N-Atom transfer via thermal or photolytic activation of a Co-azido complex with a PNP pincer ligand

Vreeken, V.; Baij, L.; de Bruin, B.; Siegler, M.A.; van der Vlugt, J.I.

DOI
10.1039/c7dt01712j

Publication date
2017

Document Version
Final published version

Published in
Dalton Transactions

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
Thermal or photolytic activation of well-defined mononuclear \([\text{Co}(\text{N}_3)(\text{PNP})]\) (PNP = 2,2'-bis(diisopropylphosphino)-4,4'-ditolylamido) results in the structurally characterized dinuclear species \([\text{Co}({\mu}-\text{N}\kappa_3\text{P,N,N-PNPN})]_2\) (3), with two N-bridging phosphinimino bridgeheads. Density Functional Theory (DFT) calculations indicate the intermediacy of a mononuclear cobalt-nitrido complex, followed by N-migratory insertion into a Co–P bond. Reaction of 3 with two equiv. HCl leads to rupture of the dimer with formation of mononuclear \([\text{CoCl}(\text{PNPNH})]\) (4) by protonation of the N-bridges.

Transition metal complexes featuring multiple bonded terminal nitrido (M≡N) ligands are attracting interest, as these species are proposed to play important roles in N₂ splitting, N-atom transfer reactions and in biochemical processes.¹ Transition metal complexes with metals up to Group 8 are well-known but bona fide M≡N complexes with metals from Group 9 onwards are still rare due to a mismatch between the strongly π-donating nitrido (N₃⁻) ligand and the electron-rich metal centers, leading to increasingly filled antibonding π-orbitals and overall destabilization of the M–N bond.²

Typically, azido complexes are used as precursors to generate the nitrido species via either thermolysis, chemical oxidation or photolysis. For Group 9 metals, this has resulted in isolable terminal Ir–nitrido compounds,³,⁴ but terminal nitrido- or nitridyl⁵ complexes with Rh proved too reactive for isolation and only species arising from follow-up reactivity have been structurally characterized to date.⁶–⁹ A Co(iv)–nitrido complex stabilized by a bis[NHC](aryloxido)-amine ligand scaffold was detected by EPR spectroscopy at 10 K. At higher temperatures, migratory insertion of the N-atom into a metal-carbene bond and subsequent H-atom abstraction (from a sacrificial H-atom donor) resulted in a cobalt-bound imidazolin-2-imine fragment (Scheme 1, A).¹⁰ Similar intramolecular reactivity was previously observed upon photolysis or thermal activation of bis(imino)pyridine cobalt azide complexes, leading to N-insertion into a ligand C–H bond to form B, with a putative transient Co-nitrido proposed as intermediate.¹¹

We recently described the photolysis of \([\text{Ni}(\text{N}_3)(\text{PNP})]\) (PNP = 2,2'-bis(diisopropylphosphino)-4,4'-ditolylamido) in a benzene solution, resulting in clean transformation to complex C, \([\text{Ni}(\text{Ph})(\text{PNPNH})]\).¹² DFT-studies resulted in the proposal of a mechanism involving a transient terminal Ni-nitrido complex, with N-migratory insertion into a Ni–P bond and intermolecular C–H activation of benzene solvent to provide the final product. Mindiola and coworkers reported the thermolysis of \([\text{Fe}(\text{dbabh})(\text{PNP})]\) (dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene), generating anthracene and...
Published on 12 May 2017. Downloaded by Universiteit van Amsterdam on 9/5/2018 8:57:35 AM.

We succeeded to obtain single crystals, suitable for X-ray structure determination, from a cold pentane solution. The molecular structure of the centro-symmetric dimeric CoII-species is depicted in Fig. 1. The nitrogen atoms of two monoanionic phosphiniminato units act as bridging donors to two tetrahedral CoIII centers, similar as in the aforementioned iron analogue, providing [Co(μ-PN3N)]$_2$ (3).13,20 Photolysis in benzene led to selective formation of the same dinuclear complex, with no sign of intermolecular C-H activation as observed for the Ni-analogue.12 The phosphiniminato unit is proposed to originate from thermal activation of the inorganic azide fragment and subsequent insertion of a transient nitrido N-atom into a Co-P bond, resulting in formation of the asymmetric dianionic PN3N ligand. Two of the backbone phenyl rings are directed away from the diamonoid Co$_2$N$_2$ center. The other phenyl rings are nearly co-planar (centroid–centroid distance 4.485 Å) and almost perpendicular to the Co$_2$N$_2$ center.

The 1H NMR spectrum of complex 3 ranges from 25 to -5.5 ppm and shows relatively sharp signals that allow for integration and also some degree of (nuclear spin) multiplicity determination (see ESI†). All CH$_3$ groups of the ligand framework are inequivalent, signifying overall asymmetry in the binding motif of the PN3N skeleton. The 1H NMR chemical shifts for all signals are temperature dependent, showing uncomplicated Curie-like behavior indicative of a single contributing spin state in the temperature range of -60 °C to 80 °C (see ESI†). The effective magnetic moment of 3 in toluene at 20 °C of $\mu_{eff} = 2.75 \mu_B$ (Evans’ method), is consistent with an $S = 1$ ground state of the dinuclear complex.

A plausible reaction mechanism for the azide activation and N-insertion was investigated using DFT calculations. Both the doublet and the quartet spin states were considered using the BP86 DFT functional (Fig. 2).21 In accord with the experimental data, starting material 2 is clearly most stable in the $S = 1/2$ state.

Scheme 2 Synthetic scheme for complexes 2–4, starting from [CoCl(PNP)]$^+$.

![Scheme 2](image)

Fig. 1 Displacement ellipsoid plots (50% probability level) of one of the two crystallographically independent molecules of 3. Hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Co1–Co2 2.5679(8); Co1–N1 1.9653(5); Co1–N2 1.9823(5); Co1–N4 1.9273(3); Co2–N2 1.9383(5); Co2–N3 1.9763(5); Co2–N4 1.9893(5); Co1–P1 2.3148(11); Co2–P3 2.3313(11); P2–N2 1.5803(5); P4–N4 1.5823(3); Co1–N2–Co2 48.34(9); N2–Co1–N4 97.97(12).
Activation of the azide leading to N₂ release proceeds via transition state **TS1**, which is high in energy (30.0 kcal mol⁻¹) but much lower than the activation barrier calculated for the previously reported [Ni(N₃)(PNP)] species (46.2 kcal mol⁻¹) and in line with an accessible thermal activation pathway. Expulsion of N₂ results in nitrido structure **I-1**, which also is most stable in the doublet spin state. The spin density in **I-1** is distributed over the Co center (0.58) and the nitrido N atom (0.39) (Fig. 3), giving the latter significant nitridyl character. The Wiberg and Mayer bond orders for the cobalt–nitrido fragment were calculated to be 1.777 and 1.949, respectively (see ESI†).

Insertion of the nitrido N into the Co–P bond via transition state **TS2**, with a relatively low barrier of +6.9 kcal mol⁻¹ for \(S = 1/2 \), leads to species **I-2**. This T-shaped intermediate is equally stable in the doublet and quartet spin state, with at least one vacant coordination site to reach a square planar geometry. Dimerization of two species **I-2** to form **3** was calculated to be −38.0 kcal mol⁻¹. The transition state from **I-2** to **3** was not calculated, but it is likely a low-barrier process considering the coordinatively unsaturated nature of **I-2**.

Fig. 3 Spin density plot for **I-1** (\(S = 1/2 \)) (BP86-D3, def2-TZVP).

To the best of our knowledge, the potential of a metal-bound phosphiniminato to act as proton-responsive ligand has hardly been addressed to date.²² To assess if the sterically congested Co–(μ-N) bond can interact with acidic H–E fragments, 3 was reacted with an equimolar amount of HCl (2 M in Et₂O). This generates paramagnetic brown solid 4 in 56% yield after work-up (as well as some blue CoCl₂ precipitate), which is characterized by an IR absorption band at \(ν = 3375 \) cm⁻¹ (Fig. S8†) that is assigned to an \(P=\text{N–H} \) stretch.¹² X-ray diffraction studies of single red crystals confirmed the structure of 4 as mononuclear \([\text{CoCl(\text{PNP})}]\) (Fig. 4), with cobalt in a distorted tetrahedral geometry (\(ω\text{N1–Co1–C11} 132.53(10)°\); \(\text{N2–Co1–P1} 122.18(10)°\)). The preparative route to obtain the protonated iminophosphorane fragment and the metal geometry are different from the Ni analogue recently reported by us (involving C–H activation of benzene and a square planar Ni⁵).¹² The dimeric nature of 3 does not impede reactivity of the Co–(\(P=\text{N} \)) bond with HCl in a heterolytic manner. Complex 3 can be viewed as containing two masked mononuclear coordinatively unsaturated CoII species, with the anionic phosphiniminato moiety potentially available as internal base for metal–ligand bifunctional activation of polar substrates.²⁴

In summary, the activation of \([\text{Co(N₃)\text{(PNP)}}]\) (2) and subsequent reactivity of the proposed transient cobalt nitrido is subtly but significantly different than for the nickel congener. Both thermal and photolytical pathways are accessible with 2. Loss of N₂ results in insertion of the α-N₃ atom into a Co–P bond to create an anionic phosphiniminato fragment and dimeric structure 3, featuring a diamonoid Co₂N₂ core with bridging N-donors. No evidence for C–H activation of arene solvent is observed for Co. DFT calculations support the energetic accessibility of a cobalt nitrido intermediate (with substantial nitridyl character), with facile follow-up trapping by the ligand.
This research is funded by an ERC Starting Grant (EuReCat, Agreement 279097) to J. L. v. d. V. We thank Prof. Dr Joost N. H. Reek for interest in our work, Ed Zuiddinga for MS analysis, Christophe Rebreyend for assistance with EPR spectroscopy and Dr Linda S. Jongbloed for help with NMR spectroscopy using Evans’ method.

Notes and references

19 The difference between the expected (5.3%) and observed mass-loss likely relates to the sensitive nature of 2 and decreased accuracy at small quantities (<10 mg).

20 A Co$_3$N$_2$ diamonoid core structure with the central amido nitrogen of two PNP ligands acting as bridgeheads between both Co centers was previously reported. For a related structure with an aliphatic backbone, see: S. S. Rozenel, R. Padilla and J. Arnold, Inorg. Chem., 2013, 52, 11544–11550.

22 For the calculated structure 3, three spin states eventually converged: $S = 1$, $S = 2$ and $S = 3$. The energies of these structures are relatively similar ($\Delta_{\text{max}} = 3.4$ kcal mol$^{-1}$). These structures may therefore all contribute to 3 (see ESIF).
23 A. R. Corcos, A. K. Musch Long, I. A. Guzei and J. F. Berry,