UvA-DARE (Digital Academic Repository) ## Click models for web search and their applications to IR WSDM 2016 Tutorial Chuklin, A.; Markov, I.; de Rijke, M. DOI 10.1145/2835776.2855113 Publication date 2016 **Document Version**Author accepted manuscript Published in WSDM'16 ### Link to publication Citation for published version (APA): Chuklin, A., Markov, I., & de Rijke, M. (2016). Click models for web search and their applications to IR: WSDM 2016 Tutorial. In WSDM'16: proceedings of the Ninth ACM International Conference on Web Search and Data Mining: February 22-25, 2016, San Francisco, CA, USA (pp. 689-690). Association for Computing Machinery. https://doi.org/10.1145/2835776.2855113 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) # Click Models for Web Search and their Applications to IR ## WSDM 2016 Tutorial Aleksandr Chuklin Google Switzerland & University of Amsterdam Zürich, Switzerland a.chuklin@uva.nl Ilya Markov University of Amsterdam Amsterdam, The Netherlands i.markov@uva.nl Maarten de Rijke University of Amsterdam Amsterdam, The Netherlands derijke@uva.nl #### **ABSTRACT** In this tutorial we give an overview of click models for web search. We show how the framework of probabilistic graphical models helps to explain user behavior, build new evaluation metrics and perform simulations. The tutorial discusses foundational aspects alongside experimental details and applications, with live demos and discussions of publicly available resources. #### **Keywords** Click models; web search #### 1. INTRODUCTION Click models, probabilistic models of the behavior of search engine users, have been studied extensively by the information retrieval community during the last decade. A good body of work has been published on click models over the past five to ten years. Importantly, the area continues to be an active one, with new models aimed at describing and/or predicting behavioral data being proposed at each of the main information retrieval conferences (SIGIR, WSDM, WWW, CIKM) over the past few years. There is also a fair number of publications that *use* click models presented in the main information retrieval conferences as well as ACM journals such as TOIS. All this indicates that there is a substantial and continued level of interest in the topic. Indeed, we now have a handful of basic click models, inference methods, evaluation principles and applications for click models, that form the building blocks of ongoing research efforts in the area. The time is right to organize and present this material to a broad audience of interested information retrieval researchers, whether junior or senior. Many of the click models available today have been proposed by different industrial and academic research groups—one of the key aims of our proposed tutorial is to bring these together and offer a unified perspective. To achieve this, we describe the basic click models, inference methods and evaluation principles. We supplement this with an account of available datasets and packages plus a live demo based on these. We also present click model applications accompanied by examples. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). WSDM 2016 February 22-25, 2016, San Francisco, CA, USA © 2016 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-3716-8/16/02. DOI: http://dx.doi.org/10.1145/2835776.2855113 We expect the tutorial to be useful for both researchers and practitioners that either want to develop new click models, use them in their own research in other areas or apply the models described here to improve actual search systems. #### 2. OBJECTIVES A large body of research on click models has been developed. This research has improved our understanding of user behavior in web search and facilitated the usage of click models in various search-related tasks. Current studies use a broad range of notations and terminology, perform experiments using different and mostly proprietary datasets, do not detail the model inference procedures used and, thus, do not provide a general systematic view on the research area. This, in turn, slows down the development and hinders the application of click models. The goal of this tutorial is to bring together current efforts in the area, summarize the research performed so far and give a holistic view on existing click models for web search. More specifically, the aims of this tutorial are the following: - Describe existing click models in a unified way, i.e., using common notation and terminology, so that different models can easily be related to each other. - Compare commonly used click models, discuss their advantages and limitations and provide a set of recommendations on their usage. - Provide ready-to-use formulas and implementations of existing click models and detail general inference procedures to facilitate the development of new ones. - Give an overview of existing datasets and tools for working with click models and develop new ones. - Provide an overview of click model applications and directions for future development of click models. Our target audience consists of researchers and developers in information retrieval who are interested in formally capturing user interactions with search engine result pages, whether for ranking purposes, to simulate user behavior in a lab setting, or simply to gain deeper insights in user behavior and interaction data. The tutorial will be useful as an overview for anyone starting research work in the area as well as for practitioners seeking concrete recipes. The tutorial aims to provide a map of an increasingly rich landscape of click models. By the end of the half-day tutorial, attendees should be familiar with the basic definitions and intuitions of what we consider to be the core models, with inference tasks for these models, and with uses of these models. While our presentation is necessarily formal in places, we make a serious effort to relate the models, the inference procedures and the applications back to the core information retrieval task and to web search data by including a fair number of examples. We hope that this supplies attendees who are new to the area with effective means to start using click models in their own research. #### 3. DETAILED SCHEDULE The tutorial is organized in two blocks of 1.5 hrs. #### Block 1 (1.5 hours) - 1. Introduction, historical notes, aims. - 2. Basic click models Here, we describe basic click models for web search, starting with the simplest random click model and arriving to the more sophisticated DCM, DBN and UBM models [1, 3, 4]. We discuss models' assumptions, observed and hidden random variables, models' parameters and relations between parameters and random variables. We also demonstrate how to infer click probabilities (either full or conditional) and simulate the users' clicks. 3. Click model parameter estimation (training) We describe the process of training click model parameters from past click observations. We review two main parameter estimation techniques, namely maximum likelihood estimation (MLE) and the expectation-maximization algorithm (EM). We then give several examples of MLE and EM parameter estimation for existing click models to support the theory. 4. Click model evaluation We discuss different ways to evaluate click models and to compare them to each other. We start with traditional approaches, such as log-likelihood/perplexity evaluation and click-through rate prediction, and then discuss more application-oriented evaluation methods like NDCG evaluation. #### Block 2 (1.5 hours) 5. Data and tools Here, we discuss publicly available datasets for experimenting with click models. We also describe open-source software packages and libraries that facilitate working with click models. 6. Live Demo During the live demo we compare the click models, discussed during the first block, using the presented evaluation methods. We also discuss the differences between parameter estimation techniques from the practical point of view (e.g., learned parameters, learning time). The demo uses an open source package maintained by Markov¹ as well as samples from interaction data shared by Yandex.² 7. Advanced click models Here we present a brief overview of main development directions of click models and discuss most prominent members of each class. We discuss models' assumptions and main applications. 8. Click model applications In this part, we discuss different applications for modern click models in different areas such as ranking, evaluation or user simulation. We augment the theoretical discussion with the practical demonstrations of some of the applications. 9. Recap and discussion # 4. TYPE OF SUPPORT MATERIALS TO BE SUPPLIED TO ATTENDEES - The authors' version of the book on click models [2] - Copy of the slides - Code and data samples to follow live demos and for offline experimentation We also maintain a web site with all resources related to this tutorial at http://clickmodels.weebly.com. #### Acknowledgements The tutorial is partially based on research that was supported by Amsterdam Data Science, the Dutch national program COMMIT, Elsevier, the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the ESF Research Network Program ELIAS, the Royal Dutch Academy of Sciences (KNAW) under the Elite Network Shifts project, the Microsoft Research Ph.D. program, the Netherlands eScience Center under project number 027.012.105, the Netherlands Institute for Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10, 640.006.013, 612.066.930, CI-14-25, SH-322-15, 652.002.-001, the Yahoo Faculty Research and Engagement Program, and Yandex. All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors. #### REFERENCES - O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search ranking. In WWW, pages 1–10, 2009. - [2] A. Chuklin, I. Markov, and M. de Rijke. *Click Models for Web Search*. Morgan & Claypool, 2015. - [3] G. E. Dupret and B. Piwowarski. A user browsing model to predict search engine click data from past observations. In *SIGIR*, pages 331–338, 2008. - [4] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in web search. In *WSDM*, pages 124–131, 2009. ¹https://github.com/markovi/PyClick ²http://imat-relpred.yandex.ru/en/datasets