 and �i = 0 for i = 2, . . . ,K. In addition,
sii = �µ for i = 1, . . . ,K and si,i+1 = �sii = µ for i = 1, . . . ,K � 2, while
sK�1,K = (1� p)µ; all other entries of S are 0.

� In case ��� � 1, we use a H2(µ; p) distribution. Then m = 2, and �1 = p =
1� �2. Also, sii = �µi, for i = 1, 2, while the other two entries of S equal 0.

� If ��� = 1 then the exponential distribution Exp(µ) is used.

Observe that the �rst case (��� < 1) is particularly relevant in healthcare as it contains
the typical �� values in the range of 0.35 and 0.85.

By B =d Ph(�,S) we denote that B has a phase-type distribution. An attractive
property of phase-type distributions is that themoments have explicit forms (see e.g.,
Asmussen 2003). For the mean we have

EB = ��S�1em, (3.4)
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with em being anm-dimensional column vector consisting of ones. This can be evalu-
ated fast for the phase-type distributions, since S is an upper diagonal matrix in case
of a mixture of Erlang distributions or a diagonal matrix for the hyperexponential
distribution.

Our approach accommodates that each scheduled arrival has a q � (0, 1) of being
a no-show. The phase-type distribution is adapted re�ecting that each client requires
no service with probability q and a service time B with probability (1 � q). As a
consequence, the vector � is multiplied by (1� q), that is, B =d Ph((1� q)�,S).

3.2.3 Recursive approach, incorporating no-shows

The key idea is to use the recursive procedure proposed by Wang (1997) to compute
each client�s sojourn-time distribution. These are of phase-type, and hence the objec-
tive is to identify the� and S in its representation Ph(�,S).At each moment in time
we keep track of the number of clients in the system together with the phase of the
client in service; the current state of the system is given by these two variables. Notice
that the i-th client�s sojourn time is only a	ected by his i� 1 predecessors. Since typ-
ically the number of clients to be scheduled is relatively small, the dimensionality of
the problem stays manageable and our techniques are e	ective for realistic numbers
of clients. For large numbers of clients, one could neglect some of the dependence
between the clients by introducing a so-called lag order, as proposed in Vink et al.
(2015), see also Chapter 5. If the lag order is k, then this means that only clients i� k
up to i� 1 can a	ect the sojourn time of the i-th client.

To outline the procedure under no-shows we de�ne the following bivariate pro-
cess {Ni(t),Ki(t), t � 0} for client i = 1, . . . , n, whereNi(t) � {0, . . . , i�1} represents
the number of clients in front of the i-th arriving client, t time units after his arrival.
The second component, Ki(t) � {1, . . . ,m}, represents the phase of the client in ser-
vice at t time units after the arrival. We introduce the corresponding probabilities,
for t � 0, i = 1, . . . , n, j = 0, . . . , i� 1, and k = 1, . . . ,m:

p(i)
j,k(t) = P (Ni(t) = j,Ki(t) = k) .

In addition, the vector P i(t) (of dimension mi) is given by
	
p(i)
i�1,1(t), . . . , p

(i)
i�1,m(t), p(i)

i�2,1(t), . . . , p
(i)
i�2,m(t), . . . , p(i)

0,1(t), . . . , p
(i)
0,m(t)



.

The sojourn-time distribution of the i-th client can be computed from P i(t) through
the following identity, with emi an all-ones vector of dimension mi:

Fi(t) := P(Si � t) = 1�
i�1�

j=0

m�

k=1

p(i)
j,k(t) = 1� P i(t)emi.
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The sojourn time of the �rst client, arriving at t1 = 0, is determined by his service-
time distribution:

P 1(t) = (1� q)� exp(St), for t � 0,

which is an m-dimensional object. The second client, arriving x1 := t2 � t1 time
units after the �rst client, either shows up with probability (1 � q) (thus increasing
the number of clients by one), or not. For any t � 0, with 0m denoting an all-zeros
vector of dimension m, this leads to

P 2(t) = ((1� q)(P 1(x1),�F1(x1)) + q(0m,P 1(x1))) exp(S2t),

which is an object of dimension 2m; here,

S2 :=
�

S s�
0m,m S

�
,

with s := �Sem and 0m,m denoting an (m×m)-dimensional all-zerosmatrix. For the
other clients the vector P i(t) (dimension mi) can be found from P i�1(t) (dimension
m(i� 1)) by the recursion, for t � 0,

P i(t) = ((1� q)(P i�1(xi�1),�Fi�1(xi�1)), q(0m,P i�1(xi�1))) exp(Sit).

Here xi�1 := ti � ti�1 (the interarrival time) and the matrix Si is de�ned recursively
by

Si :=
�

Si�1 T i

0m,(i�1)m S

�
,

with T i a matrix of dimension (i� 1)m×m de�ned by

T i := (0m,m, . . . ,0m,m, s�)T.

Above we have outlined the procedure for evaluating the aggregate risk of any
schedule V. Using this recursive procedure, we can use standard numerical tools to
optimize over all possible schedules, so as to �nd the optimal schedule. The optimal
interarrival times (x�

1, . . . , x�
n�1) thatminimize the risk function (for a givenweight�)

give the optimal schedule V� = (t�1, . . . , t�n) by t�i =
�i�1

j=1 x
�
j for i = 2, . . . , n. We will

use this procedure in Section 3.3 to evaluate commonly used scheduling heuristics
and compare those with the optimal schedule V�.

3.3 Experiments and results

The primary objective of this section is to examine how frequently used schedul-
ing heuristics perform relative to each other, and relative to optimal schedules (i.e.,
schedules that minimize R(�)(t1, . . . , tn) for some � � [0, 1]). We do so by evaluat-
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ing the so-called e�cient frontier, consisting of all combinations of the averaged (over
all clients) mean waiting times and aggregated mean idle times when varying the
weight �. In our computations we rely on the phase-type approach, augmented to
incorporate no-shows, as has been described in Section 3.2.

We consider �ve heuristics, each of them based on the average service time EB.

A An equidistant schedule: ti = (i� 1)EB for all i. This is the simplest rule.

B The Bailey-Welch rule with 2 clients in the �rst time slot: t1 = t2 = 0; ti =
(i � 2)EB for i > 2. It was shown by Ho and Lau (1999) that this heuristic is
very robust.

C Adaptation of the Bailey-Welch rule with 3 clients in the �rst time slot: t1 =
t2 = t3 = 0; ti = (i� 3)EB for i > 3.

D Adaptation of the Bailey-Welch rule with 4 clients in the �rst time slot: t1 =
t2 = t3 = t4 = 0; ti = (i � 4)EB for i > 4. Rule C and D are adaptions of the
original Bailey-Welch rule.

A2 Block appointment rule with two clients arriving for a double slot: ti = ti+1 =
2(i�1)EB for i = 1, 3, 5, . . . . This rule is also known as the two-at-a-time schedul-
ing rule studied by Soriano (1966).

We also consider variants of these heuristics adapted to deal with no-shows. Thus
Aq is ruleA but with block length equal to (1� q)EB, and analogously for Bq, Cq,Dq

and A2
q.

The ten scheduling rules are evaluated in a range of scenarios. The scenarios vary
in terms of their ���, q and n. In each scenario we compute the expected idle and
waiting times. And in addition we compute in each scenario the optimal schedule
V� for � � (0.5, 0.99) (in steps of 0.01). The value � = 0.5 corresponds to equally
weighted idle andwaiting time. In typical healthcare settings� is larger. For� = 0.99
the provider�s idle time is valued 99 times more important than the clients� waiting
time. Choosing � = 1 corresponds to the trivial schedule in which all clients arrive
at time zero, such that the risk function has the value (in the case the schedules are
not corrected for no-shows)

1
n

n�1�

i=1

iEB =
(n� 1)

2
EB,

as the (expected) idle times are zero. Computing the optimal schedules V� for each �
results in what we have called the e
cient frontier. They are obtained by optimizing
the risk function, and therefore no schedule can outperform them.

First we study the impact of the number of clients on the schedules. To this end,
we choose ��� = 0.4225 and q = 0.175, and set the number of clients �rst to 15 and
then to 30, see Fig. 3.1. It is �rst observed that implementing the no-show correction
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