
http://dare.uva.nl/personal/pure/en/publications/automatic-assistants-for-database-exploration(2c2e5721-7f6c-4d69-96f4-85e7a09acef0).html

Automatic Assistants
for Database Exploration

Thibault Sellam

2

Automatic Assistants
for Database Exploration

academisch proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magni“cus

prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel

op donderdag 3 november 2016, te 10:00 uur

door

Thibault Henri Joseph Sellam

geboren te Créteil, Frankrijk.

Promotor: Prof. dr. M.L. Kersten Universiteit van Amsterdam

Overige Leden: Prof. dr. M. de Rijke Universiteit van Amsterdam
Prof. dr. P.W. Adriaans Universiteit van Amsterdam
Prof. dr. M. Worring Universiteit van Amsterdam
Prof. dr. G. Weikum Max Planck Inst. Informatics
Prof. dr. B. Goethals Universiteit Antwerpen

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Most of the research reported in this thesis was carried out at CWI, the
Dutch National Center for Mathematics and Computer Science.

The research reported in this thesis was supported by the Dutch national
program COMMIT.

Part of the research reported in this thesis was carried out at Microsoft
Research, in Mountain View, CA.

SIKS Dissertation Series No. 2016-44
The research reported in this thesis has been carried out under the aus-
pices of SIKS, the Dutch Research School for Information and Knowledge
Systems.

ISBN: 9789462955202
Cover design by Noki Powlonski

Acknowledgments

I am deeply grateful to the many people who supported me during my
doctoral studies. First and foremost, I am indebted to prof. dr. Martin
Kersten, who advised, supported and challenged me energetically during
those “ve years. I would need an entire new Acknowledgment section to
list all that he taught me. I would also like to thank prof. dr. Stefan Mane-
gold for his herculean e�orts to create a productive and secure scienti“c
environment. I was also glad and proud to work with the MonetDB team.
In particular, I would like to acknowledge Hannes and Holger, whom I
now consider as friends. I was lucky to work alongside Mark and Benno,
as well as Yagiz, Mrunal, Vamsi and Lefteris. And I wish to express my
admiration and a�ection for CWI - admiration, because I hold its scien-
ti“c activities in high regard, and a�ection because I spent a few of the
happiest years of my life as an employee of this institution.

A number of people outside CWI directly contributed to the work de-
scribed in this thesis. In particular, I thank dr. Omar Alonso, who gave
me my chance as a Microsoft intern, coached me and introduced me to the
life in the Silicon Valley. I am grateful to prof. dr. Emmanuel Müller, for
taking me as a collaborator and for providing valuable feedback. I would
also like to thank the members my PhD committee, prof. dr. Maarten de
Rijke, prof. dr. Peter Adriaans, prof. dr. Marcel Worring, prof. dr. Gerard
Weikum and prof. dr. Bart Goethals. Finally, I appreciated the kind sup-
port of prof. dr. Arjen de Vries and prof. dr. Arno Siebes, with whom I
would be glad to collaborate in the future.

Between January and September 2015, I interrupted my research activ-
ities to join a music tour. I am thankful to Martin and Stefan, but also
prof. dr, Lynda Hardman, Irma van Lunenburg and Karin van Gemert
for supporting this decision and making this adventure possible without
sacri“cing my scienti“c career. And of course, I am deeply thankful to the
FAUVE Corp. for taking me on board. In particular, I thank Q and Pitou,
who have inspired me and given me self-con“dence for many years. I also
thank Siz, Noki and Prez, who have been amazing travel companions.

Finally, I would like to acknowledge my family and friends for their
support. I thank my mother and father, who are awesome parents. I
also thank my siblings, Cécile, Blandine and Léo, who will certainly be
embarrassed to read about my a�ection towards them. Finally, I wish to
acknowledge a few of the close friends who supported me: Steven, Halldora,
Durex, Chloé, Marc and especially Sophie.

5

6

Contents

1 Introduction 13
1 The Big Data Era: Hype and Reality 13
2 Queries, Results and Exploration 14
3 How Hard is Our Problem? 16
4 Our Contribution: Exploration Assistants 16
5 Structure and Covered Publications. 17

2 Background 1: Data Warehouses and Visualization 19
1 The OLAP model, data cubes and pivot tables 19
2 Visual Analytics . 22

3 Background 2: Data Mining 27
1 A Data Mining Primer . 28

1.1 Classi“cation . 29
1.1.1 Naive Bayes 29
1.1.2 Decision Trees 31
1.1.3 Model Complexity, Over“tting and Under-

“tting . 32
1.1.4 Evaluation 33

1.2 Cluster Analysis 34
1.2.1 The k-means Algorithm 35
1.2.2 Partitioning Around Medoids 36
1.2.3 Divisive Clustering 36
1.2.4 Agglomerative Clustering 37
1.2.5 Choosing the Number of Clustersk . . . 37

2 Mining High Dimension Datasets 39
2.1 Supervised Learning with Many Variables 40

2.1.1 The Explosive Need For Data. 40
2.1.2 Feature Selection. 41

2.2 The Curse of Dimensionality in Clustering 42
2.2.1 The Leveling of Distances. 42
2.2.2 Subspace Clustering, Multiview Clustering 43

2.3 Principal Component Analysis 43

4 Background 3: Information Theory 45
1 Introducing the Entropy 45
2 The Mutual Information 46
3 Chain Rule and Conditional Mutual Information 47
4 Continuous Entropy . 48
5 Estimation . 49
6 Summary . 49

5 Claude: a Data Warehouse Explanation System 51
1 Introduction . 51

1.1 Contributions . 51
1.2 Outline . 52

2 General Model . 52
2.1 Objective . 52
2.2 Formalization . 54

2.2.1 View Quality 54
2.2.2 POI quality 54
2.2.3 Problem Statement 55

3 Model Instantiation . 56
3.1 View Strength . 56
3.2 Points of Interest and Divergence. 56
3.3 The Relationship Between Strength and Divergence 57

4 Approximate View Strength 59
5 Practical Column selection. 61

5.1 Base algorithm . 61
5.2 Approximations and Re“nements 63
5.3 Deduplication . 63

6 Detecting Points Of Interest 64
7 Experiments . 65

7.1 Detailed Example: Crimes in the US. 65
7.2 View Strength and Prediction 69
7.3 View Selection . 69

7.3.1 Accuracy 71
7.3.2 Runtime 72

7.4 Impact of the beam size 72
7.5 Impact of the deduplication 72
7.6 POI Detection . 74

8 Related Work . 74
8.1 SQL Query Recommendation 74
8.2 Projection Search. 76

8

8.3 Feature Selection, Subspace Search. 76
9 Summary . 77

6 Blaeu: Maps to Navigate the Query Space 79
1 Introduction . 79

1.1 Contributions . 79
1.2 Outline . 80

2 Data Cartography . 81
2.1 Overview . 81
2.2 Formalization . 84
2.3 Properties . 85
2.4 Representation . 87

3 Algorithm 1: Building Maps 88
4 Algorithm 2: Mapping High-Dimension Data 91

4.1 Problem Formulation 91
4.2 Enumerating Candidates. 93
4.3 Summary and Complexity 97

5 Algorithm 3: Lightweight Data Mapping 98
6 Optimization . 102
7 Sample Sessions. 102
8 Validation and Evaluation 104

8.1 Synthetic Data . 108
8.2 Real Data . 112
8.3 Scaling and Sampling 112

9 Related work . 114
9.1 OLAP cubes . 114
9.2 Iterative interaction systems 116
9.3 Clustering . 116

10 Summary . 116

7 Ziggy: What Makes My Query Special? 117
1 Introduction . 117

1.1 Contribution . 117
1.2 Outline . 118

2 Overview . 118
3 General Problem Statement 119
4 Instantiation: Meet Ziggy 121

4.1 Explainable Mass Dissimilarity 121
4.2 Dependency Measure. 125

5 Algorithms To Detect Views 126

9

5.1 Base algorithm . 126
5.2 Staging Computations 128

6 Model Validation . 130
7 Report Generation . 130
8 Setting Parameters . 134
9 Use Case. 134
10 Experiments . 138

10.1 Setup . 138
10.2 Synthetic Data . 139

10.2.1 Quality of the Views 141
10.2.2 Runtime 142
10.2.3 Diversity 142

10.3 Real Data . 144
10.3.1 Accuracy 144
10.3.2 Diversity 144
10.3.3 Runtime 146

11 Related Work . 146
11.1 Dimensionality Reduction 146
11.2 Outlier Description 146
11.3 Contrast Mining 146
11.4 Feature Selection 148
11.5 Other Data Exploration Approaches 148

12 Summary . 148

8 Raimond: Exploring Event Reports 151
1 Introduction . 151

1.1 Contributions . 152
1.2 Outline . 152

2 Introducing the Quantfrag 152
3 Methodology . 156

3.1 Extracting Quantitative Data 156
3.2 Assembling Quantfrags. 158
3.3 Filtering Irrelevant Quantfrags 160
3.4 Annotation and Visualization 162

4 Use Cases. 164
5 Crowdsourcing Experiments 172
6 Related Work . 174

6.1 Event Detection 174
6.2 Event Summarization 174
6.3 Information Extraction 174

10

6.4 Event Visualization 175
6.5 Social Media Analysis 175

7 Summary . 175

9 Conclusion 177
1 The Big Picture . 177
2 Future Research . 180

2.1 Human-Centered Analytics 180
2.1.1 User Studies, Benchmarks 181
2.1.2 Human-In-The-Loop Systems. 181
2.1.3 Alternative Devices 182

2.2 More Exploration Assistants. 182
2.2.1 Other Statistical Methods 182
2.2.2 New Exploration Tasks 182

Bibliography 185

Summary 195

Samenvatting 197

Publications 199

11

12

Chapter 1

Introduction

1 The Big Data Era: Hype and Reality

•We live in the Big Data eraŽ. So could this thesis have started if we
were to believe many recent press titles. Since 2008, Big Data appeared in
Nature [34], the Economist [94], the Harvard Business Review[8], the Wall
Street Journal [100], Wired [7], The New York Times [58] and truckloads
of others. The expression Big Data describes the idea that businesses,
scientists and public administrations can perform tasks with large amounts
of data that would not have been possible otherwise. Journalists are often
enthusiastic, sometimes hyperbolic. According to many, it is •a revolution
that will transform how we live, work, and thinkŽ [62]. And this enthusiasm
has spread beyond media. Figure 1.1 shows the number of Google searches
containing the terms •Big DataŽ from all around the world. From 2012 on,
the popularity of the term explodes: the number of searches quadruples in
4 years.

0

25

50

75

100

2004 2006 2008 2010 2012 2014 2016
Date

G
oo

gl
e

S
ea

rc
h

V
ol

um
e

(n
or

m
al

iz
ed

, %
m

ax
)

keyword Big Data Software

Figure 1.1: Number of Google searches for the terms •Big DataŽ and •Soft-
wareŽ, from Google Trends.

1.2. Queries, Results and Exploration

And yet, the promises of Big Data do not convince everyone. In March
2014, theFinancial Times titled one article •Big data: are we making a big
mistake?Ž [37]. A month later, theNew York Times was reporting •Eight
(No, Nine!) Problems with Big DataŽ [61]. These articles argue that Big
Data is a vacuous term, used by companies to appear innovative. And
indeed, no one seems to agree about which datasets are •bigŽ and which
are not [40]. Furthermore, skeptics point out that data analysts are too
naive. For instance, Chris Anderson of Wired attracted lots of attention
when he predicted that Big Data would make the scienti“c method •obse-
leteŽ, because •with enough data, the numbers speak for themselvesŽ [7].
This claim was bold, but probably wrong. The size of a dataset does not
eliminate its biases [54]. In fact, it increases the chance of making spurious
“ndings [45].

Our view is that the need for e�cient techniques to manage data goes
well beyond the Big Data phenomenon. Businesses and scientists have
had access to data for decades, probably centuries. The quest for better
tools to store it, query it, process it and visualize it is still ongoing and
relevant. To illustrate, let us get back to Figure 1.1. What interests us
now is not the content of the chart, but how we made it. To create this vi-
sualization, we queried the website Google Trends, exported the results in
comma-separated format, cleaned the “le with command line tools, loaded
the result in the statistical package R. We then applied grouping opera-
tions to reduce the granularity of the data, plotted the result with a third
party charting library and cropped the “le with an image editor. These
operations involved four di�erent interfaces, and took about half an hour.
For our sake and that of all future researchers, we hope that advances in
data management will not stop here.

2 Queries, Results and Exploration

In this thesis, we focus onstructured data, that is, tables stored in a
Database Management Systems (DBMS). To manipulate those, engineers
have come up with thequery-result paradigm. Users interrogate the sys-
tem, specifying which subset of the data they are interested in, and what to
do with it. The system replies with the results, as accurately and quickly
as possible [69]. The most popular language to carry out this task has long
been SQL, but alternatives exist. For instance, several Microsoft products
have supported Query-By-Example [112], a language for non-programmers.
With Tableau [88], users interrogate their data warehouses with drag-and-
drops and inspect their results with sophisticated visualizations.

14

1. Introduction

In its current implementations, the query-result paradigm relies on a
strong hypothesis: it assumes that users know exactly what they want,
and how to get it. Query languages expect precise instructions, such as
•give me all the rows of tableCountry for which the value of CountryID
is NLŽ, or •give me the last 20 rows of my “leŽ. But there exists an important
use case for which this assumption does not hold:data exploration .

Data exploration is the task of querying a dataset to increase
the knowledge that we have of it.

Typically, users explore a database when they “rst encounter it, in order to
develop an intuition of what it contains. This task is a challenge because
it is subject to a reciprocal dependency: on one hand, users need to pose
queries to know the data. On the other hand, they need to know the data
to pose queries. Therefore, explorers operate by trial and error. They
start with simple, naive queries, to get an overview of the dataset. Then,
as their knowledge increases, their queries become more speci“c.

The exploration process is rarely structured. Most users •playŽ with
their DBMS, or they •tweakŽ it, to build a mental representation of its
content [1]. This approach is problematic because it is completely manual:
it depends entirely on patience, intuition and good luck. If the data is
small, trial and error may be su�cient. But how to deal with hundreds of
columns and hundreds of thousands of tuples? Manual e�ort is tedious,
time consuming, and subject to errors. Users need more systematic tools.
This leads us to our research problem:

How can we provide automatic support for data exploration?

Our aim is to develop techniques and software tools to help users discover
their data in a quick, easy and thorough fashion. Ultimately, we envision
a system to answerthe question behind data analysis:

•Computer, what is interesting in my data?Ž

Data exploration is important because it is ubiquitous. Tools to sup-
port this task would “nd applications in virtually all “elds which involve
a database. They would help employees from large companies, whose
databases are often complex and undocumented. They would uncover
new investigation material for journalists. And they would serve scientists
seeking inspiration. After all, few researchers know what they are after
before they actually have found it.

15

1.3. How Hard is Our Problem?

3 How Hard is Our Problem?

Unfortunately, automating data exploration is arduous, maybe even un-
feasible. Indeed, this task is subject to two fundamental contradictions:

Contradiction 1. Exploration is a subjective process: what is interest-
ing for a user may be boring for the other. But then, how can we automate
such a subjective activity?

Contradiction 2. Exploration is an ad hoc, open endedprocess. The
portion of the database involved in a discovery can take any form: a tuple, a
set of columns, a correlation or even a column name. How can we engineer
a closed, systematic solution for such an open task?

These contradictions are fundamental because they rule outfull automa-
tion. At this point, we simply cannot design a •magicŽ autonomous system,
which would make discoveries while the user waits. To solve the “rst para-
dox, we would need to read our users• mind. To solve the second, we
would need to develop a universal query language, which would be ”ex-
ible enough to adapt to any human requirement. Those are still distant
scienti“c prospects.

4 Our Contribution: Exploration Assistants

Our solution is to provide a middle ground between full automation and
manual e�ort. We present virtual assistants , to explore data in a semi-
automatic fashion. Each assistant relies on auser model, that is, a for-
malized set of assumptions about the explorer•s interests for a prede“ned
scenario. From these models, our systems make recommendations, collect
feedback and react accordingly. Thus, they invite users to a •discussionŽ,
involving database queries, pattern analysis and visualization. Let us in-
troduce each system:

€ Our “rst assistant, Claude , excels at detecting the relationships
between the columns in a data warehouse. To interrogate Claude,
users specify a variable in which they are interested (e.g.,Profit in
a marketing context, or Salary for a census). In response, Claude
suggests database views, highlighting the columns and tuples which
strongly in”uence this variable.

€ Our second assistant,Blaeu , is a cartography expert: it creates
maps, to summarize the content of the database. These maps are
interactive: users can zoom in, project, or highlight properties of

16

1. Introduction

interest. Through these actions, explorers canbrowse their data,
and discover potentially interesting Select-Project-Join queries.

€ Ziggy completes Claude and Blaeu•s suggestions. Its aim is to help
users who already have a query, but do not know what is interest-
ing about it. Our system can pinpoint what makes a set of tuples
•specialŽ, by highlighting its di�erences with the rest of the database.

€ Finally, Raimond generalizes our approaches to non-structured data.
Raimond targets microblogs (e.g., tweets), written in natural lan-
guage. From those, it can extract quantitative data and organize its
“ndings with thematic timelines. To demonstrate Raimond, we fo-
cus on news events. We show that generalizing semi-automatic data
exploration beyond tables is feasible.

Our work relies heavily on machine learning. We will show that many
methods from this “eld are applicable to data exploration, but they are
too heavy in terms of user involvement. Our explorers are not statisticians,
and they may have neither the patience nor the skills to tune statistical
inference algorithms. Hence, an important contribution of this thesis is to
provide new statistical techniques, focusing on interpretability, convenience
and speed rather than strict accuracy.

5 Structure and Covered Publications

We present the background material necessary to understand this thesis
in the next three chapters. Chapter 2 focuses on data warehouses and
visual analytics. Chapter 3 deals with data mining. Chapter 4 presents
elementary notions of information theory. We then dedicate one section to
each assistant. In Chapter 5, we describe Claude, based on the following
paper:

€ Semi-Automated Exploration of Data Warehouses
Thibault Sellam, Emmanuel Müller, Martin Kersten
ACM Conference on Information and Knowledge Management (CIKM),
Knowledge Management track, 2015

In Chapter 6, we present Blaeu. This chapter is based on the following
three papers:

€ Meet Charles, Big Data Query Advisor
Thibault Sellam, Martin Kersten
Conference on Innovative Data Research (CIDR), 2013

17

1.5. Structure and Covered Publications

€ Cluster-Driven Navigation of the Query Space
Thibault Sellam, Martin Kersten
IEEE Transactions on Knowledge and Data Engineering (TKDE),
Submitted and accepted in 2015

€ Blaeu: Mapping and Navigating Large Tables with Cluster
Analysis
Thibault Sellam, Robin Cijvat, Richard Koopmanschap and Martin
Kersten
Very Large Databases (VLDB), demonstration track, 2016

Ziggy, presented in chapter 7, is based on the following papers:

€ •Hey Ziggy, What Am I Looking At?Ž - Describing Tuples
for Data Explorers
Thibault Sellam, Martin Kersten
Scienti“c and Statistical Database Management (SSDBM), 2016

€ Ziggy: Characterizing Query Results for Data Explorers
Thibault Sellam, Martin Kersten
Very Large Databases (VLDB), demonstration track, 2016

€ Have a Chat with Clustine, Conversational Engine to Query
Large Tables
Thibault Sellam, Martin Kersten
Workshop on Human in the Loop Data Analytics (co-located with
SIGMOD), 2016

In Chapter 8, we describe Raimond. Raimond was developed during an
internship at Microsft Research (Mountain View, CA) and was patented.
We describe Raimond in this paper:

€ Raimond: Quantitative Data Extraction from Twitter to
Describe Events
Thibault Sellam, Omar Alonso
International Conference on Web Engineering (ICWE), 2015

In Chapter 9, we confront our “ndings with related work, conclude, and
present future research directions.

18

Chapter 2

Background 1: Data Warehouses
and Visualization

Relational database systems appeared in the 70•s, to support operational
business tasks. Typical use cases included storing client information or
processing bank operations. The ability to update tables concurrently and
consistently was critical and transaction throughput was the key measure
of success. This model is still widely in used today, and it is referred to as
OLTP . In the 80•s and 90•s, businesses began to aggregate their databases
across departments, to get a strategic view of their resources and results.
They set up data warehouses, that is, large data repositories to contain
those aggregates [21]. For software engineers, data warehouses posed a
whole world of new challenges. For a start, the queries involved more
data than in the OLTP world. For instance, managers would be interested
in the sales of a whole semester, rather than that of a unique transaction.
Furthermore, these queries were more di�cult to optimize, as they involved
complex aggregations and arithmetic operations. Lastly, data warehouses
were meant to be queried by humans, not by automated processes. In this
context, the couple formed by SQL queries and tabular results was not
optimal anymore: SQL was too rigid, and raw tuples were overwhelming.
Software editors and researchers had to invent new interaction methods.
In this chapter, we review two of those: data cubes and visual analytics.
Both of these approaches aim atsummarizing the data. The “rst uses
aggregates, while the second uses multivariate visualizations.

1 The OLAP model, data cubes and pivot tables

The OLAP model “rst appeared in the database system Arbor Essbase,
in the early 90•s. Its aim is to provide a generic mechanism to manipulate
and summarize multidimensional data. Roughly, this model relies on two
concepts: thedata cube, which is an abstract model of the database, and

2.1. The OLAP model, data cubes and pivot tables

......

US

NL 2002

303

2002

SalesCountry Year

Soup

Soap

Product

US

NL

205

212

2003

2003

Soup

312Soap

(a) Tabular view.

Country

Year

Product

US

NL

...

2002

2003

2004

2005

Soap Soup Books ...

120 130

220 240

...

...

...

Year

Product

2002

2003

2004

2005

Soap Soup Books ...

132 144

128 148

... ...

...

Slice

Dice

Year

Product

2002

2003

Soap Soup Books ...

132 144

128 148 ...

...Pivot
Country

2002 2003

US

NL

...

120 165

168 221 ...

...

Drill

Year

Country

Jan 02 Feb 02

US

NL

Mar 02

20 21

15 33 31

27

Month
Apr 02 May 02 Jun 02

28

32 ...

...

(b) Data cube view.

Figure 2.1: Two abstractions for a multidimensional dataset.

20

2. Background 1: Data Warehouses and Visualization

Figure 2.2: A screenshot of Tableau 9.2 (with permission from Tableau
Software, 2015).

a set of primitives to manipulate this cube. Let us present those concepts
through an example. Figure 2.1a shows “ctive marketing data, in tabular
form. According to the OLAP model, this dataset contains two types of
columns: the measure, Sales, and threedimensions, Country, Year and
Product. The measure is the variable that we want to analyze. The
dimensions describe the context in which it varies. The top-left part of
Figure 2.1b presents the data cube corresponding to this set. Observe that
the three dimensions de“ne a grid, in which each cell contains a value of the
measure. The OLAP model provides us with (at least) four primitives to
inspect this cube: we canslice, dice, pivot, or drill . Slicing lets us project
the cube on a subset of its dimensions. For instance, we can select a two
dimension view of the cube, to visualize it (as we did in the “gure). By
dicing, we restrict the range of the dimensions. With a pivot, we replace
one dimension by another. Finally, drilling lets us inspect the data at
a thinner level of granularity. The data cube is a pure abstraction. It
re”ects in no way how the data is stored physically. Neither does it re”ect
the logical schema of the database (i.e., at the SQL level). It is merely an
additional layer, meant to facilitate the navigation of data warehouses.

In principle, we could manipulate data cubes directly through SQL. In-
deed, most OLAP primitives have a direct equivalent in this language.
But in practice, many users prefer graphical front-ends. Historically, the
tools of choice were spreadsheet systems; “rst with Lotus 1-2-3, then with

21

2.2. Visual Analytics

Microsoft Excel. In fact, these systems had already introducedpivot tables
in the late 80•s, which essentially are light data cubes. But alternatives
have emerged. Nowadays, a dozen software editors o�er so-called Business
Intelligence dashboards, which exploit modern graphical methods. Pop-
ular products include QlikView, IBM Cognos or Microsoft BI. Figure 2.2
presents a screenshot of Tableau [88], which has gained a large success in
both academia and industry.

2 Visual Analytics

In parallel to the development of the OLAP model, experts in computer
graphics have introducedvisual analyticssoftware, such as XmdvTool [101],
GGobi [90], and ScatterDice [30]. These tools have the same objective as
data cubes: they help users query and visualize large datasets. However,
their logic is di�erent. In the OLAP world, users interact with the data
through aggregates and statistics. They manipulate computed summaries,
they never access their data in its raw form. Visual analytics provide a
more direct access to the database. They present the original values, not
aggregates. To do so, they map the tuples tovisual metaphors, which ex-
ploit the user•s visual bandwidth to its maximum. Also, they provide com-
mands to interact with the resulting displays: typically, users can zoom,
pan, or select. We now present four families of visualization techniques,
on which much of visual analytics rely: pixel-oriented methods, icon-based
displays, geometric projections, and hierarchical techniques [47].

Pixel oriented visualizations. Pixel oriented visualizations map each
value from the database to a colored area. As an illustration, Figure 2.3
represents the Iris dataset, a database of ”owers from the UCI reposi-
tory [10]. Each panel represents a variable. Within the panels, the rect-
angles represent tuples, organized in a round robin fashion. Observe the
”ag-like structure of the two rightmost displays: we perceive three clusters,
which correspond the three types of ”owers present in the database.

Icon-based visualizations. Figure 2.4 presents an example of icon-
based visualization. This method maps each tuple to an icon, which shape
represents the data values. In the example, each variable is mapped to
a star, and each column is represented by the length of one axis. This
techniques is e�cient to compare items and detect micro-variations, but it
gives a poor view of the overall structure of the data.

Projection-based methods. One drawback of pixel-oriented and icon-
based methods is that they do not actually show the multidimensional
space where the data lives. Projection-based methods address this issue.

22

2. Background 1: Data Warehouses and Visualization

Sepal.Length Sepal.Width

Petal.Length Petal.Width

��2 ��1 0 1 2 3
value

Figure 2.3: Pixel Oriented view of the Iris dataset.

1 2 3 4 5 6 7 8 9 10

51 52 53 54 55 56 57 58 59 60

121 122 123 124 125 126 127 128 129 130

Figure 2.4: Star plots representing 30 rows of the Iris dataset. In clock-
wise order, the axises represent the variables Sepal.Length, Sepal.Width,
Petal.Length, and Petal.Width.

23

2.2. Visual Analytics

Figure 2.5 presents ascatter-plot matrix. It depicts a matrix of projections,
where each panel represents a two-dimensional view of the database. This
method excels at describing the density of the data, that is, empty zones
and clusters. It can also reveal pairwise correlations. But it is limited to a
few dimensions: forM variables, it requiresM 2 panels. Figure 2.6 presents
parallel coordinates, another popular approach based on projections. This
methods represents each tuple by a series of connected segments. It sup-
ports more variables than scatter-plot matrices, but less tuples.

Hierarchical displays. Hierarchical displays present the data with
nested sets of categories. Consider for instance thetreemap in Figure 2.7.
The data is divided in three sections: Setosa, Versicolor and Virginica.
Within these sections, the map represents two categories: •Long SepalŽ
and •Short SepalŽ. Those are then divided in sub-categories, •Long PetalŽ
and •Short PetalŽ. Generally, hierarchical displays constitute a poor choice
to describe continuous multidimensional data, but they are e�cient for
categorical variables, or datasets that are inherently hierarchical (e.g., “le
systems). In the following chapters, we will use them to describe the results
of cluster analysis.

24

2. Background 1: Data Warehouses and Visualization

Sepal.Length

2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5

4.
5

5.
5

6.
5

7.
5

2.
0

3.
0

4.
0

Sepal.Width

Petal.Length

1
2

3
4

5
6

7

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
5

1.
5

2.
5

1 2 3 4 5 6 7

Petal.Width

Figure 2.5: Scatter-plot matrixof the Iris dataset.

Sepal.Length Sepal.Width Petal.Length Petal.Width

Figure 2.6: Parallel coordinates view of the Iris dataset.

Short
Petal

Short
Petal

Short Petal

Long Petal

Short Petal

Long Petal

Short Petal

Long Petal
Long

Petal

Long
Sepal

Short Sepal Long Sepal Short Sepal Long Sepal Short
Sepal

SETOSA VERSICOLOR VIRGINICA

Figure 2.7: Tree Map of the Iris dataset.

25

26

Chapter 3

Background 2: Data Mining

Data cubes and visualizations involve a great deal of manual e�ort. Ty-
pically, analysts must start with a hypothesis (•there is something strange
is my October salesŽ), specify a view which will con“rm or in“rm it (•give
me all the sales of OctoberŽ), then interpret the results (•aha, indeed I
see an unusual deviationŽ). Data mining is an attempt to automate this
process. Instead of writing queries, users specifypatterns (e.g., •give me
all the outliers in my salesŽ), or statistical models (e.g., •give me a syn-
thetic formula to describe my salesŽ). Then, the system is responsible for
identifying the portion of the database that “ts the requirements. With
data mining, users operate at a higher level of abstraction than bits and
tuples. For this reason, this discipline is also referred to asknowledge dis-
covery. Data mining is also very close tomachine learning, a sub“eld of
AI. In fact, all the techniques and algorithms discussed in this thesis di-
rectly come from this domain. Therefore, we will often use the termsdata
mining and machine learning interchangeably.

Because our work relies heavily on data mining, our presentation of this
“eld will be substantially more detailed than that of OLAP cubes and
visual analytics. This section is self-contained: readers who are already
familiar with the concepts covered may freely skip it. In Section 1, we
will present the basics of machine learning: we will introduce supervised
learning, unsupervised learning, and describe a few algorithms for each
task. In Section 2, we will discuss datasets with high dimensionality. We
will present the •curse of dimensionalityŽ, discuss how it a�ects di�erent
data mining, and discuss practical solutions for both supervised and un-
supervised learning.

3.1. A Data Mining Primer

Salary Age Job Credit
80k 59 Executive Safe
12k 22 Student Risky
75k 24 Actor Risky
55k 30 Architect Safe
.

(a) Training set.

Salary Age Job
70k 59 Lawyer
32k 29 Engineer
25k 23 Student
75k 50 Marketing
.

(b) Testing set.

Figure 3.1: Dummy data sets for a classi“cation task. The aim is to predict
the credit rating of loan applicants.

1 A Data Mining Primer

This thesis focuses on the two most common tasks from data mining:
supervised learningand unsupervised learning.

Supervised learning. The aim of supervised learning is to make pre-
dictions from examples. This method operates in two steps, thelearning
phaseand the prediction phase.

1. During the learning phase, our system infers astatistical model from
a training set. The training set is a bag of couples(x, t) where
x = (x1, . . . , xM) is a vector andt is a label. The statistical model is
a function f which maps eachx to its label t. Figure 3.1a presents
a training set for a credit rating task. In this example, we wish to
produce a modelf to map applicants to ratings.

2. During the prediction phase, we consider a set of tuples for which the
labels t are missing, as shown in Figure 3.1b. Our aim is to guess
the labels, using the modelf found previously.

If the labels t come from a continuous domain, our task is calledregression.
If they are categorical, we call itclassi“cation. For regression, linear models
and Gaussian processes are popular methods. For classi“cation, common
algorithms include Naive Bayes, decision trees, SVMs and neural networks.
We will describe the “rst two techniques in the following sections.

Unsupervised learning. Unsupervised learning involves no training
phase. It assigns the classest to the training items x directly, without any
preliminary example. The most common approach for this task iscluster
analysis, or clustering. Clustering consists in partitioning the data such
that similar items are grouped and di�erent items are separated. Figure 3.2
shows an example of such partitions.

28

3. Background 2: Data Mining

Age

In
co

m
e

Cluster 1

Cluster 2

Figure 3.2: Clustering credit applicants.

All the algorithms that we will discuss in the remainder of this thesis
rely on the assumption that the tuples are independent and identically
distributed (or i.i.d.). This means that all the tuples come from the same
probability distribution, and they were all drawn independently of each
other. This assumption is disputable in many cases, but it greatly simpli“es
the computations. Methods to tackle it (e.g., drift detection or Markov
sequences) are beyond the scope of this thesis.

1.1 Classi“cation

We now focus on supervised learning, and more speci“cally on classi“-
cation. We can divide classi“cation methods in two families: generative
methods anddiscriminative methods. The “rst family speci“es a full prob-
ability distribution for the couples (x, t), from which we can draw samples.
The second predictst directly, without describing the distribution of the
data. The following sections present one algorithm for each approach:
Naive Bayes for the generative method andDecision Trees for the dis-
criminative method. We will then discuss how to tune these algorithms,
and how to evaluate their accuracy.

1.1.1 Naive Bayes

Let us return to our example of Figure 3.1. For a given tuplex =
(x1, . . . , xM), our aim is to predict if the variable t is more likely to have
the value •SafeŽ or •RiskyŽ . One way to do so is to compute the prob-
abilities P(Safe | x) and P(Risky | x), which respectively represent the
likelihood that a given user x is safe or risky. We then compute the ratio:

R =
P(Safe| x)

P(Risky | x)
(3.1)

29

3.1. A Data Mining Primer

+

+

+
+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

Salary

Probability
Density

P(Salary|Risk)

P(Salary|Safe)

(a) Attribute Salary (continuous).

Job

Frequ. (%)

LawyerStudent Actor Architect

Risk
Safe

(b) Attribute Job (discrete).

Figure 3.3: Modeling the conditional attribute densities P(xj | t).

If R is greater than 1, we keep the value •SafeŽ. Otherwise, we sett to be
•RiskyŽ.

Naive Bayes helps us compute the probabilitiesP(t | x). Suppose that
P(xj |t) represents the probability function of the variablexj for the classt,
for instance, the age of all safe applicants. The key observation is that un-
der certain assumptions (which we discuss next), the following relationship
holds:

R =
P(Safe| x1, . . . xm)

P(Risky | x1, . . . xm)

=
P(x1|Safe) · . . . · P(xM | Safe)

P(x1|Risky) · . . . · P(xM | Risky)
·

P(Safe)
P(Risky)

=
M�

j =1

P(xj | Safe)
P(xj | Risky)

·
P(Safe)

P(Risky)

(3.2)

Fortunately, we can obtain all the elements of this equation from the train-
ing set. To compute the termsP(xj | t), we model the distribution of each
variable xj for safe and risky applicants separately. Ifxj is continuous, we
“t Gaussians, as in Figure 3.3a. If it is categorical, we use histograms, as
in Figure 3.3b. To estimate the ratio P (Safe)

P (Risky) , we simply count and divide
the number of observations from each class in the data.

Equation 3.2 relies on a very strong assumption: it assumes that within
the tuples of each class, all the attributes are independent from each other.
Formally, we have P(xi , xj |t) = P(xi |t) · P(xj |t). In reality, this assump-
tion almost never holds, which is why Naive Bayes carries its name. Yet,
this algorithm is surprisingly accurate in many practical situations. Its
precision, combined with its speed and its ability to cope with mixed data
types make it one of the most widely used classi“cation algorithms [106].

30

3. Background 2: Data Mining

Age �� 27 Age < 27

Salary �� 50 Salary < 50

Risky

Risky Safe

Figure 3.4: Example of decision tree for the Credit data set.

1.1.2 Decision Trees

Naive Bayes is a •black boxŽ method: its decision are hard to interpret.
We now present a popular alternative: decision trees. Decision trees are
legible, which partly explains their success, but they are also fast and
”exible [106].

A decision tree is a nested sequence of tests. Consider the example
pictured in Figure 3.4. This structure can be interpreted as an algorithm
to classify credit applicants. For any new item x, we explore the tree
from top to bottom, choosing the branches for which the condition holds.
Eventually, we end up at a terminal node, which indicates the “nal decision.

Authors have developed several algorithms to infer decision trees from
training data, such as CART, ID3 and C4.5 [106], but the general principles
are similar. All these algorithms build trees in a top-down fashion. At each
step, they select a leaf from the tree, select the corresponding portion of
the data, and split it in two (sometimes more for C4.5). To create the split,
they test each variable successively and keep the one that yields the •bestŽ
split. The quality of a split depends on how well it separates the class: we
want the descendant nodes to be aspure as possible. In our example, a
perfect split would separate safe and risky applicants, with no exceptions.
To measure the impurity of a node, each algorithm uses its own function.
By default, CART uses the Gini index:

�

k� [1,K]

pk · (1 Š pk) (3.3)

wherepk denotes the proportion of individuals of classk. A popular alter-
native is the cross-entropy:

�

k� [1,K]

pk · ln pk (3.4)

31

3.1. A Data Mining Primer

Model Complexity

P
re

di
ct

io
n

A
cc

ur
ac

y OverÞttingUnder Þtting

Figure 3.5: The non-monotonic relationship between mode complexity and
prediction accuracy.

Both functions return 0 if all the data belongs to the same class, and they
reach their maximum when the classes are present in equal proportions
(e.g., in a two class case,p1 = 0 .5 and p2 = 0 .5).

Observe that deep trees are not always better. In practice, it is often
necessary toprune our tree after we have built it, in order to obtain good
prediction performance. We discuss this point in the following section.

1.1.3 Model Complexity, Over“tting and Under“tting

All supervised learnings algorithms provide ways to control thecomplexity
of the model to be created. In the case of Naive Bayes, we can incorporate
or ignore variables. In the case of decision trees, we can tune the height
of the tree, either during the learning phase or during an optional pruning
step. A model should not be too simple, otherwise it may miss important
features of the training set. But it should not be too complex either. This
is a consequence of the fact that training sets are limited, and therefore
biased. They rarely show the full picture of the phenomenon that we are
modeling. If our model “ts the data too closely, it may re”ect artifacts
of the sample instead of properties of the real world. This situation is
called over“tting , and it is major source of concern for data analysts. The
smaller the data is, the higher are the chances that our model over“ts. This
e�ect is ampli“ed by noisy observations (e.g., inconsistent labels), and it
becomes critical in high dimensionalities, as we will later show. Figure 3.5
illustrates the balance between under“tting and over“tting.

32

3. Background 2: Data Mining

Fold 4

Fold 3

Fold 1

Fold 2

Fold 4

Fold 3

Fold 1

Fold 2

Fold 1

Fold 2

Fold 3

Fold 4

Fold 3

Fold 2

Fold 4

Fold 1

Training Data
Testing Data

Figure 3.6: 4-fold cross validation.

1.1.4 Evaluation

To evaluate the quality of a statistical model, we need to answer two
questions: which test data do we use? Then, what is our metric?

Start with the test data. Typically, we only have access to one labeled
data set, which we can use for either training or testing. One option
is to use it for both. But this mode of evaluation does not account for
over“tting: it cannot detect whether our algorithm actually •understoodŽ
the target concepts, or if it simply learned the labels •by heartŽ. A better
option is to split the training data in two: one set for learning, and another
one for validation. We can generalize this approach withcross-validation.
Cross-validation partitions the training set in k equally large subsets. We
use the “rst subset for validation, and the remainder for training. We
then rotate: we use the second subset for validation, and the remainder
for training. We repeat this operation for each of thek folds and average
the scores. Figure 3.6 illustrates this method.

For a given testing set, the simplest metric to evaluate a classi“er is the
misclassi“cation rate, that is, the proportion of correctly classi“ed items.
Nevertheless, dozens of alternatives exist. The most popular ones are the
precision, the recall and the F1 score. Consider an arbitrary class to be
predicted. The precision measures the purity of the set of items mapped
to this class. The recall measures the completeness of this set. The F1 is
the harmonic mean of these values. Formally, ifT P, T N , F P and F N
respectively represent the number of true positives, true negatives, false
positives and false negatives, we have:

33

3.1. A Data Mining Primer

Precision=
T P

T P + F P
(3.5)

Recall =
T P

T P + F N
(3.6)

F1 = 2 ·
Precision· Recall
Precision+ Recall

(3.7)

The advantage of the F1 is that it can deal with classes of di�erent sizes.
In contrast, we can •cheatŽ the misclassi“cation rate by systematically
predicting the most frequent class.

1.2 Cluster Analysis

Previously, we presented supervised learning. We now discuss clustering.
The aim of clustering is to split data into clusters, that is, groups of similar
objects. We can classify the algorithms along two axes: ”at/hierarchical,
and feature-based/dissimilarity-based [46].

€ Flat algorithms (also calleddivisive algorithms) partition the objects
into disjoint sets. In most cases, users must specify the number of
partitions k a priori. Oppositely, hierarchical algorithms return a
tree of nested partitions.

€ Feature-basedalgorithms operate on the tuples as they are stored
in the database. Oppositely, dissimilarity-based algorithms take a
dissimilarity matrix as input. A dissimilarity matrix contains the
pairwise dissimilarity between all the objects in the database. This
matrix is square, and usually symmetric, as shown below:

D =

�

�
�
�
�
�

d(x1, x1) d(x1, x2) . . . d(x1, xM)

d(x2, x1)
. . .

...
...

. . .
...

d(xN , x1) d(xN , xM)

�

�
�
�
�
	

The advantage of dissimilarity-based clustering approach is that it
can deal with non-numeric data. For instance, we can easily obtain a
dissimilarity matrix from a set of strings, using e.g., the edit distance.
Applying a feature-based algorithm to the same is much harder.

We will now present one algorithm for each combination, as shown in
table 3.1. We will then discuss methods to detect the best number of
clusters in a dataset.

34

3. Background 2: Data Mining

Flat Hierarchical
Feature-based k-means Divisive k-means
Dissimilarity-based PAM Agglomerative clust.

Table 3.1: Algorithms covered.

Age

In
co

m
e

+

+

x1

x2

Cluster 1 Cluster 2

(a) Cluster assignment step.

Age

In
co

m
e

+

+

x1

x2
+ +

(b) Centroid update step.

Figure 3.7: One iteration of the k-means algorithm.

1.2.1 The k-means Algorithm

The k-means algorithm is probably the most widely used procedure in
all data mining. It splits data in such a way that the distance between
the points inside each partition is minimal. In other words, it seekstight
clusters. To evaluate the tightness of a cluster, it relies on thewithin-
cluster sum of squares(WSS). The WSS aggregates the distance between
the points and the centers of the clusters to which they belong (also called
centroids). Formally, consider a set ofk clusters Ci with centers x i . The
aim of k-means is to minimize the following quantity:

W SS =
�

Ci �{ C1,...,Ck }

�

x � Ci

||x Š x i ||2 (3.8)

The most popular heuristic to solve this optimization problem is Lloyd•s
algorithm. The algorithm starts by picking k random centers. Then, each
iteration is based on two steps. During the “rst step, it creates the clus-
ters by assigning each point to its closest center, as shown in Figure 3.7a.
During the second, it recomputes the centers using the new cluster assign-
ments, as in Figure 3.7b. It repeats those two steps until convergence.

35

3.1. A Data Mining Primer

x1

x2

xN
Intra-cluster Tuple Dissimilarity

.......

Figure 3.8: A dendrogram shows the hierarchy of the partitions.

1.2.2 Partitioning Around Medoids

Partioning Around Medoids (PAM) [46] generalizes k-means to arbitrary
data types, such as strings, texts or videos. The main di�erence is that it
works with a dissimilarity matrix rather than a table of tuples. Also, it
relies onmedoidsinstead of centroids. A medoid is a database object that
lies at the center of a cluster (medoids come from the data, while centroids
are arti“cial). If x �

i describes the medoid of a clusterCi , and d describes
a distance function, the PAM algorithm seeks to minimize:

W SS =
�

Ci �{ C1,...,Ck }

�

x � Ci

d(x , x �
i) (3.9)

The body of the algorithm is itself very similar to k-means. Each iteration
relies on two steps. During the “rst step, PAM assigns each point to its
closest medoid. During the second step, it recalculates the medoids.

In its original form, PAM•s time complexity is quadratic with the num-
ber of tuples in the database. In fact, the computation of the dissimilarity
matrix itself runs in O(N 2). A more scalable alternative is CLARA [46].
At each step, CLARA takes a small sample from the database and ex-
tracts a set of medoids with PAM. It then assigns the whole database to
those medoids, and computes the total score. It repeats this operation a
prede“ned number of times, and keeps the best con“guration.

1.2.3 Divisive Clustering

The k-means and PAM algorithms rely on a critical parameter: the num-
ber of clustersk to generate. In practice, we rarely have the background
knowledge to set this number. Divisive clustering lets us bypass this prob-
lem. The algorithm operates as follows. First, we partition the database in
two sets using k-means withk = 2 . We then identify the largest partition,

36

3. Background 2: Data Mining

and split it in two. We obtain three partitions. We detect the largest one,
and repeat the process. We stop when each partition contains one item,
or when we reach some arbitrary threshold. The result of this procedure
is a tree of nested partitions, which we can visualize with adendrogram,
as shown in Figure 3.8.

1.2.4 Agglomerative Clustering

Divisive k-means is atop-down algorithm: it starts with one large partition
and “nishes with small groups. Agglomerative clustering operates the
other way around. To initialize the algorithm, we assign each object to its
own cluster. Then, at each iteration, we detect the two closest clusters,
and merge them. We stop when one cluster contains all the data. To de“ne
how close two clusters are, we have several possibilities. One option is to
use the distance between their closest points. In this case, we have:

D(Ci , Cj) = min { d(x, x �) : x � Ci , x � � Cj } (3.10)

An alternative is to use the distance between the two furthest points:

D (Ci , Cj) = max { d(x, x �) : x � Ci , x � � Cj } (3.11)

The former function leads to loose partitions, while the latter leads to tight
clusters. We can obtain a compromise with the mean:

D(Ci , Cj) =
1

|C1| · |C2|
·

�

x � Ci ,x � � Cj

d(x , x �) (3.12)

The algorithms corresponding to the three distance functions are respec-
tively called single link, complete link and average link clustering.

1.2.5 Choosing the Number of Clustersk

Hierarchical methods provide a convenient way to avoid setting a number
of clusters k explicitly. However, in many cases we need ”at partitions,
and therefore we need to set thisk. The literature provides dozens of rules
to detect the •bestŽ number of clusters from the data, and we will now
present three of those. However, we must warn the reader that these are
heuristics. Eventually, the right decision depends on the data, the users
and their use case.

The most simple method to detect the number of clusters in a dataset is
the •elbow ruleŽ, illustrated in Figure 3.9a. The idea is to run our clustering

37

3.1. A Data Mining Primer

Number of Clusters

In
tr

a-
C

lu
st

er
 D

is
si

m
ila

rit
y

"Elbow"

(a) The •elbowŽ method.

Number of Clusters

S
ilh

ou
et

te

Max. silhouette

(b) Silhouette score maximization.

Figure 3.9: Methods to detect the number of clustersk.

algorithm for di�erent values of k, and plot the quality of the results (e.g.,
the WSS) against the number of clusters. If the data is strongly clustered,
a shift in the distribution will appear, which looks like an elbow. This
point corresponds to the natural number of clusters in the data set.

Unfortunately, the elbow is rarely clear or visible in practice. An alterna-
tive approach is to exploit the silhouette coe�cient [80]. As the WSS, the
silhouette coe�cient measures the quality of a cluster assignment. How-
ever, it is not monotonous. If we plot it against di�erent values of k, a
peak appears, as shown in Figure 3.9b. This peak corresponds to the best
number of clusters. Technically, the silhouette coe�cient describes how
well each object •“tsŽ inside its cluster. Consider an objectx i . If a(x i)
represents the average dissimilarity betweenx i and the other tuples from
its cluster, and b(x i) is the lowest average dissimilarity betweenx i and the
points of another cluster, we have:

s(x i) =
b(x i) Š a(x i)

max{ a(x i), b(x i)}
(3.13)

If x i is at the center of its cluster, then we will haves(x i) = 1 . If it lies
on the border of the cluster, we obtains(x i) = 0 . Finally, if x i is closer to
another cluster than its own, the score is negative (-1 in the worst case).
To obtain a global score, we average the silhouette scores of each object
the database.

Finally, a more robust alternative is the Gap statistic [93]. This index
uses two datasets: the original database, and a synthetic set which serves as
a baseline. To generate the baseline, we sample tuples uniformly from the
bounding box of the original dataset. Thus, we obtain a database which
values have the same domain as that of the real data, but which contains
no cluster. For a given k the value of the Gap statistic is the di�erence

38

3. Background 2: Data Mining

Dim. 1

Dim. 1
D

im
. 2

Dim. 1

D
im

. 2

D
im

. 3

Figure 3.10: Five data points in 1, 2 and 3 dimensions. Observe how the
data gets sparser as the number of dimensions increase.

in clustering quality between those two sets. Formally, ifW SS(k) is the
score obtained with the real data andES [W SS(k)] is the expected score
of clustering S uniformly distributed samples, we have:

GapS(k) = ES [logW SS(k)] Š logW SS(k) (3.14)

The notation ES [W SS(k)] expresses the fact that we run the experiment
with several samples and then average results, i.e., we perform Monte-Carlo
simulation.

2 Mining High Dimension Datasets

Previously, we presented the basics of classi“cation and clustering. We
now discuss the problem which arise with these methods when datasets
contain many variables.

The curse of dimensionality tells us that the more variables a database
contains, the sparser it gets. Consider for instance the 5 points pictured
in Figure 3.10. As we increase the number of dimensions in our dataset,
the distance between the points grows, and the space in which they live
get emptier. And this e�ect increases exponentially with the number of
dimensions. This observation has important consequences for machine
learning. In the following section we will present those that concern su-
pervised learning. In the next, we will discuss unsupervised learning.

39

3.2. Mining High Dimension Datasets

Age

In
co

m
e

Risky

Safe

Figure 3.11: A grid-based classi“er.

2.1 Supervised Learning with Many Variables

2.1.1 The Explosive Need For Data

We present the e�ect of dimensionality on regression and classi“cation
through an example, largely inspired by Bishop [14]. Consider the classi“-
cation task introduced in Figure 3.1. We want to predict the credit rating
of a set of applicants. We already presented two methods to do so, namely
Naive Bayes and decision trees. We now introduce a third one:grid-based
classi“cation. The idea behind this method is to divide the data space
into cells, as shown in Fig. 3.12. Then, we associate each cell to the most
frequent credit rating, either Risky of Safe. When a test tuple comes in, we
identify the cell to which it belongs, and retrieve the corresponding value
of the target.

To produce an accurate classi“er, we need as many training points as
possible. Ideally, we should have at least one per cell. Suppose that we
bin each dimension intoS cells. If our data contains one dimension, then
we needS training points. If contains two dimension, we needS2 exam-
ples. More generally, if our dataset containsM dimensions, we needSM

examples. Therefore, the number of training examples we need grows ex-
ponentially with the number of dimensions of the data. This is a typical
manifestation of the curse of dimensionality: we end up like the mytholog-
ical king who had to place ever more wheat on a chessboard to catch up
with a geometric progression. And this problem does not only plague our
grid-based classi“er: without proper tuning, all classi“cation algorithms
su�er from this e�ect.

40

3. Background 2: Data Mining

2.1.2 Feature Selection

To deal with the curse of dimensionality, data analysts have two options:
either they provide more training data, or they reduce the number of
columns in their database. Let us discuss the second option. The most
common method to reduce the dimensionality of a dataset isfeature selec-
tion. Feature selection aims at identifying the variables which are useful for
a given inference task, and eliminate all the others. The hope is that the
resulting set will be small enough to be processed e�ciently. We cannot
overstate how important this step is in practice. Following the classi“ca-
tion of Guyon and Elisse� [36], we present three types of feature selection
methods: wrappers, “lters and embedded methods.

Wrappers. Consider a training set and a supervised learning algorithm.
Wrappers use the algorithm as a •black boxŽ to check the predictive power
of di�erent subsets of variables. They start by building a classi“er for each
dimension separately. They check which one leads to the best results, and
attempt combinations with two variables. They keep the best candidate,
and reiterate with higher number of columns. They repeat the process
until the performance starts to decrease. Wrappers can also go the opposite
direction: they start with all the variables in the database, and suppress
them one by one. This method is simple, ”exible and accurate. However, it
is often slow, because it builds a classi“er for each combination of variables
to be tested.

Filters. Filters separate the variable selection from the actual classi“-
cation. In a “rst step, they identify potentially interesting variables. In
the second step, they run the actual learning algorithm. To detect in-
teresting variables, they usually check if the dimensions are statistically
dependent to the variable to be predicted, using for instance the correla-
tion coe�cient. They then rank the variables and keep those that satisfy
an arbitrary threshold. We will describe these approaches in detail and
generalize them in Chapter 5.

Embedded methods. Embedded methods combine classi“cation and
feature selection in one procedure. In fact we have already reviewed the
most popular of those: decision trees, which have a built-in mechanisms
to “lter variables. An alternative is to chose an existing full-space algo-
rithm, such as linear regression or SVM, and force them to •muteŽ some
variables by modifying their objective function. This process is known as
regularization.

41

3.2. Mining High Dimension Datasets

Dimensions

M
ax

 D
is

ta
nc

e
-

M
in

 D
is

ta
nc

e
M

in
 D

is
ta

nc
e

Figure 3.12: E�ect of the curse of dimensionality on distances. The Y axis
represents the normalized di�erence between the largest and the smallest
pairwise distance between the objects in the data.

2.2 The Curse of Dimensionality in Clustering

We now discuss the e�ects of high dimensionality on unsupervised learning.

2.2.1 The Leveling of Distances

We have seen that when we introduce new variables in a database, the
pairwise distance between its objects grows (cf. Figure 3.10). If the new
variables are strongly correlated to the original ones, then this e�ect is
relatively harmless: the pairwise distances are scaled, but their relative
proportions remain identical. However, if the new variables are indepen-
dent from the old ones, then the distances are distorted: objects that
were close will become distant, and objects that were far apart will be-
come close. Therefore, increasing the dimension of the data has aleveling
e�ect on the distances between the data points. Eventually, all the ob-
jects become equidistant. Figure 3.12 illustrates this e�ect. Formally,
if M represents the number of independent variables in the data, and if
MAX d(M) and MIN d(M) respectively represent the largest and smallest
pairwise distance between the objects in the database, we have [13]:

lim
M � + �

MAX d(M) Š MIN d(M)
MIN d(M)

= 0 (3.15)

Yet, recall that the aim of cluster analysis is to group similar objects
and separate di�erent ones. In high dimensionality, this task loses all
its meaning: the objects become equidistant, and therefore the clusters
disappear. A partitioning based on clustering is as good as random.

42

3. Background 2: Data Mining

item 6

item 2

item 4

item 3

item 5

item 1

.....

...Dim 4 Dim 5Dim 3Dim 1 Dim 2 Dim 6

Cluster 1
Cluster 2

Cluster 3

Figure 3.13: Subspace clustering.

item 6

item 2

item 4

item 3

item 5

item 1

.....

...Dim 4 Dim 5Dim 3Dim 1 Dim 2 Dim 6

Subspace 1 Subspace 2 Subspace 3

Figure 3.14: Multiview clustering.

2.2.2 Subspace Clustering, Multiview Clustering

This last decade, several researchers have generalized cluster analysis to
high dimensionality spaces. The main idea is to seek clusters intosub-
spacesof the data. Instead of returning simple partitions, the algorithms
seek couples(Si , Ci) where Si is a subspace andCi is a cluster. Thus,
they return both tuples and the sets of dimensions on which they are clus-
tered. Subspace clusteringreturns one subspace per cluster, as shown in
Figure 3.13. Alternatively, multiview clustering decouples subspace search
and the cluster analysis, as shown in Figure 3.14. We will discuss these
methods in more detail in Chapter 6, and introduce our own.

2.3 Principal Component Analysis

To “nish, observe that we can distinguish the data•sphysical dimension-
ality from its intrinsic dimensionality . The “rst property refers the num-
ber of columns in the database. The second one describes the number
of independent variables necessary to represent the dataset without loss
of information [17]. Consider a database withM columns. The physical
dimensionality of this set is M . If all the columns are completely indepen-
dent, then its intrinsic dimensionality is also M . Oppositely, if all columns
contain exactly the same data, then the intrinsic dimensionality falls to 1.
Indeed, we need just one variable to represent the whole dataset. Many

43

3.2. Mining High Dimension Datasets

D
im

. 3

Dim. 1Dim
.2

PC. 1
PC. 2

(a) Original data space.

PC. 1

P
C

. 2

(b) Projection on the “rst two prin-
cipal components.

Figure 3.15: Principal Component Analysis.

real-life datasets lie between these two extremes: the columns present some
statistical dependency, but these are not full correlations. Accordingly,
their intrinsic dimensionality varies between 1 andM .

The Principal Component Analysis (PCA) algorithm lets us transform a
wide dataset into a dense, compressed version. The physical dimensional-
ity of its output is smaller than that the original data, and hence it is easier
to process. However, the intrinsic dimensionality is preserved. Thus, PCA
is a common preprocessing step for cluster analysis, classi“cation, or for
visualization. Technically, PCA seeks to project the data onto low dimen-
sion hyperplanes, in such a way that the subsequent loss of information is
minimized. Figure 3.15 illustrates this idea: PCA projects a 3D cloud of
points onto a 2D plane, but it manages to preserve much of the point•s
distribution. The axes on which the data is projected are calledprincipal
components. We obtain them by analyzing the spectrum of the database•s
covariance matrix [14].

44

Chapter 4

Background 3: Information Theory

We now turn to information theory, a branch of applied mathematics con-
cerned with the compression and transmission of data. Information theory
provides us with a powerful framework to understand how variables relate
to each other, and we will heavily rely on it in the coming chapters.

1 Introducing the Entropy

The entropy H (X) of a variable X describes its variability, that is, how
•unpredictableŽ it is [23]. IfX is a constant, thenH (X) = 0 . In contrast,
if X is highly unpredictable (e.g.,X is the outcome of ”ipping a perfectly
balanced coin) thenH (X) is maximal. Formally, if X is a discrete variable
with sample space� , then we have:

H (X) = Š
�

x� �

P(X = x) · logP(X = x) (4.1)

Figure 4.1 gives several examples of distributions along with their respec-
tive entropies.

�

D
is

tr
ib

ut
io

n
(%

)

(a) Low entropy:
H (X)=1.65.

�

D
is

tr
ib

ut
io

n
(%

)

(b) Medium entropy:
H (X)=2.44.

�

D
is

tr
ib

ut
io

n
(%

)

(c) High entropy:
H (X)=2.80.

Figure 4.1: Histograms and entropy for three discrete distributions.

4.2. The Mutual Information

Salary

D
is

tr
ib

ut
io

n
(%

)

P(Salary) P(Salary | MastersDegree = T)

Figure 4.2: Distributions P(Salary) and P(Salary | Masters.Degree = T).

It is often said that the entropy contains the •quantity of informationŽ
contained in a message. To understand why, let us brie”y turn to compres-
sion theory. Consider a “le in which each characterX is drawn randomly
from the distribution p(X). Furthermore, suppose that we wish to com-
press this “le, without loss of information. According to Shannon•ssource
coding theorem [23], the average number of bits necessary to store each
symbol cannot fall below the entropy. In other words, the entropy is a the-
oretical lower bound on the average code length in a lossless compression
scheme. Accordingly, we measure it inbits.

2 The Mutual Information

Apart from its compression-related properties, the entropy gives us a mean
to quantify how variables interact. Indeed, if two variables arestatistically
dependent, then conditioning one variable (that is, restricting the range of
its values) will a�ect the entropy of the second. Suppose that we wish to
test the relationship between two variables from a census, Masters.Degree
and Education. We can do so as follows. First, we compute the distribution
of Salary and compute its entropy H (Salary). Second, we compute the
distribution of Salary for all the individuals with a Master•s, and compute
the new entropy H (Salary | Masters.Degree = T). Figure 4.2 illustrates
both distributions. Finally, we compute the di�erence between the two
entropies:

� H = H (Salary) Š H (Salary | Masters.Degree = T) (4.2)

If � H is positive, then the variables Masters.Degree and Salary are de-
pendent: knowing the value of one reduces the uncertainty of the second.

46

4. Background 3: Information Theory

Oppositely, if � H is null, these variables are independent. Therefore,� H
quanti“es the degree of relationship between two variables.

The mututal information is a generalization of� H . If X and Y are two
random variables, the expressionH (Y |X = k) describes the entropy ofY
given X = k. If we average this expression over all possible values ofk, we
obtain the conditional entropy:

H (Y|X) = Ex [H (Y|X = x)] (4.3)

We de“ne the mutual information I as follows:

I (X ; Y) = H (Y) Š H (Y|X) (4.4)

The mutual information describes the loss in entropy betweenY and Y |X ,
and therefore it quanti“es the dependence betweenX and Y . It is sym-
metric, and it is always positive or null.

The mutual information is not the only method to quantify the depen-
dence between variables. The statistics literature contains several other
candidates, including the correlation coe�cient. The advantage of the
mutual information is its generality: it can cope with both categorical and
continuous data (after adjustments, cf. next section). It supports univari-
ate and multivariate distributions indi�erently. More importantly, it can
detect non-linear relationships between variables.

A few authors have presented extensions to the mutual information. A
notable variant is the variation of information [63]:

V I (X , Y) = H (X) + H (Y) Š 2 · I (X ; Y) (4.5)

As opposed to the regular mutual information, the VI is a true metric.
Hence, it obeys the triangle inequalityV I (X , Y) + V I (Y, Z) � V I (X , Z).
This property will come in handy when we will apply cluster analysis to
variables in Chapter 6.

3 Chain Rule and Conditional Mutual Information

The entropy and the mutual information can handle more than one vari-
able. The expressionH (X , X2) describes the entropy of therandom vector
(X1, X2). Also the expressionI (X1, X2; Y) describes the dependency be-
tween this vector and the variableY (observe the di�erence between the
comma and the semicolon).

47

4.4. Continuous Entropy

D
is

tr
ib

ut
io

n
(%

)
�b

(b�� 0)

Figure 4.3: Discretized probability function.

To compute the mutual information I (X1, X2; Y), we can generalize Equa-
tion 4.4 as follows:

I (X1, X2; Y) = H (X1, X2) Š H (X1, X2|Y) (4.6)

Alternatively, we can use themutual information chain rule, which is better
suited for iterative processing:

I (X1, . . . , XD ; Y) = I (X1; Y) + I (X2; Y|X1) + . . . + I (XM ; Y|X1, . . . XM Š 1)

(4.7)

=
�

m� [1,M]

I (Xm ; T |X1, . . . , XmŠ 1) (4.8)

In those equations, the notationI (Xj ; T |Xi) expresses theconditional mu-
tual information . The conditional mutual information is a conditioned
version of the mutual information: it describes the dependency between
Xj and T given restrictions on Xi . To obtain it, we compute the mutual
information between Xj and T given all the possible values ofXi , and
average the results. Formally:

I (Xj ; T |Xi) = Exi

I (Xj ; T)|Xi = xi)

�
(4.9)

The in”uence of Xi can go either way: it can weaken the dependency
betweenXj and T , or it can strengthen it. The conditional mutual infor-
mation is positive or null, and it is bounded by the entropy of Xj and T.

4 Continuous Entropy

The entropy as de“ned in Equation 4.1 only supports discrete data. The
di�erential entropy generalizes it to continuous domains. Ifp(X) is a

48

4. Background 3: Information Theory

continuous probability distribution, we de“ne it as follows:

H (X) = Š
�

�
p(x) · logp(x)dx (4.10)

We replaced the sum in Equation 4.1 by an integral, but we preserved
the functional form. We can substitute this version of the entropy in
equations 4.3 and 4.4: we obtain the continuous form of the conditional
entropy and the mutual information.

The continuous and discrete versions of the entropy are intimately linked.
Suppose that we discretize the continuous variableX into a new variable
X b, whereb is the bin size as shown in Figure 4.3. Assuming thatp(X) is
Riemann integrable, the following result holds:

H (X) = lim
b� 0

H (X b) + log b (4.11)

Observe that the term logb tends to Š� . It compensates for the fact
that H (X b) diverges whenb gets small. We refer the interested reader to
Thomas and Cover [23] for more details.

5 Estimation

In practice, we almost never know the exact distribution of the random
variable X that interests us. We only have access to samples. Hence,
we must useestimators. If the variable is discrete, we can use simple
histogram-based solutions. We set�P(X) � P(X = x) to be the propor-
tion of tuples with X = x, and we plug this estimator in our information
theoretic measurements. Dealing with continuous variables is more com-
plex, as we need more expensive density estimators [19]. A pragmatic (but
lossy) solution is to discretize those variables. We will use this method by
default.

6 Summary

Let us summarize the main points in this section.

€ The entropy H (X) of a variable X describes its uncertainty. We
generalize this notion to vectors with the notation H (X1, . . . Xm).

€ The mutual information I (X ; Y) measures the statistical dependency
betweenX and Y. We generalize this notion to vectors with the no-
tation I (X1, . . . Xm ; Y1, . . . Yn). The mutual information is sensitive
to both linear and non-linear dependencies.

49

4.6. Summary

€ The mutual information is not trivially additive: in the vast majority
of cases, we haveI (X1, X2; Y) �= I (X1; Y) + I (X2; Y). The correct
value depends on complex three-variable interactions, described by
the conditional mutual information.

€ In its original form, the entropy is unde“ned for continuous variables.
A pragmatic (though lossy) solution is to bin the data and treat it as
categorical. A more advanced (though typically expensive) approach
is to estimate the di�erential entropy, a generalization of the entropy
to continuous domains [11].

50

Chapter 5

Claude: a Data Warehouse
Explanation System

1 Introduction

In Chapter 2, we presented data warehouses and described two methods to
explore them, data cubes and visualizations. Usually, those tools are fast
and intuitive. They excel at providing quick answers and clear displays.
But they rely entirely on manual e�ort. Eventually, they are merely a
layer on top of SQL. They rely on the query-result paradigm, and they
can involve long cycles of trial and error. In Chapter 3, we discussed data
mining. These techniques bring automation to data exploration. Yet, they
require much more background knowledge. At the time of writing, experts
in data mining (so-called •data scientistsŽ) were still a rare and expensive
resource. Can we “nd a middle way? Can we design a method to analyze
data warehouses that would be both automatic and accessible?

1.1 Contributions

We now introduce Claude, a semi-automatic system to explain the con-
tent of a data warehouse. Claude answers the question: •What is in my
database?Ž To do so, it analyzes the statistical structure of the data and
infers potentially informative queries. Three features make Claude unique
compared to other machine learning algorithms. First, it returns SQL
statements instead of abstract statistical models. Thus, users can directly
visualize its “ndings with existing database front ends. Second, it explains
its choices: it can illustrate its “ndings with examples. Finally, Claude
enforces results diversity. Instead of seeking one optimal query, it returns
several di�erent possibilities to be validated by the user. Thus, our sys-
tem combines the automation of data mining with the transparency and
”exibility of database queries.

5.2. General Model

In this chapter, we will “rst present a mathematical model of what makes
a database view informative. The main idea is to exploit the linear and
non-linear statistical dependencies between the columns of the database.
We will formalize this idea with information theory; more speci“cally we
will exploit the mutual information and the Kullback-Leibler divergence.
Then, we will present several algorithms to generate views from this model.
We will show that naive solutions are too slow to be useful in practice.
Therefore, we will present aggressive heuristics based on approximations
and greedy search. In the last sections of this chapter, we will present
our experiments with real-life datasets. First we will describe a use case,
for which will we discuss our system•s “ndings. Then, we will report on
systematic experiments, during which we simulate users with statistical
classi“ers. Our results will reveal that Claude can e�ectively capture the
statistical structure of the database, and that it is faster than existing
solutions.

1.2 Outline

The rest of this chapter is organized as follows. Section 2 gives an overview
of our model, which we re“ne in Section 3. Sections 4 describes how
to compute the quality of a view, Section 5 presents our view detection
algorithm, and Section 6 describes how to justify our results. We present
our experiments in Section 7, related work in Section 8 and conclude in
Section 9.

2 General Model

2.1 Objective

Let us present our model through an example. We want to understand
which US cities are prone to crime. We have a database that provides
several dozen socio-economic indicators for thousands of US cities (for
instance, employment, age, or diplomas), as well as the number of crimes
for each city. Following the OLAP terminology, we refer to the “rst group
of columns as thedimensions, and the crime index as themeasure (we
presented these notions in Chapter 2). We are oblivious to the physical
structure of the data, we assume that our database is stored in one large
table. Our aim is to understand the •big pictureŽ: which variables correlate
with unusually high or low levels of crime? Which cities are impacted? We
want to describe how the measure varies across the dimensions.

52

