Difluorocarbene transfer from a cobalt complex to an electron-deficient alkene

Goswami, M.; de Bruin, B.; Dzik, W.I.

DOI
10.1039/c7cc01418j

Publication date
2017

Document Version
Final published version

Published in
Chemical Communications

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
We report the synthesis of the trifluoromethyl cobalt(III)tetraphenylporphyrinato complex \([\text{Co(TPP)}\text{CF}_3]\), which loses fluoride upon one-electron reduction and transfers a difluorocarbene moiety to n-butyl acrylate to produce the corresponding gem-difluorocyclopropane. Catalytic \(\text{CF}_2\) transfer from \(\text{Me}_2\text{SiCF}_3\) to n-butyl acrylate becomes possible when directly using the divalent cobalt(II) porphyrin catalysts in the presence of \(\text{NaI}\).

Metal-carbene complexes are key intermediates in many organic reactions e.g. olefin metathesis or cyclopropanation reactions.\(^1\) Their rich chemistry is well understood and many recently developed catalytic transformations are based on the intriguing and diverse reactivity of these species. However, the chemistry of metallo-difluorocarbenes is thus far rather underdeveloped.\(^2\) Only a handful of well-defined metal difluorocarbene complexes are reported that can mediate stoichiometric formation of new carbon–carbon bonds. Recently, the group of Baker disclosed some electron rich cobalt(II)\(^3\) and nickel(0)\(^4\) difluorocarbene complexes containing a nucleophilic \(\text{M}−\text{CF}_2\) moiety. These species undergo cycloaddition reactions with tetrafluoroethylene \((\text{C}_2\text{F}_4)\) or difluorocarbene producing perfluorinated metallacyclobutanes\(^5\) and metallacyclopropanes,\(^6\) respectively. A related electrophilic cobalt(III) complex mediated the insertion of difluorocarbene into a cobalt-perfluoroalkyl bond.\(^5\) However, the stability of the thus formed perfluoroalkyl metal complexes prohibited further reactivity.

Recently, the first example of catalytic olefin cross-metathesis of tetrafluoroethylene or other gem-difluoroolefins with enol ethers was reported.\(^6\) Despite the highly inert character of the \(\text{Ru}−\text{CF}_2\) intermediate, turnover numbers of up to 13.4 could be reached. Palladium-difluorocarbene species were recently proposed as intermediates in palladium-catalysed difluoromethylation of arylboronic acids.\(^7,8\) Ichikawa and co-workers reported that the yields of difluorocyclopropanation of electron rich silyl dienol ethers with free difluorocarbene were slightly improved in the presence of a nickel complex with a CNC-type pincer ligand.\(^9\) The same group reported catalytic cycloaddition of copper-difluorocarbene to silyl dienol ethers to form difluorocyclopentenes.\(^10\) However, to our best knowledge, no examples of catalytic \(\text{CF}_2\) transfer to electron deficient alkenes have been reported, likely due to the electrophilic nature of the difluorocarbene moiety.

Traditional routes to gem-difluorocyclopropanes involve reacting the \textit{in situ} generated free \(\text{CF}_2\) carbene with an electron rich olefin.\(^11,12\) The scope of difluorocyclopropanation of electron deficient alkenes like acrylates is very limited, and rather harsh reaction conditions are required.\(^13\)

We envisioned that by employing a transition metal centre that can render the difluorocarbene moiety more nucleophilic, the transfer of \(\text{CF}_2\) to an electron deficient olefin would be facilitated (Scheme 1). Reaching this goal could enable catalytic gem-difluorocyclopropanation of electron deficient double bonds. Cobalt(II) porphyrin complexes are efficient catalysts for cyclopropanation of electron deficient alkenes using (stabilized) diazo esters as carbene precursors.\(^14\) This contrasts with the Fischer-type reactivity of the majority of cyclopropanation catalysts, which have a general preference for electron rich alkenes. The observed ‘umpolung’ of the reactivity of the cobalt-carbenoid species as compared to other metallo-carbenes is caused by the transfer a discrete unpaired electron to the coordinated (Fischer-type) carbene ligand. This renders the carbene moiety more nucleophilic and weakens the metal–carbon bond. We hypothesized

![Scheme 1](image_url)

Scheme 1 Envisioned metal mediated difluorocarbene transfer to an electron deficient olefin.
that this feature might also promote the formation of difluorocyclopropanes from related cobalt difluorocarbonoid intermediates. In this perspective the use of trimethyl(trifluoromethyl)silane (Me3SiCF3) as the difluorocarbene source is attractive, as it can operate at mild temperatures.

To evaluate the feasibility of difluorocarbene transfer from cobalt to an olefin we first decided to investigate whether a difluorocarbene cobalt(II) complex can be formed by one-electron reduction of the novel trifluoromethyl cobalt(III) complex [CoIII(TPP)(CF3)] (TPP = meso-tetraphenyl-porphyrinato). Formation of a cobalt difluorocarbene complex by reduction and subsequent dissociation of fluoride from a cobalt trifluoromethyl complex has been reported by Baker and co-workers.30 Thus, we anticipated that the release of F− from the anionic [CoII(TPP)(CF3)]− complex could lead to formation of a [Co(TPP)(CF3)] species, potentially capable of CF2 transfer to acrylates under mild reaction conditions.

The trifluoromethyl cobalt(III) porphyrin complex [CoIII(TPP)(CF3)] required for these studies was obtained in 80% yield (see ESI for characterisation) by reacting [CoII(TPP)(CF3)] with Me3SiCF3 and CsF as an initiator (Scheme 2).

To evaluate the potential of [CoIII(TPP)(CF3)] to form a difluorocarbene complex we investigated its electrochemistry under reductive conditions. The cyclic voltammogram (CV) of complex [CoIII(TPP)(CF3)] in THF reveals a reversible reduction wave at −1.71 V, followed by an irreversible one with the peak wave at −2.13 V. vs. Fe/Fe+ (See ESI,† Fig. S7). The first wave can be attributed to the one-electron reduction of [CoIII(TPP)(CF3)] to form the anionic complex [CoII(TPP)(CF3)]−. The subsequent irreversible reduction leads to clean formation of [Co(TPP)]− as evidenced by an independent measurement of an original [Co(TPP)] sample (See ESI,† Fig. S8). These results show that one-electron reduction of [CoIII(TPP)(CF3)] leads to formation of the anionic complex [CoII(TPP)(CF3)]−, which is stable on the CV timescale (scan rate 100 mV s−1). The second reduction step leads to rapid (net) loss of the CF3 anion from the cobalt centre.

Knowing that [CoII(TPP)(CF3)]− can be selectively accessed using reductants with a reduction potential in the −1.8–2.0 V range (vs. Fe/Fe+), we next investigated its propensity to generate a metallo-difluorocarbene species on an extended timescale and at elevated temperatures. Interestingly, the intended reduction of [CoIII(TPP)(CF3)] with one equivalent of decamethylcobaltocene (CoCp*2) E0 = −1.91 V vs. Fe/Fe+ in the presence of n-butyl acrylate at 65 °C indeed led to the formation of the desired gem-difluorocyclopropanated acrylate in 12% yield as determined by 19F NMR (Scheme 3). Additionally, C2F4 was formed as a side product. In the absence of CoCp*2 no reaction took place.

![Scheme 2 Synthesis of [Co(TPP)(CF3)]](image)

The formation of the desired difluorocyclopropane suggests that upon reduction of [CoIII(TPP)(CF3)] a cobalt-difluorocarbene complex is formed, which is apparently nucleophilic enough to facilitate CF2 transfer to the electrophilic C–C bond of the acrylate. The [CoII(TPP)(CF3)] intermediate could not be observed with EPR spectroscopy though (see ESI for details).

The feasibility of the stoichiometric reaction shown in Scheme 3 triggered us to evaluate whether catalytic CF2 transfer from Me3SiCF3 to n-butyl acrylate is possible when directly using a divalent cobalt(II) porphyrin catalyst in the presence of NaI as the activator. Indeed, with 5 mol% of [CoII(TPP)] in THF catalytic formation (TON = 2.4) of the desired gem-difluorocyclopropanated acrylate was observed (Table 1, entry 1), albeit in low yield (12%). Besides the desired cyclopropane, the only other 19F-NMR detected fluorine containing side product was C2F4, presumably formed by free carbene dimerization. The TMSCF3/NaI combination can transfer CF2 to electron rich alkenes12 and metals.3C Control experiments show that in the absence of cobalt (Table 1, entry 2) no gem-difluorocyclopropanate product was formed, which makes it unlikely that the cyclopropanation proceeds via free CF2 or the free CF3− anion.

The low turnover numbers obtained using [Co(TPP)] as the catalyst suggests that the catalyst quickly deactivates under the applied reaction conditions. Hence, in an attempt to increase the TONs we explored a few additional catalysts (Table 1). The complexes [CoII(acac)2] and [CoII(salophen)] proved inactive (entries 3–4), but the perfluorinated porphyrin complex [CoTPPF20] (TPPF20 = meso-tetra(pentafluorophenyl)-porphyrinato) indeed proved to be a somewhat more robust catalyst (entry 5) than [Co(TPP)], producing the desired gem-difluorocyclopropanated

![Scheme 3 Reaction of [Co(TPP)(CF3)] with n-butyl acrylate upon one-electron reduction.](image)

The feasibility of the stoichiometric reaction shown in Scheme 3 triggered us to evaluate whether catalytic CF2 transfer from Me3SiCF3 to n-butyl acrylate is possible when directly using a divalent cobalt(II) porphyrin catalyst in the presence of NaI as the activator. Indeed, with 5 mol% of [CoII(TPP)] in THF catalytic formation (TON = 2.4) of the desired gem-difluorocyclopropanated acrylate was observed (Table 1, entry 1), albeit in low yield (12%). Besides the desired cyclopropane, the only other 19F-NMR detected fluorine containing side product was C2F4, presumably formed by free carbene dimerization. The TMSCF3/NaI combination can transfer CF2 to electron rich alkenes12 and metals.3C Control experiments show that in the absence of cobalt (Table 1, entry 2) no gem-difluorocyclopropanate product was formed, which makes it unlikely that the cyclopropanation proceeds via free CF2 or the free CF3− anion.

The low turnover numbers obtained using [Co(TPP)] as the catalyst suggests that the catalyst quickly deactivates under the applied reaction conditions. Hence, in an attempt to increase the TONs we explored a few additional catalysts (Table 1). The complexes [CoII(acac)2] and [CoII(salophen)] proved inactive (entries 3–4), but the perfluorinated porphyrin complex [CoTPPF20] (TPPF20 = meso-tetra(pentafluorophenyl)-porphyrinato) indeed proved to be a somewhat more robust catalyst (entry 5) than [Co(TPP)], producing the desired gem-difluorocyclopropanated

![Table 1 Catalyst screening for CF2 transfer from Me3SiCF3 to n-butyl acrylate (for further screening, see Table S1 in the ESI).](table)

<table>
<thead>
<tr>
<th>#</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>T (°C)</th>
<th>Yield* (%)</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[CoII(TPP)]</td>
<td>THF</td>
<td>50</td>
<td>12</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>THF</td>
<td>50</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>[CoII(acac)2]</td>
<td>THF</td>
<td>50</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>[CoII(salophen)]</td>
<td>THF</td>
<td>50</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>[CoII(TPPF20)]</td>
<td>THF</td>
<td>50</td>
<td>24</td>
<td>4.8</td>
</tr>
<tr>
<td>6</td>
<td>[CoII(TPPF20)]</td>
<td>THF</td>
<td>50</td>
<td>40</td>
<td>8</td>
</tr>
</tbody>
</table>

Reaction conditions: 0.3 mmol of n-butyl acrylate; 2 mL of solvent; 5 mol% catalyst and 4 equiv. of TMSCF3; 18 h.1 With respect to n-butyl acrylate using 19F NMR spectroscopy and fluorobenzene as an internal standard. * Turnover numbers. † A second batch of 4 equiv. of Me3SiCF3 was added after 4 hours.
acrylate in 24% yield (TON = 4.8). Changing the initiator, solvent and the amount of Me₃SiCF₃ did not improve the yield of the difluorinated cyclopropane (see ESI, Table S1). However, when an additional batch of 4 equivalents of Me₃SiCF₃ was added after 4 hours (Table 1, entry 6), the yield increased to 40% (TON = 8). Any further addition of Me₃SiCF₃ did not lead to an increased yield.

The reactions reported in Table 1 serve as a proof-of-principle, clearly showing the feasibility of cobalt-catalysed CF₂ transfer from Me₃SiCF₃ to electron-deficient alkenes. However, the currently applied catalysts do not seem to be robust enough to obtain the cyclopropane product in high yields exceeding 40%. Hence, additional catalyst screening is clearly a subject of follow-up research.

Due to the redox non-innocent behaviour of carbenes, the electronic structure of oxidation state +II group 9 transition metal carbene complexes is best described as metal(ni) ‘carbene radical’ species in which the unpaired electron resides mainly in the p-orbital of the carbene moiety (the SOMO being the metal d – carbene p antibonding π* molecular orbital, which is strongly polarized to carbon). This phenomenon has been reported for various transition metal carbene complexes, and can lead to unique reactivity of the carbene moiety. As similar behaviour has been reported for group 9 nitrine complexes. However, as pointed out by Woodcock and co-workers, cobalt porphyrinato difluorocarbene complexes actually might not behave as so-called ‘carbene radicals’. According to their NBO analysis (DFT, M06-L functional) the spin density is mainly located on the metal (71%) rather than on the carbon atom (28%) and thus [Co(por)(CF₂)] should have a substantial Fischer-type carbene character. Hence, unlike all other reported carbene adducts of cobalt(ni) porphyrins, the CF₂ adduct might not behave as a genuine ‘carbene radical’. Thus, we wondered if the CF₂ carbene adduct reacts with alkenes via a stepwise (typical for ‘carbene radicals’) or a concerted (typical for Fischer carbenes) mechanism. Therefore we performed additional DFT calculations to shed light on the mechanistic details concerning the observed CF₂ transfer reactions from the [Co(por)(CF₂)] complex to the electron deficient acrylate.

In agreement with the results reported by Woodcock, the DFT (BP86, def2-TZVP) calculated NBO spin populations of [Co(por)(CF₂)], which is a simplified model of the experimental porphyrin complexes without meso-substituents, are 65% for cobalt and only 23% for the carbene carbon atom (Scheme 4).

However, despite the dominant metalloradical character of the [Co(por)(CF₂)] species, the computed carbene transfer to methylacrylate does proceed via a stepwise radical process, just like other cobalt(ni) porphyrin catalysed carbene and nitrene transfer reactions. All attempts to find the transition state for a concerted addition of acrylate failed and converged to the stepwise pathway. Addition of the difluorocarbene species A to the olefin proceeds via a relatively low energy transition state (TS₁, ΔG° = 14.4 kcal mol⁻¹), generating the [Co(por)(CF₂–CH₂–CH–CH=COOMe)] species B, which has its unpaired electron primarily localized at the γ-carbon of the ‘alkyl’ moiety. Hence, despite its significant Fischer-type character in the ground state, the reactivity of [Co(por)(CF₂)] follows the characteristics of a ‘carbene radical’ species. The transition state TS₂ for ring closure leading to formation of the cyclopropane product involves simultaneous C–C bond formation and homolytic cleavage of the Co–C bond. The barrier for this process is higher (ΔG° = 20.7 kcal mol⁻¹) and seems to be the rate limiting step of the overall reaction (Fig. 1).

We also investigated an alternative pathway in which the difluorocarbene generated on the cobalt centre dissociates to react with the acrylate outside the metal coordination sphere. The release of free difluorocarbene from cobalt is energetically uphill (ΔG° = 16.3 kcal mol⁻¹) and the reverse reaction is barrierless (see ESI, Fig. S9). This energy is comparable to the energy barrier for coupling of the cobaltocarbene with methyl acrylate. Formation of free CF₂ in this manner, as well as the coupling of two [Co(por)(CF₂)] species, could be responsible for the observed formation of CF₃ as a side product in the reaction. However, free CF₂ carbene formation is unlikely associated with formation of the cyclopropane product, as the addition of free difluorocarbene to methyl acrylate has a much higher barrier (ΔG° = 28.0 kcal mol⁻¹) than those associated with the metal-mediated pathway (TS₁ and TS₂ in Fig. 1). Lewis-acid activation of the acrylate also seems unlikely, as in a separate control experiment with [Zn(±)] only traces (<1%) of the gem-difluorocyclopropane product was formed (see ESI, Table S1).

Based on the above considerations we propose a mechanism in which the CF₂⁻ anion (generated by the reaction of Me₃SiCF₃

![Scheme 4](image-url)
Scheme 4 Spin density plot and resonance structures of [Co(por)(CF₂)].

![Fig. 1](image-url)
Fig. 1 DFT calculated pathway for difluorocyclopropanation of methyl acrylate by a cobalt(ni) porphyrinato complex.
and NaI) coordinates to [Co(TPP)] to form the anionic complex [Co(TPP)(CF3)]⁻, which produces the neutral carbene adduct [Co(TPP)(CF2)] upon loss of a fluoride anion (Scheme 5). The cobalt difluorocarbene complex subsequently undergoes a stepwise radical-type addition to the acrylate double bond, forming an alkylcobalt(III) intermediate with the unpaired electron residing at the γ-carbon atom of the alkyl chain. Subsequent (and likely rate limiting) ring closure with concerted Co–C bond cleavage furnishes the difluorocyclopropane and regenerates the [Co(TPP)] catalyst.

In conclusion, cobalt(n)-porphyrinato complexes catalyse difluorocarbene transfer from the trifluoromethyl anion to n-buty acrylate forming a gem-difluorocyclopropane. The reactions reported here serve as a proof-of-principle, clearly showing the feasibility of cobalt-catalysed CF2 transfer from Me3SiCF2 to electron-deficient alkenes. The data further show that the current cobalt(n)-porphyrin catalysts quickly deactivate under the applied reaction conditions (maximum TON = 8), thus suggesting that future investigations aimed at the development of efficient protocols for catalytic CF2 transfer reactions using Me3SiCF2 as the carbene source should focus on using catalysts that are more stable in the presence of the reactive, free CF2 and CF3⁻ intermediates generated under the applied reaction conditions.

We thank Netherlands Organization for Scientific Research (NWO-CW VICI project 016.122.613 (MG and BdB) and VENI grant 722.013.002 (WID)) for funding.

References