
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On understanding, modeling and predicting user behavior in web search

Borisov, A.

Link to publication

Citation for published version (APA):
Borisov, A. (2018). On understanding, modeling and predicting user behavior in web search

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 20 Jan 2019

http://dare.uva.nl/personal/pure/en/publications/on-understanding-modeling-and-predicting-user-behavior-in-web-search(64a190eb-b567-41a6-918c-bbd26b82cbd4).html


O
n U

nderstanding, M
odeling and P

redicting U
ser B

ehavior in W
eb S

earch
A

lexey 
B

orisov Alexey Borisov

search

On Understanding, Modeling and Predicting 
User Behavior in Web Search

Web search engines provide quick and easy access to information
available online . In the early days of the Internet, web links were
the most valuable source of information for predicting result
usefulness . Nowadays, the whole web search stack relies on user
behavioral data, starting from crawling policies to optimizing
presentation of the results . However, accurately interpreting user
interaction behavior is not straightforward due to various types of
bias. For example, users tend to click more on results ranked on top
positions (position bias) and visually salient results (attention
bias) . In this thesis, we study existing tools for modeling and
predicting user interactions with a search engine, improve them
and develop new ways of gaining insights about user behavior .
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1
Introduction

Understanding people’s continuously changing needs is one of the most challenging
tasks in life [72]. Those who master this art are Titans, and they have the power to
change the world. It does not matter whether you are an artist, a poet or a politician�the
key to success lies in understanding the people around you. And those who fail to
understand the needs of others, suffer from it every day. The current generation of
arti�cial intelligence (AI) systems is still in its infancy in terms of understanding their
users. Virtual assistants are able to handle a limited set of queries well, but they are not
able to sustain long and meaningful conversations. Moreover, they are incredibly bad at
predicting whether a particular recommendation (suggested at a given moment) will be
appreciated by a user or will get the user frustrated. When virtual assistants are not able
to interpret a user’s utterance, they perform a web search and redirect the user to the
search engine result page (SERP).

Web search engines provide quick and easy access to information available online.
In the early days of the Internet, web links were the most valuable source of information
for predicting result usefulness [127]. Nowadays, the whole web search stack relies on
user behavioral data, starting from crawling policies to optimizing presentation of the
results [1, 25, 69, 79�81, 93, 94, 101, 116, 126, 128, 161]. Furthermore, when a team
of engineers proposes an improvement to web search algorithms, this improvement is
tested using a so-called A/B experiment [69, 93, 94]. The users of the search engine
are divided in two groups, A and B. The users in the �rst group (A) continue using the
current version of the web search engine, while the users in the second group (B) start
using the new version. After a certain period of time (typically a week), experts analyze
the differences in user behavior in groups A and B, and based on this analysis make the
�nal decision about whether the proposed improvement should be launched or not.

Since user logs are used both to improve and evaluate the quality of a web search
engine, it is important to correctly interpret users’ interactions with the system. A
click on a search engine result indicates that a user is attracted by the result’s snippet.
And therefore the result is considered to be helpful to the user [27, 36, 46, 59, 60, 80,
104, 178]. However, if the user bounces back to the SERP and clicks on another result
within a very short period of time (1 or 2 seconds), then the �rst click is likely to be
unsuccessful [143].

In sponsored search, click-through rate (CTR) is one of the most important charac-
teristics of advertisement quality [53, 64, 115, 135]. It is computed as the number of
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1. Introduction

times an advertisement was clicked divided by the number of times the advertisement
was served. In web search, however, comparing CTRs of different results (presented
for the same query) is not straightforward due to various types of bias [30, 58, 81, 179].
For example, there is a position bias: users tend to click on the results presented on the
top positions more often than on the results presented at lower positions [58, 81]. Other
types of bias include attention bias towards visually salient results [30], novelty bias
towards previously unseen results [179], etc. To account for these and other types of
bias, click models have been proposed [34].

Click models are tools that allow us to extract unbiased user preferences from click
logs [34]. Most existing click models make an examination hypothesis [36] that a
user clicks on a result if, and only if, they examined the result’s snippet and they are
attracted by it. Under this assumption, click probability P (C = 1) decomposes into the
product of the probabilities P (E = 1) that a user will examine the result’s snippet and
P (A = 1) that a user will be attracted by it:

P (C = 1) = P (E = 1)P (A = 1): (1.1)

Different click models use different strategies to model the examination probabil-
ity P (E = 1), while the result’s attractiveness P (A = 1) is usually modeled as a
parameter �q;r associated with the query-result pair, which does not depend on the
position of the result. Parameters of click models are trained by maximizing the likeli-
hood of the observed clicks. The examination component can be used to understand
how a user’s attention spreads over a SERP and how it changes during search. The
inferred attractiveness parameters �q;r are unbiased, which means that they can be used
to compare results (w.r.t. the same query), without the need to account for position and
other types of bias in the click logs [34].

In this thesis, we study existing tools for modeling and predicting user interactions with
a search engine, improve them and develop new ways of gaining insights about user
behavior. Our �ndings can potentially be generalized to other online applications, such
as social networks and online advertising.

1.1 Research Outline and Questions
The main goal of this thesis is to create tools for understanding, modeling and predicting
user interactions with a search engine. We begin with the observation that existing
studies of click models assume that user click behavior does not change over time.
This static assumption rarely holds in practice [133]. If the content of a search system
changes (e.g., documents are added, altered or removed), user click behavior changes as
well (users start clicking on new documents and stop clicking on the removed ones) [99].
Also, changes in a search algorithm (e.g., if documents are ranked differently) cause
changes in user click behavior [69, 93]. Finally, document relevance is known to change
over time, which in turn affects which search results users click on [43]. We study click
models in an online scenario, where a search engine deals with a stream of click/skip
observations. Speci�cally, we aim to �nd an answer to the following research question.

RQ 1 How to keep click models up to date with changes in search engine algorithms
and user preferences?
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1.1. Research Outline and Questions

We notice that most work dealing with click models lacks information about the
choice of click model’s hyperparameters. We anticipate that click models trained with
suboptimal hyperparameters are likely to be badly calibrated. For example, a CTR
model that predicts clicks with probability #clicks+�

#observations+� will be poorly calibrated if it is
trained with wrongly chosen hyperparameters �, � and applied to examples with small
numbers of observations. We investigate calibration properties of existing click models
and ways to improve them. Speci�cally, we ask the following research question.

RQ 2 Does calibration help to improve click model performance and make it less
dependent on the choice of hyperparameters?

Most click models are based on the probabilistic graphical model (PGM) framework,
in which user behavior is represented as a sequence of observable and hidden events [34].
The PGM framework provides a mathematically solid way to reason about a set of
events given some information about other events. But the structure of the dependencies
between the events has to be set manually. Different click models use different hand-
crafted sets of dependencies (represented by PGMs), while all of them are, by necessity,
simpli�cations and likely to miss key aspects of user behavior. Neural networks, on the
other hand, can discover the underlying patterns in the data by themselves. We introduce
the idea of modeling user behavior as a sequence of distributed vector representations.
And we seek to answer the following research question.

RQ 3 How to design a neural network that would be able to learn patterns in user click
behavior directly from logged interaction data?

Click models focus on predicting an unordered set of clicks on SERP. Here, we
make the �rst attempt to predict the order in which users will interact with search engine
results. This new task is important, because it provides an opportunity for improving
the user search experience. For example, knowing that there are high chances that a
user will interact with the results in an order other than the one in which the results are
presented on a SERP can be used by a search engine to proactively show an advice or
make a change in the ranking. We formally de�ne the task of predicting click sequences
and design a neural network-based model to solve it. We aim to answer the following
research question.

RQ 4 What are the challenges in predicting sequences of clicks and how to solve them?

Besides clicks, there are a lot of other behavioral signals that need to be understood
and correctly interpreted. Here, we focus on times between user actions, which have
been shown to provide a means to measure user satisfaction at the result level [48, 89],
session level [48, 61] and system level [29, 141]. To interpret times elapsed between
user actions, existing work uses mean values of the observed times [1�3, 26, 29, 61�
63, 107, 108, 125, 141], or �ts probability distributions to the observed times [89, 106].
This implies a context-independence assumption that the time elapsed between a pair of
user actions does not depend on the context in which the �rst action takes place. We
investigate whether this assumption really holds in practice and suggest a model that
does not make this assumption. We ask the following research question.

RQ 5 How to correctly interpret times between user actions observed in different
contexts?

3



1. Introduction

Finally, we turn our attention towards content-based models or, as they are often
referred to, latent semantic models. Existing content-based models can be categorized
into two groups: unsupervised models (e.g., LSI [37], RLSI [160], PLSI [70], LDA [13,
162]) and supervised models using clicks or other user behavior signals for training
(e.g., SSI [6], RMLS [167], BLTM [52], DSSM [75], CLSM [145]). Today, the use of
latent semantic models by search engines is restricted to simply passing their outputs
as features to a so-called global ranker, along with outputs of other models used for
ranking. We argue that this is not optimal, because a single value output by a latent
semantic model may be insuf�cient to describe all aspects of the latent semantic model’s
prediction. Speci�cally, we ask the following research question.

RQ 6 How to extract potentially useful information from a trained latent semantic
model and how to utilize this information for improving ranking of search
results?

1.2 Main Contributions

In this section, we summarize the main theoretical, algorithmic and empirical contribu-
tions of this thesis.

1.2.1 Theoretical contributions

1. We formulate the problem of keeping click models up to date with changes in
user click behavior. We identify two main challenges: (i) how to ef�ciently
incorporate newly observed information into a trained click model, and (ii) how
to remove outdated information from a trained click model. We also propose an
experimental protocol for evaluting click models in an online scenario, where a
search engine deals with a stream of click/skip observations. Cf. Chapter 2.

2. We introduce the notion of calibration in the context of click modeling. And we
advocate for making calibration a mandatory part of the click model evaluation
protocol. Cf. Chapter 3.

3. We put forward the idea of using distributed representations to model user brows-
ing behavior in web search. In contrast to existing click models, which represent
user browsing behavior as a sequence of prede�ned binary events, the proposed
representation is much richer, and thereby enables us to capture more complex
patterns of user browsing behavior than existing click models. Cf. Chapter 4.

4. We formally de�ne the problem of click sequence prediction and introduce the
notion of probably correct click sequences. We also present a set of new prediction
tasks to evaluate the quality of click sequence prediction. Cf. Chapter 5.

5. We introduce the notion of context bias in times elapsed between user actions,
which has not previously been reported in the literature. And we describe four
temporal prediction tasks to understand its implications. Cf. Chapter 6.
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6. We argue that considering a single score of a latent semantic model (LSM) is not
enough to determine its effectiveness in search, and that all potentially useful
information captured by the model should be considered. We introduce the
concept of metafeatures, i.e., feature vectors that describe the structure of the
model’s prediction, and present guidelines for creating them. Cf. Chapter 7.

1.2.2 Algorithmic contributions
7. We adapt online expectation-maximization (EM) techniques to ef�ciently incor-

porate new click/skip observations into a trained click model. We refer to the
proposed algorithm as Online EM. Cf. Chapter 2.

8. To deal with outdated click information, we propose a modi�cation to Online EM
that discounts past observations depending on their age. We refer to the proposed
algorithm as EM with Forgetting. Cf. Chapter 2.

9. We explain how to use isotonic regression to improve the prediction performance
of existing click models. Cf. Chapter 3.

10. We introduce a neural click model (NCM) that uses a recurrent neural network
(RNN) to explain user click behavior on a SERP. The proposed model allows
us to directly understand user browsing behavior from click-through data, i.e.,
without the need for a pre-de�ned set of rules as is customary for PGM-based
click models. Cf. Chapter 4.

11. We present a click sequence model (CSM) that predicts a probability distribution
over click sequences. At the core of our model is a neural network with encoder-
decoder architecture. We implement both the encoder and the decoder using
RNNs. Cf. Chapter 5.

12. We propose a context-aware time model (CATM) that uses contextual information
(and, in particular, previous user interactions with a search engine) for predicting
and interpreting times between user actions. Cf. Chapter 6.

13. We instantiate the proposed guidelines for creating metafeatures using four latent
semantic models. Cf. Chapter 7.

1.2.3 Empirical contributions
14. We show empirically that click models deteriorate over time if retraining is

avoided. Cf. Chapter 2.

15. We evaluate the proposed online EM and EM with Forgetting using a publicly
available click log of a major search engine. Our experimental results show that
Online EM is orders of magnitude more ef�cient than retraining the model from
scratch using standard EM, while losing little in quality. EM with Forgetting
surpasses the performance of complete retraining while being as ef�cient as
Online EM. Cf. Chapter 2.
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16. We evaluate the proposed calibration method using a publicly available click
log of a major search engine. Our experimental results show that (i) isotonic
regression signi�cantly improves click models trained with suboptimal hyperpa-
rameters; and that (ii) calibrated click models are less sensitive to the choice of
hyperparameters than their original (non-calibrated) versions. Cf. Chapter 3.

17. We show empirically that the relative ranking of click models differs, depending
on whether we use calibration or not. Cf. Chapter 3.

18. We compare the proposed neural click model (NCM) against traditional click
models based on PGMs using a publicly available click log of a major search
engine. Our experimental results show that NCM has better performance on the
click prediction task (i.e., predicting user clicks on search engine results) and the
relevance prediction task (i.e., ranking documents by their relevance to a query).
Cf. Chapter 4.

19. We perform an analysis of the concepts learned by NCM, which shows that
NCM learns similar concepts to those encoded in traditional PGM-based click
models, and that it also learns other concepts that cannot be designed manually.
Cf. Chapter 4.

20. We evaluate the proposed click sequence model (CSM) on a range of predic-
tion tasks, namely predicting click sequences, predicting the number of clicks,
predicting ordered/unordered sequences of clicks and, �nally, predicting clicks
themselves. Our experimental results show that CSM achieves state-of-the-art
results on the unordered click prediction task used to evaluate click models and
shows reasonable performance on the other tasks. Cf. Chapter 5.

21. We con�rm empirically that there is a tangible context bias effect, which results
in statistically signi�cant differences in time-between-actions probability dis-
tributions for different contexts (in our case, for different sets of previous user
interactions). Cf. Chapter 6.

22. We show that the proposed context-aware time model (CATM) provides a better
means than existing methods to predict and interpret times between user actions.
In particular, our experimental results show that CATM has better performance
on the time prediction tasks (i.e., predicting time between user actions) and the
relevance prediction task (i.e., ranking documents by their relevance to a query).
Moreover, CATM allows us (i) to predict times between user actions in contexts,
in which these actions were not observed, and (ii) to compute context-independent
estimates of the times by predicting them in prede�ned contexts. Cf. Chapter 6.

23. We test the effectiveness of metafeatures by passing them to the global ranker
along with the models’ scores. Our experimental results show that through the
use of metafeatures the performance of a combination of latent semantic models
on the document ranking task can be improved as well as the performance of each
individual latent semantic model by itself. Cf. Chapter 7.
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1.3. Thesis Overview

1.3 Thesis Overview

We outline the research described in this thesis in Chapter 1. In Chapters 2 and 3, we
discuss work that uses PGMs to explain user click behavior on a SERP. In Chapters 4,
5 and 6, we present work that uses neural networks (NNs) to interpret user behavior
in web search. In Chapter 7, we describe work that uses gradient boosted regression
trees (GBRT) to combine predictions of PGM- and NN-based latent semantic models.
We draw conclusions and describe directions for future work in Chapter 8.

We recommend to read the research chapters in the order they are presented in the
thesis. Figure 1.1 shows the dependencies between the research chapters. Chapters 2

Chapter 2 Chapter 3 Chapter 4

Chapter 5 Chapter 6

Chapter 7

Figure 1.1: Dependencies between the research chapters.

and 3 can be read independently of each other. Chapters 5 and 6 should be read after
Chapter 4.

1.4 Origins

In this section, we list publications that form the basis of this thesis. Each research
chapter is based on a conference paper. We provide references to these publications and
explain the roles of the co-authors.

Chapter 2 is based on I. Markov, A. Borisov, and M. de Rijke. Online expectation-
maximization for click models. In CIKM, pages 2195�2198. ACM, 2017. Markov and
Borisov wrote code and ran experiments. All authors contributed to the text.

Chapter 3 is based on A. Borisov, J. Kiseleva, I. Markov, and M. de Rijke. Cali-
bration: A simple way to improve click models. In CIKM. ACM, 2018. Borisov and
Kiseleva wrote code and ran experiments. All authors contributed to the text, Borisov
did most of the writing.

Chapter 4 is based on A. Borisov, I. Markov, M. de Rijke, and P. Serdyukov. A
neural click model for web search. In WWW, pages 531�541. International World Wide
Web Conferences Steering Committee, 2016. Borisov wrote code and ran experiments.
All authors contributed to the text, Borisov did most of the writing.

Chapter 5 is based on A. Borisov, M. Wardenaar, I. Markov, and M. de Rijke.
A click sequence model for web search. In SIGIR, pages 45�54. ACM, 2018. The
main research question was formulated by Borisov and Markov. Borisov suggested the
model architecture. Wardenaar wrote code and ran preliminary experiments. The main
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experiments were run by Borisov. All authors contributed to the text, Borisov did most
of the writing.

Chapter 6 is based on A. Borisov, I. Markov, M. de Rijke, and P. Serdyukov. A
context-aware time model for web search. In SIGIR, pages 205�214. ACM, 2016.
Borisov wrote code and ran experiments. All authors contributed to the text, Borisov
did most of the writing.

Chapter 7 is based on A. Borisov, P. Serdyukov, and M. de Rijke. Using metafea-
tures to increase the effectiveness of latent semantic models in web search. In WWW,
pages 1081�1091. International World Wide Web Conferences Steering Committee,
2016. Borisov wrote code and ran experiments. All authors contributed to the text,
Borisov did most of the writing.

We also mention ten publications that contributed to the thesis indirectly.

� A. Borisov, J. Dlougach, and I. Galinskaya. Yandex school of data analysis
machine translation systems for WMT13. In WMT, pages 99�103, 2013

� A. Borisov and I. Galinskaya. Yandex school of data analysis Russian-English
machine translation system for WMT14. In WMT, pages 66�70, 2014

� M. Burtsev, A. Chuklin, J. Kiseleva, and A. Borisov. Search-oriented conversa-
tional AI (SCAI). In ICTIR, pages 333�334. ACM, 2017

� T. Kenter, A. Borisov, and M. de Rijke. Siamese CBOW: optimizing word
embeddings for sentence representations. In ACL, pages 941�951, 2016

� T. Kenter, A. Borisov, C. Van Gysel, M. Dehghani, M. de Rijke, and B. Mitra.
Neural networks for information retrieval. In SIGIR, pages 1403�1406. ACM,
2017

� T. Kenter, A. Borisov, C. Van Gysel, M. Dehghani, M. de Rijke, and B. Mitra.
Neural networks for information retrieval. In WSDM, pages 779�780. ACM, 2018

� T. Kenter, A. Borisov, C. Van Gysel, M. Dehghani, M. de Rijke, and B. Mitra.
Neural networks for information retrieval. In ECIR, page 837. Springer, 2018

� A. Voronov, A. Borisov, and D. Vatolin. System for automatic detection of
distorted scenes in stereo video. In VPQM, 2012

� A. Voronov, D. Vatolin, D. Sumin, V. Napadovsky, and A. Borisov. Towards
automatic stereo-video quality assessment and detection of color and sharpness
mismatch. In IC3D. IEEE, 2012

� A. Voronov, D. Vatolin, D. Sumin, V. Napadovsky, and A. Borisov. Methodology
of stereoscopic motion picture quality assessment. In SPIE. International Society
for Optics and Photonics, 2013
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2
Online Expectation-Maximization

Click models allow us to interpret user click behavior in search interactions and to
remove various types of bias from user clicks. Existing studies of click models consider
a static scenario where user click behavior does not change over time. In this case,
click models are trained once using historical click data and are then used in various
applications. In practice, however, user click behavior changes along with changes in
searchable content, search algorithms, etc. For this reason, click models have to be
constantly updated to correctly interpret changing user behavior. In this chapter, we
answer the following research question asked in §1.1:

RQ 1 How to keep click models up to date with changes in search engine algorithms
and user preferences?

We show empirically that click models deteriorate over time if retraining is avoided. We
then adapt online expectation-maximization (EM) techniques to ef�ciently incorporate
new click/skip observations into a trained click model. Our instantiation of Online
EM for click models is orders of magnitude more ef�cient than retraining the model
from scratch using standard EM, while losing little in quality. To deal with outdated
click information, we propose a variant of online EM called EM with Forgetting, which
surpasses the performance of complete retraining while being as ef�cient as Online EM.

2.1 Introduction
Click models have been developed to interpret user click behavior in search and to con-
vert biased clicks on search results into unbiased estimates of the results’ relevance [34].
Click models are used in various information retrieval tasks, such as ranking [27, 45],
evaluation [32, 113] and user simulation [111, 169].

Existing studies of click models assume that user click behavior does not change
over time. In this static scenario, click models are trained using a historical click log
and evaluated on a limited test set of �future� clicks. This static assumption rarely holds
in practice [133]. User click behavior changes over time and it is, therefore, important
to keep click models up to date. This problem has been identi�ed previously [104, 105],
but has not yet been studied extensively. We recognize two challenges in keeping click

This chapter is based on Markov, Borisov, and de Rijke [114].
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models up to date. First, how to ef�ciently incorporate newly observed information
into a trained click model? Second, how to remove outdated information from a trained
click model?

We consider the most widely used and effective inference technique for click models,
i.e., expectation-maximization (EM), and study it in an online scenario. We propose two
methods to adapt EM to online settings: Online EM, which ef�ciently incorporates new
click information into click models, and EM with Forgetting, which deals with outdated
clicks. We show experimentally that Online EM is orders of magnitude more ef�cient
than complete retraining, while losing little in the quality of updated click models; EM
with Forgetting can surpass the effectiveness of complete retraining.

2.2 Background and Related Work

Most click models operate with binary random variables and corresponding probabilities,
e.g., how attractive a document is given a query, what the probability of examining
a certain position on a SERP is, etc. These probabilities are the parameters of click
models and they need to be estimated from observed clicks and skips.

The parameters of click models are usually calculated using either maximum like-
lihood estimation (MLE) or expectation-maximization (EM) [34]. MLE parameter
estimation is used when a click model does not have hidden random variables. MLE
does a single pass over a click log and calculates the model parameters directly based
on the observed clicks. Thus, click models that use MLE are fast to train and straightfor-
ward to update in online settings. However, these models have been shown to perform
worse than models that require EM for parameter estimation [57].

EM parameter estimation is used when a click model has hidden variables. EM
estimates the model parameters iteratively. At each iteration, the current values of the
parameters are �xed and new values are calculated based on user clicks and current
values. At the end of each iteration, the values of the parameters are updated. Click
models that use EM are much slower to train than ones that use MLE, but display
better performance [57]. However, click models that use EM cannot be directly updated
in online settings. When new user clicks become available, such models have to be
retrained completely using all clicks observed so far. We address this problem and
solve it by adopting online EM algorithms [122, 150]. To the best of our knowledge, no
previous work has dealt with outdated clicks.

2.3 Method

In this section we formalize the online scenario for click models and discuss EM infer-
ence in this scenario. We propose Online EM to incorporate new click/skip observations
into click models, and present a variant of the online EM algorithm to deal with outdated
clicks/skips by discounting them over time (EM with Forgetting).
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2.3.1 Online scenario and EM with Retraining

Various applications of click models (e.g., ranking, model-based evaluation, etc.) operate
with click models trained using a historical click log. We assume that we have a click
model M that is trained on n past observations of clicks/skips. As time passes, new
clicks/skips are observed that can be used to update the trained model M . We would
like to update M after observing m new clicks/skips, where m � 1. The task of online
parameter estimation is, thus, to consider n+m observations for training (or updating)
the click model M .

Completely re-training the model parameters using EM inference has a computa-
tional complexity ofO([n+m] �K), whereK is the number of iterations. If we perform
T consecutive updates of size m, then the complexity becomes O([n+m � T ] �K) for
the T -th update. Thus, T consecutive updates, each considering m new observations,
have a complexity of O([n � T +m �

PT
i=1 i] �K) = O([n � T +m � T 2] �K), which is

quadratic in the number of updates. We refer to this approach as EM with Retraining.

2.3.2 Online EM

Online (or incremental) EM reduces the computational cost of EM with Retraining
by updating the model parameters using only a part of the available data [122, 150].
Following this idea, we adapt EM inference for click models so as to update the models’
parameters in online settings.

Most click models (and particularly those that use EM) consist of Bernoulli-distri-
buted random variables X � Bernoulli(�), where � is a parameter corresponding to
a random variable X . For example, most click models have an attractiveness random
variableAqd � Bernoulli(�qd) that is equal to 1 if, and only if, document d is attractive
to a user given query q. In a number of click models, such as UBM, DBN, and CCM,
this random variable is not observed and so its corresponding parameter �qd has to be
estimated using EM inference.

In general, the parameter � of a Bernoulli-distributed random variableX is computed
as the number of query sessions where X = 1, divided by the number of query sessions
where X is de�ned:

� = 1
jSX j

P
s2SX

P (X(s) = 1 j C(s)); (2.1)

where SX is the set of query sessions where random variable X is de�ned, X(s) is the
value of X in a particular query session s and C(s) is the vector of clicks and skips
observed in session s.

However, if a random variable X is not observed (e.g., Aqd is not observed in UBM,
DBN and CCM), the probability P (X(s) = 1 j C(s)) cannot be computed directly from
clicks C(s). Instead, this probability should be estimated based both on the observed
clicks/skips C(s) and the current values of all the parameters of a click model (we will
denote these values as 	(k), where k is the iteration counter). Then, the parameter �
should be updated iteratively as follows:

�(k+1) = 1
jSX j

P
s2SX

P (X(s) = 1 j C(s);	(k)): (2.2)
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In an online scenario, we have a click model M that is trained on n past observations
of clicks/skips. In other words, all the parameters of M are already estimated, i.e., the
sum in Eq. 2.2 is calculated for all �’s. Let PX denote this sum. Then, the learned
parameter, denoted as �(curr), can be written as �(curr) = PX=jSX j. When we observe
a new query session s with clicks C(s), we need to update the current value �(curr)

taking into account both the already calculated quantity PX and the new observations
C(s). Iteratively re-estimating all the parameters of the model M for every newly
observed query session is prohibitively slow in practice. Instead, we adapt the online
EM inference method [122, 150] and update the value of the click model parameters as
follows:

�(new) =
PX + P (X(s) = 1 j C(s);	(k))

jSX j+ 1
; (2.3)

where the probability added to PX is the same as in Eq. 2.2.
Eq. 2.3 allows us to update the model parameters instantly, moving from the current

values �(curr) to the new values �(new) as soon as new clicks/skips C(s) are observed.
For this reason, we call this approach Online EM.

The complexity of Online EM is linear with respect to the number of observations,
i.e., it is O(m) for m new clicks/skips no matter how many updates are performed.
T consecutive updates, each considering m new observations, have a complexity of
O(m � T ), which is linear with respect to the number of updates. Moreover, the
complexity of this approach does not depend on the number of past observations n
(which could have a signi�cant impact on the execution time in case n� m) and the
number of iterations K.

2.3.3 EM with Forgetting

Online EM addresses the problem of how to ef�ciently update click models in an online
scenario by considering newly observed clicks/skips. The second challenge here is how
to deal with past clicks, which may become outdated as time passes. In this section
we adopt the idea of �forgetting� (or �aging�) [102, 122] and propose the EM with
Forgetting method that discounts past observations depending on their age. In particular,
during every update of the model parameters, a certain percentage of past observations,
denoted � here, can be �forgotten� as follows:

�(new) =
PX � (1� �) + P (X(s) = 1 j C(s);	(k))

jSX j � (1� �) + 1
: (2.4)

The forgetting ratio � has the following interpretation. Assume that after observing m
new clicks/skips and performing m updates for a particular query-document pair, we
need to forget x% of past observation. Then (1��)m = 1�x, so � = 1� m

p
1� x. E.g.,

if we would like to forget 50% of past observations after 20 updates, then � � 0:034.
To forget 10% after 10 updates, we need to set � � 0:01.

The computational complexity of this approach is the same as for Online EM, i.e.,
O(m) for a single update of size m and O(m � T ) for T consecutive updates.
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2.4 Experimental Setup

In this section we describe the dataset and evaluation methodology that we use to test
and analyze the ef�ciency and effectiveness of our proposed online EM methods for
click models.

2.4.1 Dataset

There exist several publicly available datasets with click logs [34]. The one suitable for
our task is the Yandex personalized web search challenge dataset (PWSC),1 because
it contains both the click/skip and time information. The timestamps provided are at
the level of days. We use the �rst two weeks of the dataset, consisting of 33;310;079
query sessions, as historical data and the next 13 days, consisting of 31;862;774 query
sessions, to simulate the incoming click stream.

2.4.2 Methodology

To evaluate our proposed online EM methods, we use the following experimental
protocol:

1. Consider a click model M , trained on days 1; : : : ; x of the click log. Initially,
x = 14.

2. Evaluate M using the click log of day x+ 1.
3. Update M using data collected on day x+ 1.
4. Increment x and repeat steps 1�3 until all days of the dataset have been considered,

i.e., until x+ 1 = 27.

Since the online scenario for click models has not been studied yet, there are no standard
baselines to compare against for online click modeling. To get an understanding of the
relative ef�ciency and effectiveness of our online EM updating strategies, we compare
them to two extreme cases:

(i) Static, where a click model that has been trained once is kept unchanged, i.e.,
step 3 of the above protocol is not performed. We expect that this strategy has
the lowest effectiveness, because it does not keep click models up-to-date with
the incoming click stream. The static strategy does not require any additional
computations and so it has the highest ef�ciency.

(ii) EM with Retraining, where a click model is re-trained from scratch every day,
using historical and newly observed click-through data, i.e., in step 3 of the
above protocol instead of updating the model, we retrain it using all data from
days f1; : : : ; x+ 1g. This strategy considers all available observations and does
multiple passes over the data, so we expect it to have the highest effectiveness and
we can treat it as an oracle; for the same reasons, it should have low ef�ciency.

1https://www.kaggle.com/c/yandex-personalized-web-search-challenge
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Table 2.1: Performance of click models with EM inference trained on the �rst two
weeks of the click log and evaluated on the next 13 days. M denotes the best click model
with statistically signi�cant differences compared to other models.

Model Log-likelihood Perplexity

UBM �0.2204M 1.2825M

DBN �0.3523 1.3135
CCM �0.3534 1.3176

2.4.3 Metrics

We are interested in assessing two aspects of our proposed strategies for updating click
models: ef�ciency and effectiveness. We assess ef�ciency by the time it takes to update
click models. And we measure effectiveness of our click model updating strategies
using standard metrics, namely log-likelihood and perplexity [34, 46, 59]. Statistical
signi�cance of observed differences is determined using a paired Student t-test at the
0:01 level.

When measuring perplexity and log-likelihood, we use all available data to train
and test click models. In this case, training is performed on a MapReduce cluster. To
measure execution time, we use a part of the dataset that can be processed on a single
machine with 2.00GHz CPU and 64Gb RAM (because we cannot control the cluster
load and distribution of our jobs). In particular, we use the �rst 100K query sessions of
each day to measure the time it takes to train and update click models.

2.4.4 Click models

To assess the impact of online EM on click models, we need to select one or more click
models that require EM for their inference. DBN [27], UBM [46], and CCM [59] are
the standard click models of this kind [34]. Table 2.1 shows performance of the above
models when trained on the �rst two weeks of the PWSC dataset and evaluated on the
next 13 days.

We see from Table 2.1 that UBM signi�cantly outperforms both DBN and CCM,
a �nding that is in line with other results reported on the Yandex relevance prediction
challenge dataset [34, 57].2 For this reason, we use the UBM model in our experiments.

2.5 Results

In this section we evaluate the ef�ciency and effectiveness of our proposed online EM
methods. We compare the time it takes to update click models using EM with Retraining
and Online EM. We measure the effectiveness of Online EM and compare it to the
oracle performance of EM with Retraining. We evaluate the effectiveness of EM with
Forgetting using a range of forgetting rates �.

2See also https://academy.yandex.ru/events/data_analysis/relpred2011/
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Table 2.2: Execution time in minutes of EM with Retraining, Online EM and EM with
Forgetting when updating UBM on days 15�27 of the PWSC dataset. Time is measured
on a subset of the click log (�rst 100K query sessions of each day).

Update strategy Min Max Average Total
(day 15) (day 27)

EM with Retraining 28.1 49.6 39.7 516.1
Online EM 0.3 0.3 0.3 3.9
EM with Forgetting 0.3 0.3 0.3 3.9

2.5.1 Ef�ciency

In §2.3 we show that Online EM and EM with Forgetting have lower computational
complexity than EM with Retraining. Here, we show that the gains from the reduced
complexity are also practically important. To do that, we measure the time it takes for
Online EM, EM with Forgetting and EM with Retraining to update the trained UBM
model once a day using days 15�27 of the PWSC dataset. (As explained in the previous
section, we use the �rst 100K query sessions of each day.)

Table 2.2 lists the execution times of EM with Retraining, Online EM, and EM
with Forgetting. Online EM and EM with Forgetting are 130 times more ef�cient than
EM with Retraining. This improvement can be explained by the fact that EM with
Retraining does K passes over n+m observations, while Online EM (and EM with
Forgetting) does only 1 pass over m observations. Also, Online EM (and EM with
Forgetting) requires constant time to incorporate m observations (18 seconds), while
the time for EM with Retraining grows from 28 minutes (for day 15) to 50 minutes (for
day 27).

(a) Log-likelihood (lower is better) (b) Perplexity (higher is better)

Figure 2.1: Difference in log-likelihood and perplexity between EM with Retraining
(oracle) and other methods. EM with Forgetting uses � = 0:001.
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Table 2.3: Average effectiveness of different update strategies. All update strategies
are signi�cantly better than the Static approach. M/O denote statistically signi�cant
differences with respect to EM with Retraining; N/H denote statistically signi�cant
differences with respect to Online EM.

Update strategy Log-likelihood Perplexity

EM with Retraining �0.2180 1.2783
Static �0.2204O 1.2825O

Online EM �0.2188O 1.2796O

EM with Forgetting, � = 0:001 �0.2178 N 1.2777MN

EM with Forgetting, � = 0:005 �0.2180 N 1.2775MN

EM with Forgetting, � = 0:01 �0.2183ON 1.2775MN

2.5.2 Effectiveness of Online EM

Next, we compare the effectiveness of Online EM, which incorporates newly observed
click information on the �y, to the Static approach, which ignores newly observed clicks,
and to EM with Retraining, which trains click models from scratch every day using
historical data and newly observed clicks. In particular, we aim to answer the following
questions:

RQ 1.1 Does Online EM achieve higher effectiveness compared to the Static approach?

RQ 1.2 Does Online EM achieve a comparable effectiveness to the one of EM with
Retraining?

To answer these questions, we measure the log-likelihood and perplexity of the UBM
model after daily updates using days 15�27 of the PWSC dataset.

We consider EM with Retraining as an oracle and plot the performance of the Static
and Online EM approaches with respect to this oracle (Fig. 2.1). Note that the perplexity
deltas are negative, because lower values of perplexity indicate higher effectiveness. In
addition, we report the average values of log-likelihood and perplexity in Table 2.3 (top
half).

Fig. 2.1 shows that EM with Retraining, which trains click models from scratch
every day, achieves the best effectiveness. Online EM signi�cantly improves the quality
of click models over the Static approach, because it utilizes additional information, i.e.,
newly observed clicks/skips, to update the model parameters. However, the effectiveness
of Online EM does not reach the effectiveness of EM with Retraining, while being close
to it (see Table 2.3).

Note that, as opposed to Online EM, EM with Retraining �rst collects a number
of click/skip observations and then uses all available information to update the model
parameters. This way it uses more information than Online EM and, thus, achieves
higher effectiveness but at substantially higher computational costs. In particular, EM
with Retraining cannot be used to continuously update click models in online settings.
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2.5.3 Effectiveness of EM with Forgetting
Here, we evaluate the effectiveness of EM with Forgetting, which deals with outdated
click information. We aim to answer the following question:

RQ 1.3 Does EM with Forgetting, which discounts past click/skip observations, im-
prove the effectiveness of Online EM, which does not do any discounting?

To answer this question, we measure the log-likelihood and perplexity of UBM that is
updated using EM with Forgetting during days 15�27 of the PWSC dataset.

We use forgetting rates � of 0:001; 0:005 and 0:01 in our experiments. Lower values
of � did not result in any changes in effectiveness, while larger values did degrade the
performance. The average absolute values of log-likelihood and perplexity are presented
in Table 2.3 (bottom half), where all differences between EM with Forgetting and
Online EM are statistically signi�cant. The relative performance of EM with Forgetting
(� = 0:001) compared to EM with Retraining is presented in Fig. 2.1.

First, we see that EM with Forgetting signi�cantly improves the effectiveness of
Online EM. This con�rms our intuition that click information becomes outdated over
time and past observations need to be discounted. Second, EM with Forgetting for
� = 0:001 and � = 0:005 reaches the same effectiveness as EM with Retraining in
terms of log-likelihood and signi�cantly outperforms the latter in terms of perplexity
for all forgetting rates. Hence, EM with Forgetting is at least as effective as EM with
Retraining, while being orders of magnitude more ef�cient. This result suggests that in
online scenarios EM with Forgetting should be preferred over both Online EM and EM
with Retraining.

2.6 Conclusions and Future Work
We have studied click models in an online scenario, where a search engine deals with
a stream of click/skip observations. Speci�cally, we answered the following research
question:

RQ 1 How to keep click models up to date with changes in search engine algorithms
and user preferences?

We have shown that the effectiveness of once trained click models degrades over time
and, thus, these models must be constantly updated to keep up with the click stream.
We have proposed Online EM to ef�ciently update click models on the �y using readily
available EM equations as well as the EM with Forgetting method to deal with outdated
click information by discounting past observations depending on their age. We have
shown experimentally that the proposed methods are orders of magnitude more ef�cient
than complete retraining and, as opposed to the latter, always keep click models up to
date. We have also shown that Online EM and EM with Forgetting have signi�cantly
higher effectiveness than the static approach with no updates.

With this work we aim to move click modeling research closer to more real-world
settings. As to future work, we plan to study the effect of the forgetting rate on
different click model parameters; and to develop methods for dealing with outdated
click information for other inference methods (e.g., probit).
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3
Calibration

In the previous chapter, we trained click models using the default hyperparameters of
the PyClick library.1 As for many machine learning algorithms, the performance of
click models strongly depends on the hyperparameters used for training. However, most
authors do not provide suf�cient details on how these hyperparameters are chosen.

We show that click models trained with suboptimal hyperparameters are prone
to produce badly calibrated click probabilities. This means that their predicted click
probabilities do not agree with the observed proportions of clicks in the held-out data.
To repair this discrepancy we adapt a non-parametric calibration method called isotonic
regression. We use a publicly available dataset to answer the following research question
asked in §1.1:

RQ 2 Does calibration help to improve click model performance and make it less
dependent on the choice of hyperparameters?

Our experimental results show that isotonic regression provides a good means to im-
prove the performance of click models trained with suboptimal hyperparameters. And
that the use of isotonic regression makes click models less sensitive to the choice of
hyperparameters. Interestingly, the relative ranking of existing click models in terms
of their predictive performance changes depending on whether or not their predictions
are calibrated. We therefore advocate that calibration becomes a mandatory part of the
click model evaluation protocol.

3.1 Introduction
Click models [34] are important and widely used tools for interpreting user behavior in
web search. A common way to evaluate their performance is to measure how well they
predict clicks on the documents presented on a SERP. As for many machine learning
algorithms, the performance of click models strongly depends on the hyperparameters
used for training.2 However, most previous work on click models does not provide
details on the choice of hyperparameters. Even in recent work by Grotov et al. [57],

This chapter is based on Borisov, Kiseleva, Markov, and de Rijke [19].
1https://github.com/markovi/PyClick (last visited August 16, 2018).
2This statement is based on our preliminary experiments with a range of click models and their hyperpa-

rameters. See §3.4 for details.
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whose main purpose is to provide an objective evaluation and comparison of click
models, there is no information about setting the hyperparameters of click models. In
practice, tuning hyperparameters is time-consuming and might be prohibitively slow for
complex models and large datasets. But it is well known [34] that click models may
yield misleading results without properly tuned hyperparameters.

We hypothesize that click models trained with suboptimal hyperparameters are often
not well calibrated. This means that their predicted click probabilities do not agree
with the observed proportions of clicks in the held-out data. We validate how well a
click model is calibrated using a reliability diagram [121]. For each rank, we split query
sessions into N = 100 buckets according to the predicted click probabilities, where the
i-th bucket corresponds to click probabilities in the range from i

N to i+1
N , and plot the

observed CTRs in these buckets. For a well-calibrated click model, the observed CTRs
in each bucket should lie in the range of the predicted click probabilities associated
with this bucket. Fig. 3.1 shows a reliability diagram of the click-chain model (CCM)
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Figure 3.1: Reliability diagram of CCM at ranks 1, 3 and 5. (Best viewed in color.)

trained on a publicly available dataset released for the Yandex Relevance Prediction
challenge (see §3.4 for details) with suboptimal hyperparameters.3 We learn from
Fig. 3.1 that CCM tends to underestimate click probabilities at rank 1 and overestimate
click probabilities at ranks 3 and 5. We observe similar trends for other click models
and therefore conclude that click models suffer from the issue of bad calibration.

There are two approaches to calibration: parametric and non-parametric [123]. The
parametric approach is less �exible but also requires less data for calibration. The
non-parametric approach is more general but requires more calibration data. Since
real-world click logs are large, we follow the latter approach. In particular, we propose
to use isotonic regression [137] to repair the discrepancy between the click probabilities
predicted by a model and the proportion of clicks in the held-out data.

Our experimental results show that (i) isotonic regression signi�cantly improves
click models trained with suboptimal hyperparameters in terms of perplexity; and that
(ii) calibrated click models are less sensitive to the choice of hyperparameters than the
original (non-calibrated) ones. We also show that the relative ordering of existing click

3For rank 1, the prior values of the CCM parameters are distributed according to Beta(1; 10); for ranks 3
and 5, according to Beta(1; 2).
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models by their predictive performance changes depending on whether or not their
predictions are calibrated. Therefore, we advocate that calibration becomes a mandatory
part of the click model evaluation protocol.

3.2 Background and Related Work

We discuss two types of related work: assessment of probabilities and click modeling.

3.2.1 Assessment of probabilities

Estimating probabilities of future events is important for effective decision making [103,
146]. Studies show that people are generally not good at these tasks [103]. They tend
to overestimate or underestimate their con�dence, which introduces biases in their
predictions [103]. These biases can be reduced with proper training, called calibration.4

Recent work demonstrates that many popular machine learning methods also suffer
from the issue of bad calibration [42, 123, 131, 175, 176]. Below we focus on work that
examines calibration properties of different learning algorithms for binary classi�cation.
A multi-class classi�cation problem can be reduced to a set of binary classi�cation tasks,
and, as Zadrozny and Elkan [176] show, the quality on the multi-class classi�cation
problem improves (in terms of mean squared error and error rate) when these binary
classi�ers are calibrated.

Niculescu-Mizil and Caruana [123] show that under unrealistic independence as-
sumptions, Naive Bayes tends to produce probabilities that are too close to the extreme
values of 0 and 1 (see [42] for a theoretical analysis), while SVM and boosted decision
trees rarely predict probabilities that are close to 0 and 1. This suggests that predictions
of these learning algorithms are biased. Zadrozny and Elkan [175] show that binning
helps to improve the performance of Naive Bayes. They advocate the use of a special
smoothing technique, called curtailment, to improve the calibration properties of deci-
sion trees. Niculescu-Mizil and Caruana [123] also suggest that neural networks and
random forests tend to produce well-calibrated probabilities.

To alleviate the discrepancy between probabilities predicted by a binary classi�er
and observed frequencies, both parametric and non-parametric calibration methods have
been investigated. Platt [131] puts forward the idea of �tting a sigmoid transformation
between the outputs predicted by the binary classi�er and the observed labels. Zadrozny
and Elkan [176] suggest using isotonic regression [137], which learns a monotone
transformation of the scores computed by the binary classi�er to probabilities of class I.
Niculescu-Mizil and Caruana [123] recommend using Platt scaling when the data
used for calibration is limited and isotonic regression when there is enough data for
calibration.

4According to Murphy and Winkler [121], experienced weather forecasters can quantify uncertainty in
their predictions in a reliable manner.
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3.2.2 Click modeling
Click data is a valuable signal for improving web search [27, 80]. However, accurately
interpreting user clicks on a SERP is not straightforward due to the so-called position
bias effect [58, 81]: people tend to click more on the documents presented on top
positions than on the documents presented on lower positions. To account for this and
other types of bias, click models have been proposed [34].

Traditional click models consist of Bernoulli-distributed random variables X �
Bernoulli(�) associated with query-document pairs [34]. Here, � denotes a parameter
associated with the query-document pair, e.g., attractiveness (i.e., the probability of
a user examining the document’s snippet) and satisfactoriness, (i.e., the probability
of a user’s information need being satis�ed after interacting with the document). The
value of the parameter � is estimated during training. It is initially speci�ed by a Beta
distribution, �prior � Beta(�; �), and then updated upon observing new click/skip data.
The choice of the training hyperparameters � and � impacts the overall performance
of click models, especially in query sessions that contain rare or previously unseen
query-document pairs. Existing work on click models rarely provides suf�cient details
on tuning click model hyperparameters, even when they aim to systematically compare
click models [57], which is troublesome because experiments without properly tuned
hyperparameters may yield misleading results [34].

The key distinction of our work compared to the work listed above is that we are the
�rst to improve the performance of click models by applying calibration, which also
reduces the overhead of hyperparameters tuning.

3.3 Method
Click models are trained to predict probabilities of a user clicking on the ranked list
of documents d1; : : : ; dn returned by a search engine in response to a user’s query q.
Click models utilize different assumptions about how a user interacts with d1; : : : ; dn.
E.g., many click models make the linear traversal assumption [36], which states that
a user examines documents on a SERP from top to bottom. Such models predict the
probability of observing a click on document dr+1 given a user’s query q and clicks
c1; : : : ; cr on the higher ranked documents:

P (cr+1 = 1 j q; d1; : : : ; dr+1; c1; : : : cr); (3.1)

where ci = 1 if a user clicked on document di, and 0 otherwise. In order to compare click
models, which follow different assumptions about user click behavior, conditional click
probabilities, presented in Eq. (3.1), are marginalized to click probabilities P (cr+1 =
1 j q; d1; : : : ; dr+1) that are unconditional on previous clicks:

X

(c1;:::;cr)

P (cr+1 = 1 j q; d1; : : : ; dr+1; c1; : : : ; cr); (3.2)

where the sum is computed over all possible click combinations on the �rst r documents.
As discussed in §3.1, for existing click models the click probabilities shown in

Eq. (3.1) and Eq. (3.2) do not represent the observed CTRs well and, thus, need to be
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calibrated. We calibrate these probabilities separately for each rank. Following the
recommendations in [123] and considering that real-world click data is usually available
in large quantities, we adopt a non-parametric calibration method, namely isotonic
regression [137]. For each rank r, isotonic regression learns a function gr(P ) that
adjusts the click probabilities predicted at rank r. Speci�cally, it solves the following
optimization problem:

g�r = arg min
g2G

NX

i=1

[g(Pr(si))� cir]
2; (3.3)

where G denotes the set of all piecewise linear, isotonic (non-decreasing), continuous
functions, N denotes the number of query sessions used for calibration, Pr(si) denotes
the predicted click probability at rank r in query session si and cir denotes whether the
user clicked on the document at rank r in query session si.

We use the pair-adjacent violators (PAV) algorithm [4] to �nd the optimal func-
tion g�r (P ). This is done in three steps, illustrated in Fig. 3.2. First, we sort query
sessions si by the predicted click probabilities at rank r:

Pr(si�1) � Pr(si) 8i = 2; : : : ; N: (3.4)

We use red dots to display the output of this step in Fig. 3.2.
Second, we �t a piecewise linear function gr(P ) to the sorted sequence of pairs

[Pr(s1); c1r]; : : : ; [Pr(sN ); cNr ] in the following way. For P that is lower than Pr(s1),
i.e., lower than the �rst click probability in the sorted sequence, gr(P ) returns zero.
For P that is larger than Pr(sN ), i.e., larger than the last click probability in the sorted
sequence, gr(P ) returns the value of the last click cNr . For P that is between two
consecutive Pr(si�1) and Pr(si), gr(P ) returns the value of click ci�1

r . Formally, this
can be written as follows:

gr(P ) =

8
><

>:

0 P < Pr(s1)
ci�1
r P 2 [Pr(si�1); Pr(si)) 8i = 2; : : : ; N
cNr P � Pr(sN ):

(3.5)

The piecewise linear function gr(P ) calculated at this step is shown with the blue line
in Fig. 3.2.

Third, if the above gr(P ) is not isotonic, there exist two consecutive query ses-
sions si�1 and si for which gr(P ) decreases (instead of increasing or staying constant),
i.e., gr(Pr(si�1)) > gr(Pr(si)). Such query sessions are called pair-adjacent violators.
In this case, we change the value of gr(P ) for the interval P 2 [Pr(si�1); Pr(si+1))
to the average of gr(Pr(si�1)) and gr(Pr(si)).5 This way, for pair-adjacent violators
gr(P ) does not decrease anymore, but stays constant and equal to the above-mentioned
average. This averaging process is performed in the direction from Pr(s1) to Pr(sN ).
In the end, gr(P ) becomes isotonic as shown with the green line in Fig. 3.2. See [4] for
a proof of the optimality of gr(P ) with respect to Eq. (3.3).

5If i = N , we perform this averaging for P � Pr(sN�1).
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Note that the optimal calibration function g�r (P ) learned by PAV outputs a prob-
ability of 0 for P < Pr(s1) and might output a probability of 1 for large values of
P . Following [123, 131] and to avoid problems with taking the log of g�r (P ), we trim
g�r (P ) to predict probabilities in the range [�; 1� �] instead of the range [0; 1]. In our
experiments, we use � = 0:01.

Now that we have learned a calibration function g�r (P ) for a click model, the
calculation of click probabilities at rank r works as follows. Given a query session s, the
click model predicts the click probability Pr(s) for rank r in that session. This could be
either the conditional, Eq. (3.1), or unconditional, Eq. (3.2), probability.6 The predicted
probability Pr(s) is then passed to the calibration function g�r (P ), which outputs the
calibrated probability. This calibrated probability is then used for click prediction.
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Figure 3.2: Illustration of the three steps of the PAV algorithm. Red dots represent
observed clicks vs. predicted click probabilities. The blue line represents the piece-wise
linear function in Eq. (3.5). The green line represents the learned isotonic transformation
from original click probabilities to calibrated click probabilities. (Best viewed in color.)

3.4 Experimental Setup
In this section we describe our experimental setup. We outline the research questions in
§3.4.1. Our dataset and evaluation methodology are described in §3.4.2 and §3.4.3. In
§3.4.4 we describe the experiments we conduct to answer our research questions.

3.4.1 Research questions
We split RQ 2 into two subquestions:

RQ 2.1 Does the calibration method presented in §3.3 help to improve the performance
of existing click models?

RQ 2.2 Does the calibration method presented in §3.3 make click models less depen-
dent on the choice of hyperparameters?

6Note that calibration should be done separately for each of those probabilities.
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3.4.2 Dataset
We conduct our experiments using a publicly available dataset released for the Yandex
Relevance Prediction challenge by Yandex, the major search engine in Russia.7 Query
sessions are ordered by time. We use the �rst 1;000;000 query sessions as the training
set, the following 100;000 query sessions as the development set and the next 100;000
query sessions as the test set.

3.4.3 Evaluation methodology
We evaluate click models using perplexity [34], which measures how �surprised� a
model is upon observing a particular set of clicks on a SERP. We calculate perplexity
at position k as follows:

Perplexity@k = 2�
1
N

PN
i=1 log2 P (ck=ci

kjq
i;di

1;:::;d
i
n); (3.6)

where N denotes the number of query sessions in the test set; qi is a query in the i-th
session; di1; : : : ; din are documents retrieved by a search engine in the i-th session in
response to the query qi; cik = 1 if a user clicked on the document and 0 otherwise.
Following [46], we use perplexity averaged over all positions as our main metric. Lower
values of perplexity correspond to higher quality of a model. For each click model, we
perform signi�cance testing using a paired t-test on the perplexity scores computed using
different sets of hyperparameters. Differences are considered statistically signi�cant for
p-values lower than 0.05. We do not evaluate click models on the relevance prediction
task [34], because the inferred query-document-speci�c parameters used for ranking
are not affected by the proposed calibration method.

3.4.4 Experiments
We design our experiments to answer the research questions stated in §3.4.1.
Experiment 1. To answer RQ 2.1, we measure, before and after calibration, the average
of the perplexity values computed for a click modelM trained with different hyper-
parameters. If the average value of perplexity is lower after calibration, we conclude
that calibration helps to improve the performance ofM. Otherwise, we conclude that
calibration does not help or even hurts the performance ofM.
Experiment 2. To answer RQ 2.2, we measure, before and after calibration, the vari-
ance of the perplexity values computed for a click model M trained with different
hyperparameters. If the variance of the perplexity values is lower after calibration, we
conclude that calibration makesM less dependent on the choice of hyperparameters.
Otherwise, we conclude that calibration does not makeM less dependent on the choice
of hyperparameters or even makes it more sensitive to the choice of hyperparameters.

We conduct our experiments using four PGMs that are often used for modeling and
predicting clicks on a SERP: the dynamic Bayesian network (DBN) [27], the dependent
click model (DCM) [60], the click-chain model (CCM) [60], and the user browsing

7http://imat-relpred.yandex.ru/en/datasets (last visited August 16, 2018).
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3. Calibration

model (UBM) [46]. We train these click models by maximizing the likelihood of the
observed click/skip events in our logs. For DCM we optimize the likelihood directly,
and for DBN, CCM and UBM we use the EM algorithm with 50 iterations. We set the
prior values of the parameters of these click models to 1
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3.5 Results

In this section, we present the outcomes of the experiments described in §3.4.4 and
provide answers to the research questions stated in §3.4.1.

3.5.1 Experiment 1

Table 3.1 shows the perplexity of the click models CCM, DBN, DCM and UBM
averaged over ranks and over runs with different hyperparameters. The rows of Table 3.1
correspond to:

1. Baseline w/o dev set, a method where click models are trained on the training set;

2. Baseline w/ dev set, a method where click models are trained on the union of the
training set and the development set;

3. Calibrated, a method where click models are trained on the training set and calibrated
on the development set.

Table 3.1: Perplexity of click models with and without calibration averaged over ranks
and over runs with different hyperparameters. Improvements of the proposed calibration
method over both baselines are statistically signi�cant (p < 0:001). The best results
are given in bold.

Average perplexity

# Method CCM DBN DCM UBM

1 Baseline w/o dev set 1.3896 1.3915 1.3826 1.3724
2 Baseline w/ dev set 1.3890 1.3908 1.3822 1.3719
3 Calibrated 1.3722 1.3705 1.3752 1.3659

From Table 3.1, we conclude that isotonic regression improves the performance of the
selected click models. The differences in performance between the click models trained
(i) on the training set only, and (ii) on the union of the training set and the development
set (Table 3.1, row 2 vs. row 1) are much less than the gains achieved from using the
development set for calibration (Table 3.1, row 3 vs. row 1). This means that the gains
obtained from the calibration method described in §3.3 are not (only) due to using more
data (i.e., the development set), but are due to �xing the miscalibration problem.

Interestingly, the relative ranking of click models in terms of perplexity differs,
depending on whether we use calibration or not. From Table 3.1, we infer the following
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rankings:

UBM > DCM > CCM > DBN (w/o calibration) (3.7)
UBM > DBN > CCM > DCM (w/ calibration) (3.8)

where we write MX > MY to denote that click model MX has better prediction
performance (in terms of perplexity) than click modelMY . Intuitively, the results w/
calibration make more sense, because DBN and CCM make more realistic assumptions
than DCM, which assumes (i) that a user’s information need cannot be satis�ed directly
on a SERP (i.e., a user needs to click at least one document presented on the SERP);
and (ii) that the probability of examining the document at rank (r + 1) after clicking on
the document presented at rank r depends solely on the rank r and not on the relevance
of the document presented at rank r.

Answering RQ 2.1, we conclude that the calibration method described in §3.3
provides a good means to �x the miscalibration problem and, as a result, allows us to
improve the performance of existing click models on the standard click prediction task.

3.5.2 Experiment 2
Tables 3.2 and 3.3 show the empirical variance in the perplexity values computed
for click models trained with different sets of hyperparameters. Table 3.2 lists the
absolute values; Table 3.3 lists the percentages w.r.t. the baseline w/o dev set. For
the methods, we use the same naming conventions as in Table 3.1. We �nd that the

Table 3.2: The empirical variance in the perplexity values computed for click models
trained with different sets of hyperparameters. The best results are given in bold.

100 � variance in perplexity

# Method CCM DBN DCM UBM

1 Baseline w/o dev set 0.1025 0.1113 0.0908 0.0629
2 Baseline w/ dev set 0.1001 0.1087 0.0886 0.0606
3 Calibrated 0.0079 0.0179 0.0619 0.0011

Table 3.3: The empirical variance in the perplexity values computed for click models
trained with different sets of hyperparameters. The best results are given in bold.

Variance in perplexity

# Method CCM DBN DCM UBM

1 Baseline w/o dev set 100% 100% 100% 100%
2 Baseline w/ dev set 97.66% 97.66% 97.58% 96.34%
3 Calibrated 7.71% 16.08% 68.17% 1.75%

calibration method described in §3.3 reduces the variance in the perplexity values by
33:87%�98:25%, depending on the click model.
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Answering RQ 2.2, we conclude that the calibration method described in §3.3 makes
click models less dependent on the choice of hyperparameters.

3.6 Conclusions and Future Work
We introduced the notion of calibration in the context of click modeling and showed
empirically that existing click models are prone to produce poorly calibrated predictions.
Answering the main research question in this chapter,

RQ 2 Does calibration help to improve click model performance and make it less
dependent on the choice of hyperparameters?

we concluded that calibration, namely isotonic regression, (i) improves the performance
of click models, and (ii) makes click models less sensitive to tuning of hyperparameters.
Therefore, we advocate that calibration becomes a mandatory part of the click model
evaluation protocol. In future work, we are planning to incorporate calibration at training
time, e.g., by means of hierarchical priors [163] or variational auto-encoders [91].
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A Neural Click Model

In Chapters 2 and 3, we studied click models based on the probabilistic graphical model
(PGM) framework, in which user behavior is represented as a sequence of observable
and hidden events. The PGM framework provides a mathematically solid way to reason
about a set of events given some information about other events. But the structure of
the dependencies between the events has to be set manually. Different click models use
different hand-crafted sets of dependencies (represented as PGMs), while all of them
are, by necessity, simpi�cations.

We propose an alternative based on the idea of distributed representations: to
represent the user’s information need and the information available to the user with a
vector state. The components of the vector state are learned to represent concepts that
are useful for modeling user behavior. And user behavior is modeled as a sequence
of vector states associated with a query session: the vector state is initialized with a
query, and then iteratively updated based on information about interactions with the
search engine results. This approach allows us to directly understand user browsing
behavior from click-through data, i.e., without the need for a prede�ned set of rules as
is customary for PGM-based click models.

We illustrate our approach using a set of neural click models and answer the follow-
ing research question asked in §1.1:

RQ 3 How to design a neural network that would be able to learn patterns in user click
behavior directly from logged interaction data?

Our experimental results show that the neural click model that uses the same training data
as traditional PGM-based click models, has better performance on the click prediction
task (i.e., predicting user click on search engine results) and the relevance prediction
task (i.e., ranking documents by their relevance to a query). An analysis of the best
performing neural click model shows that it learns similar concepts to those used in
traditional click models, and that it also learns other concepts that cannot be designed
manually.

This chapter is based on Borisov, Markov, de Rijke, and Serdyukov [17].
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4.1 Introduction
Understanding users’ interaction behavior with a complex Information Retrieval (IR)
system is key to improving its quality. In web search, the ability to accurately predict
the behavior of a particular user with a certain information need, formulated as a query,
in response to a search engine result page allows search engines to construct result
pages that minimize the time that it takes users to satisfy their information needs, or
increase the probability that users click on sponsors’ advertisements.

Recently, many models have been proposed to explain or predict user behavior in
web search; see [34] for an overview. These models, also called click models as the
main observed user interaction with a search system concerns clicks, are used for click
prediction and they may help in cases where we do not have real users to experiment
with, or prefer not to experiment with real users for fear of hurting the user experience.
Click models are also used to improve document ranking (i.e., infer document relevance
from clicks predicted by a click model) [27, 45], improve evaluation metrics (e.g.,
model-based metrics) [28, 32, 174] and to better understand a user by inspecting the
parameters of click models [46].

Existing click models are based on the probabilistic graphical model (PGM) frame-
work [95], in which user behavior is represented as a sequence of observable and hidden
events such as clicks, skips and document examinations. The PGM framework provides
a mathematically solid way to reason about a set of events given information about other
events. The structure of the dependencies between the events has to be set manually.
Different click models use different hand-crafted sets of dependencies (represented as
probabilistic graphical models), while all of them are, by necessity, simpli�cations and
likely to miss key aspects of user behavior.

We propose an alternative to the PGM-based approach�the distributed represen-
tation (DR) approach�in which user behavior is represented as a sequence of vector
states that capture the user’s information need and the information consumed by the
user during search. These vector states can describe user behavior from more angles
than the binary events used in PGM-based models (such as whether a user examined a
document, or whether a user is attracted by a document), which makes them attractive
for learning more complex patterns of user behavior than those hard-coded in existing
click models.

We illustrate the distributed representation-based approach using a set of neural
click models, and compare them against traditional PGM-based click models on a click
prediction task (i.e., predicting user clicks on search engine results) and a relevance
prediction task (i.e., ranking documents by their relevance to a query). Our experimental
results show (i) that the neural click model that uses the same training data as traditional
PGM-based click models has better performance on both the click prediction task
and the relevance prediction task than the PGM-based click models; and (ii) that
the performance of this neural click model can be further improved by incorporating
behavioral information over all query sessions that is (a) generated by a particular query,
and (b) contains a particular document. We also conduct an analysis of the model’s
internal workings, which shows that our neural click models learn concepts such as �the
current document rank� and �the distance to the previous click,� which are used in the
user browsing model [46], a state of the art PGM-based click model. We also show that
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the neural click models learn other concepts that cannot be designed manually.
The main contribution of our work is the introduction of a distributed representation-

based approach for modeling user behavior and several neural click models, which learn
patterns of user behavior directly from interaction data, unlike conventional PGM-based
click models that require these patterns to be set manually.

4.2 Related Work

We discuss two main types of related work: modeling click behavior of web search
users and learning distributed representations of concepts.

4.2.1 Click models
Existing click models are based on the probabilistic graphical model (PGM) frame-
work [95], in which user behavior is represented as a sequence of observable and hidden
events such as clicks, skips and document examinations. Most probabilistic models
of user behavior distinguish between two events (usually assumed independent): a
document is examined by a user (Ed) and a document is attractive to a user (Ad).1
Furthermore, most models make the examination hypothesis that a user clicks on a doc-
ument (Cd = 1) if, and only if, she examined the document (Ed = 1) and was attracted
by it (Ad = 1).2 The examination probability is modeled differently by different click
models, while the attractiveness probability is usually modeled with a parameter �q;d
that depends on a query and a document.

The cascade model (CM) [36] assumes that a user scans a search engine result page
(SERP) from top to bottom until she �nds a relevant document on which she clicks. In
its canonical form, CM postulates that �a user who clicks never comes back, and a user
who skips always continues,� which limits its applicability to query sessions with exactly
one click. This problem has been addressed in the user browsing model (UBM) [46],
the dynamic Bayesian network (DBN) model [27], dependent click model (DCM) [60]
and click chain model (CCM) [59] that use CM as their backbone. UBM introduces a
set of examination parameters r;r�r0 (0 � r0 < r � 10), and de�nes the examination
probability of a document at rank r given that the previous click was at rank r0 as r;r�r0

(r0 = 0 if none of the documents above r were clicked). DBN introduces a continuation
parameter  and per query-document pair satisfactoriness parameters �q;d that describe
the actual relevance of the document d to the query q as opposed to the attractiveness
parameters �q;d that describe the perceived relevance of the document d to the query q.
The examination probability of a document d is de�ned as the probability that a user
was not satis�ed by the documents ranked higher than d multiplied by the continuation
parameter .

Recently, a wide range of click models have been proposed that exploit additional
information, e.g., information about the user, her current task, the result presentation, the
content of results, and other search characteristics. These include the personalized click

1The two-stage model also assumes that there is a skimming event prior to examination [109].
2Some recent click models [31, 158] relax this assumption to account for noise in user clicks: a user might

click on an unattractive document or skip an attractive document because of carelessness.
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model [144], the task-centric click model [179], intent-aware modi�cations of UBM
and DBN [33], the federated click models [30], the vertical-aware click model [156],
the content-aware click model [158], and noise-aware modi�cations of UBM and
DBN [31].

Our work differs from the work discussed above in two important respects. First, we
model user browsing behavior on a SERP as a sequence of vectors. Such a representation
allows us to describe user behavior from more angles than a sequence of prede�ned
binary events, which is common in existing click models. Second, our approach does
not require a manually designed set of rules that describes user browsing behavior on
a SERP�such rules constitute the key ingredient of existing click models based on
probabilistic graphical models. Instead, we learn such rules directly from past user
sessions, which allows us to capture more complex patterns of user behavior than the
ones that are set manually.

4.2.2 Distributed representations of concepts
The idea of modeling behavioral phenomena as an emergent process of interconnected
network activities of simple units was originally introduced by cognitive scientists [47],
and later developed into the parallel distributed processing approach [138], which
forms the basis of the arti�cial neural networks used in image recognition [97], speech
recognition [56], machine translation [148] and other �elds [8]. The main idea is to
represent the input data with one or many vectors, whose components (which may not
be interpretable alone) work together to represent concepts that are useful in the task
under consideration; these vectors are called distributed (vector) representations of the
input data.

Recent work that demonstrates the importance of learning distributed representations
is due to Mikolov et al. [118]; the authors represent words with vectors and train a
neural network to predict the vector of a word given the vectors of surrounding words.
The resulting word-speci�c vectors capture many linguistic regularities, which make
them useful for a broad range of applications.

In neural image processing, distributed representations of images are learned directly
from image pixels. These image-speci�c vectors capture many visual regularities, which
make them useful for image classi�cation [97]. In neural speech recognition, distributed
representations of audio signals are learned from the raw audio data, and then converted
into sequences of words [56]. In neural machine translation, a sequence of words in
one language is �rst transformed into an internal distributed representation and then
converted into a sequence of words in another language [148].

Different applications use different network architectures to construct effective
representations of their data. Convolutional neural networks (CNN) are used in image
processing to abstract from the exact pixel locations and generalize to unseen images
with similar pixel con�gurations [97]. Recurrent neural networks (RNN) are used in
language modeling [117], speech recognition [56] and machine translation [148] to
process word sequences of arbitrary length.

In this work we introduce distributed representations of user information needs and
search results for modeling user browsing behavior in web search. To the best of
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our knowledge this is the �rst time such representations have been developed for this
purpose.

4.3 Method
Below, we propose a general neural click model framework, in which user behavior
is modeled as a sequence of distributed representations of the user’s information need
and the information consumed by the user during search. The principal advantage of
the proposed framework over existing click models is that patterns of user behavior
can be learned directly from interaction data, which allows us to capture more complex
patterns of user behavior than the ones that are hard-coded in existing click models.

4.3.1 Neural click model framework
We model user browsing behavior in web search as a sequence of vector states (s0;
s1; s2; : : : ) that describes the information consumed by the user as it evolves within a
query session, i.e., sr�1 denotes the information consumed by the user before examining
document dr at rank r. We initialize the vector state s0 with a user query q, and
iteratively update a vector state sr to the vector state sr+1 based on user interactions ir
and the next document dr+1:

s0 = I(q); (4.1)
sr+1 = U(sr; ir; dr+1): (4.2)

We learn the mappings I(�) and U(�) to produce vector states s0, s1, s2, : : : that are
useful for predicting user clicks on a SERP. We predict the probability of a click on
document dr+1 (Cr+1 = 1) given the query q, interactions i1; : : : ; ir and documents
d1, . . . , dr+1 from the vector state sr+1 using a function F(�) 7! [0; 1]:

P (Cr+1 = 1 j q; i1; : : : ; ir; d1; : : : ; dr+1) = F(sr+1): (4.3)

Overall, the process of modeling user browsing behavior on a SERP can be unfolded in
the following steps. See Figure 4.1 for an illustration.

1. (a) A user starts a search session by issuing a query q.
(b) The vector state is initialized with q: s0 = I(q);

the previous interactions are empty: i0 = ?.
2. (a) The user examines document d1.

(b) The vector state is updated with the examined document and the previous
interactions: s1 = U(s0; i0; d1).

3. (a) The user clicks on the examined document d1 with probability F(s1) and
skips it with probability 1�F(s1).

(b) The user interactions i1 are set using the information about the observed
user interactions with d1.

4. The user continues examining documents at ranks r > 1 repeating steps 2 and 3,
where the indices 0 and 1 are replaced with r � 1 and r, respectively.
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Figure 4.1: Modeling user browsing behavior on a SERP in the neural click model
framework.

Notice that similar to many existing click models, we do not explicitly model search
abandonment (the user stops examining the SERP), but we train our model to predict
low click probabilities for documents that are unlikely to be examined by the user.

The above is a general framework for modeling user browsing behavior on a SERP.
In fact, most existing click models can be described by the mappings I(�), U(�) and the
function F(�); see appendix (§4.7) for the descriptions of I(�), U(�) and F(�) used in
DBN and UBM. However, our approach differs from UBM and DBN in an important
aspect. The mappings I(�) and U(�) in UBM and DBN have no parameters that can be
tuned during training, which means that all relevant information for predicting clicks on
the next documents is included or discarded manually (according to the rules speci�ed
when designing the probabilistic graphical model). In our approach, these mappings are
learned to collect information that is useful for predicting clicks on the next documents.

Now that we have speci�ed our general approach to modeling user browsing behav-
ior on a SERP, we need to detail how we represent the query q, the interactions ir and
the document dr+1 (§4.3.2), and how we learn the mappings I(�), U(�) and the function
F(�) (§4.3.3).
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4.3.2 Representations of queries, documents and interactions

We describe three sets of representations for a query q, a document d and interactions i.3
Set 1 (QD) operates on the basis of query-document pairs similarly to traditional click
models (e.g., DBN, UBM). Set 2 (QD+Q) extends Set 1 by considering all query
sessions generated by the query q (including ones whose SERPs do not contain the
document d). Set 3 (QD+Q+D) extends Set 2 by considering all query sessions whose
SERPs contain the document d (including ones generated by queries other than the
query q).

Set 1 (QD)

The �rst set of representations operates at the level of query-document pairs. It uses a
trivial representation q(1) of the query q, a query-dependent representation d(1) of the
document d and a click-based representation i(1) of the interactions i.
Represention q(1). We represent the query q with a zero vector of size 1.
Represention d(1). We represent the document d by historical user interactions, ob-
served on SERPs generated by the query q and containing the document d. User
interactions on a SERP can be described in a number of ways: by clicks, dwell times,
mouse movements, etc. We describe them by click patterns�the sets of documents
that received a click�because clicks are the most widely logged form of user inter-
action. For example, the clicks on the �rst and third positions de�ne the click pattern
[1; 0; 1; 0; 0; : : :]; the click on the second position de�nes the click pattern [0; 1; 0; 0; : : :].

Since there are 210 = 1024 possible click patterns and a document can be presented
on any of the 10 positions, we represent the document d with a vector of size of 10240.
In each component of the vector, we store the number of times a particular click pattern
was observed on SERPs generated by the query q when presenting the document d at a
particular rank.
Represention i(1). We represent interactions i with a binary vector of size 1: the value
0 denotes the fact that a user skipped the previous document, the value 1 denotes the
fact that a user clicked on the previous document.

Set 2 (QD+Q)

The second set of representations extends Set 1 by considering all query sessions
generated by the query q. This is useful in cases when query sessions generated by
the query q have different SERPs, which happens for various reasons: a change in the
global ranking algorithm, due to a document index update or due to personalization. In
particular, the representations used in Set 1 ignore the potentially useful information
about user interactions in query sessions generated by the query q, whose SERPs do not
contain the document d. Set 2 aggregates information about all query sessions generated
by the query q in a representation q(2). The representations of the document d and the
interactions i stay the same as in Set 1, i.e., d(1) and i(1) respectively.
Represention q(2). We represent the query q by click patterns, observed on SERPs
generated by the query q. Since there are 210 = 1024 possible click patterns, we

3We drop the indices in dr+1 and ir to simplify the notation.
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represent the query q with a vector of size 1024. In each component of the vector q(2),
we store the number of times a particular click pattern was observed on SERPs generated
by the query q.

Set 3 (QD+Q+D)

The third set of representations extends Set 2 by considering all query sessions whose
SERPs contain the document d. This is particularly useful for rare queries, as it allows
us to collect behavioral information over a larger number of observations than only
considering query sessions generated by the query q, as done in d(1). This behavioral
information can be biased due to the fact that SERPs containing document d can be
generated by queries with different intents.

However, most documents are presented in query sessions generated by queries with
the same or similar intents. And even the behavioral information collected over query
sessions generated by queries with different intents tells, e.g., about global attractiveness
of document d, which might be useful for explaining so-called sudden interest clicks
on a SERP. Thus, Set 3 extends the representation d(1) by including information about
all query sessions containing the document d (which we refer to as a representation
d(3) of the document d). To sum up, Set 3 uses the q(2) representation of query
q, the concatenation of the d(1) and d(3) representations of document d and the i(1)

representation of the interactions i.
Representation d(3). We represent document d by click patterns observed on SERPs
that contain the document d (but not necessarily generated by the query q). Since
a document can be presented on any of the 10 positions and there are 210 = 1024
possible click patterns, we represent the document d with a vector of size 10240. In
each component of the vector, we store the number of times a particular click pattern
was observed on all SERPs containing the document d at a particular rank.

4.3.3 Implementations of I, U and F
Now that we have described the representations that we aim to use, we need to detail
how we implement the mappings I(�), U(�) and the function F(�) that form a key
ingredient of our neural click model framework (§4.3.1). Following the literature on
recurrent neural networks, we propose two con�gurations: the RNN con�guration and
the LSTM con�guration. And then we describe how to learn the parameters of these
con�gurations.

Below, we use the following notation: we write q to denote the vector representation
of the query q, dr to denote the vector representation of the document dr, ir to denote
the vector representation of the interactions ir and cr to denote the vector of size 1,
whose single component equals P (Cr = 1 j q; i1; : : : ; ir�1; d1; : : : ; dr).

RNN con�guration

The RNN con�guration is illustrated in Figure 4.2(a). It uses a fully-connected layer4

to initialize the vector state s0 and a simple recurrent connection to propagate the
4We refer the reader to [8] for explanations and background material on neural networks.
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information from the vector state sr to the vector state sr+1:

s0 = g1(Wqsq + b1);
sr+1 = g2(Wsssr + Wisir + Wdsdr+1 + b2):

The functions g1(�) and g2(�) denote element-wise non-linear transformations.5 The
matrices Wqs;Wss;Wis;Wds and the bias vectors b1;b2 are the parameters of
I(�);U(�), which are to be learned during training.

The probability cr+1 is computed using a fully-connected layer with one output
unit and the sigmoid activation function:

cr+1 = �(Wscsr+1 + b3): (4.4)

The matrix Wsc and the bias vectors b3 are the parameters of F(�), which are to be
learned during training. The sigmoid function �(x) is used to ensure that the output
falls in the interval (0, 1).

LSTM con�guration

A possible problem of the RNN con�guration is the vanishing and exploding gradient
problem described by Bengio et al. [9]: after applying a few non-linear transformations,
the norm of the gradient gets either too small (the vanishing gradient problem, where no
learning is happening) or too large (the exploding gradient problem, where the values
of the network parameters become unstable). To account for this problem, Hochreiter
and Schmidhuber [66] propose the long short-term memory (LSTM) block. The LSTM
block contains a memory cell (i.e., a vector) and three gate units (i.e., vectors of the
same size as the memory cell): the input gate that �lters out irrelevant information in
the input vector, the forget gate that �lters out information in the vector state that is
no longer needed and the output gate that controls information in the output vector. It
has been shown that the gate mechanism helps to alleviate the vanishing and exploding
gradient problems; this yields better results than simple recurrent neural networks that
do not use it [55, 66, 83].

The LSTM con�guration is illustrated in Figure 4.2(b). Unlike the RNN con�gura-
tion, which propagates the information from the vector state sr to the vector state sr+1
directly, the LSTM con�guration propagates it through the LSTM block, which, as said,
helps to mitigate the vanishing and exploding gradient problem. The click probability
cr is computed as in the RNN con�guration (Eq. 4.4). The parameters of the LSTM
con�guration, i.e., the parameters of the LSTM block and the parameters of the function
F(�), are learned during training.

Training RNN and LSTM con�gurations

Similar to PGM-based click models, both RNN and LSTM con�gurations are trained by
maximizing the likelihood of observed click events. In particular, we optimize the loga-
rithm of the likelihood function using the stochastic gradient descent (SGD) algorithm
with mini-batches. The learning rates for each parameter are adjusted according to the

5The possible choices are the sigmoid function, the hyperbolic tangent and the recti�ed linear unit [8].
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ADADELTA algorithm [177] (we use the default values of � = 10�6 and � = 0:95).
We also use the gradient clipping technique [130] to alleviate the exploding gradient
problem [9] (we set the value of the threshold = 1).

We do not provide the expressions for computing the gradients of the logarithm of
the likelihood function with respect to the con�gurations’ parameters, because such
expressions can be computed automatically using symbolic differentiation in math
packages such as Theano [12].

The main message to take away from this section is that we use distributed representa-
tions (sequences of vector states as detailed in §4.3.1) to model user browsing behavior.
We use neural click models to learn those representations. We write NCMY

X to denote a
neural click model with representation X (QD, QD+Q, QD+Q+D) and con�guration
Y (RNN, LSTM). The neural click models can be used to simulate user behavior on a
SERP and to infer document relevance from historical user interactions. We estimate
the relevance of a document d to a query q using the probability of click on d when d
appears on the �rst position, i.e., P (C1 = 1 j q; d).

4.4 Experimental Setup
In this section we describe our experimental setup. The research questions are outlined
in §4.4.1. The dataset and baselines are described in §4.4.2 and §4.4.4. The evaluation
methodology is given in §4.4.3. The experiments that we conduct to answer our research
questions are outlined in §4.4.5.

4.4.1 Research questions
We split RQ 3 into six subquestions:

RQ 3.1 Does the distributed representation-based approach that models user behavior
as a sequence of distributed vector representations have better predictive abili-
ties than the PGM-based approach that models user behavior as a sequence of
observed and hidden events?

RQ 3.2 Does the LSTM con�guration have better learning abilities than the RNN
con�guration?

RQ 3.3 Does the representation q(2) of a query q as de�ned in §4.3.2 provide the means
to transfer behavioral information from historical query sessions generated by
the query q to new query sessions generated by the query q?

RQ 3.4 Does the representation d(3) of a document d as de�ned in §4.3.2 provide the
means to transfer behavioral information from historical query sessions whose
SERPs contain the document d, to new query sessions whose SERP contain
the document d?

RQ 3.5 Do the neural click models produce better document rankings than the PGM-
based models?
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4. A Neural Click Model

RQ 3.6 Do the neural click models operate with concepts similar to the ones used in
the PGM-based models? In particular,

(a) Do they learn to account for the document rank similarly to most PGM-based
click models?

(b) Do they learn to account for the distance to the previous click similarly to the
state-of-the-art UBM model?

4.4.2 Dataset

We use the Yandex Relevance Prediction dataset,6 which contains 146;278;823 query
sessions sampled from logs of Yandex, a major commercial search engine in Russia.
There are a total of 30;717;251 unique queries and 117;093;258 unique documents in
this dataset. The query sessions are ordered by time. We split the query sessions into
two equal parts, and use the earlier query sessions to train click models and the later
query sessions to evaluate their prediction performance.

The Yandex Relevance Prediction dataset also contains human-generated binary
relevance labels for 41;275 query-document pairs (4991 queries; on average, each query
is associated with 8 documents). We use them to evaluate the ranking performance of
our click models.

4.4.3 Evaluation methodology

We consider the click prediction task (i.e., predicting user clicks on search engine
results) and the relevance prediction task (i.e., ranking documents by their relevance to
a query).

Click prediction

The task is to predict user clicks on a SERP. The training and test sets consist of query
sessions separated by time: the training set comprises query sessions from an earlier
period; the test set comprises query sessions from a later period.

Following Dupret and Piwowarski [46], we evaluate the quality of click prediction
using the perpexity metric, which measures how �surprised� the model is upon observing
a particular set of clicks. In particular, we compute perplexity of a model M on a set of
sessions S separately for each rank r as follows:

pr(M) = 2�
1

jSj
P

s2S log2 PM (Cr=c(s)
r );

where PM (Cr = c(s)r ) denotes the probability of observing a click event c(s)r (i.e.,
click or skip) at rank r in a query session s, as predicted by the click model M . The
total perplexity of the click model M is calculated by averaging perplexities over all
positions. Lower values of perplexity correspond to higher quality of a model.

6http://imat-relpred.yandex.ru/en/datasets (last visited August 16, 2018).
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We also report the logarithm of the likelihood function L(M) for each click
model M , averaged over all query sessions S in the test set (all click models are
learned to optimize the likelihood function):

logL(M) =
1
jSj

X

s2S

logPM
�
C1 = c(s)1 ; : : : ; Cn = c(s)n

�
;

where PM (C1 = c(s)1 ; : : : ; Cn = c(s)n ) denotes the probability of observing a particular
sequence of clicks c(s)1 ; : : : ; c(s)n in a query session s according to the click model M .
We refer to this statistic as log-likelihood.

We perform signi�cance testing using a paired t-test on per query session scores;
the differences are considered statistically signi�cant for p-values lower than 0:05.

Relevance prediction

Here, the task is to rank documents by their estimated relevance to a query. The training
set consists of all query sessions, while the test set consists of query-document pairs that
occur at least once in the training set and that have a human generated relevance label.
We use the training set to train click models, and the test set to evaluate the quality of
document rankings produced by click models.

Following Chapelle and Zhang [27], we evaluate the quality of document rankings
using the mean normalized discounted cumulative gain (NDCG) [77]. We report NDCG
scores at truncation levels 1, 3, 5 and 10.

We perform signi�cance testing using a paired t-test on per query scores; the
differences are considered statistically signi�cant for p-values lower than 0:05.

4.4.4 Baselines

We use DBN, DCM, CCM and UBM as baseline click models.7 Following [34], we set
the priors of all click model parameters to a Beta distribution with � = 1 and � = 2,
and the number of EM iterations to 50.

The baseline performance on the click prediction task and the relevance prediction
task is given in Tables 4.1 and 4.2. Table 4.1 shows that UBM is the best for click
prediction (in terms perplexity and log-likelihood); Table 4.2 shows that CCM is the
best for ranking (in terms of NDCG scores). These results agree with earlier work [57].

4.4.5 Experiments

We design our experiments to answer our research questions.

Experiment 1. To answer RQ 3.1, we compare the performance of NCMRNN
QD against

UBM on the click prediction task (UBM is the best performing baseline click model on
this task).

7We use the PyClick implementation available at https://github.com/markovi/PyClick
(last visited August 16, 2018).
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4. A Neural Click Model

Table 4.1: Performance of the baseline click models on the click prediction task.
Differences between all pairs of click models are statistically signi�cant (p < 0:001).
The best results are given in bold.

Click model Perplexity Log-likelihood

DBN 1:3510 �0:2824
DCM 1:3627 �0:3613
CCM 1:3692 �0:3560
UBM 1:3431 �0:2646

Table 4.2: Performance of the baseline click models on the relevance prediction task.
Improvements of DCM and CCM over DBN and UBM are statistically signi�cant
(p < 0:001). Differences between (i) DBN and UBM, (ii) DCM and CCM are not
statistically signi�cant (p > 0:05). The best results are given in bold.

NDCG

Click model @1 @3 @5 @10

DBN 0:717 0:725 0:764 0:833
DCM 0:736 0:746 0:780 0:844
CCM 0:741 0:752 0:785 0:846
UBM 0:724 0:737 0:773 0:838

Experiment 2. To answer RQ 3.2, we compare the performance of NCMRNN
QD against

NCMLSTM
QD+Q+D on the click prediction task; the best con�guration (RNN or LSTM) is

then denoted with B2.
Experiment 3. To answer RQ 3.3, we compare the performance of NCMB2

QD, and
NCMB2

QD+Q on the click prediction task.

Experiment 4. To answer RQ 3.4, we compare the performance of NCMB2
QD+Q, and

NCMB2
QD+Q+D on the click prediction task.

Experiment 5. To answer RQ 3.5, we compare the performance NCMRNN
QD , NCMLSTM

QD

NCMB2
QD+Q and NCMB2

QD+Q+D against CCM on the relevance prediction task (CCM is the
best performing baseline click model on this task).
Experiment 6. To answer RQ 3.6, we analyze vector states sr with respect to document
ranks and distances to the previous click. The analysis is performed by visualizing the
vector states sr of the best performing neural click model on the click prediction task in a
two-dimensional space using the t-SNE dimensionality reduction technique [152].8 We
compute the vector states sr on a uniformly sampled subset of the test query sessions.

In all experiments, we use vector states of size 256. The neural click models are trained
using mini-batches of 64 query sessions and the parameters speci�ed in §4.3.3.

8t-SNE is a state of the art method for visualizing high dimensional data that preserves distances between
the data points.
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4.5 Results

We present the outcomes of the experiments described in §4.4.5 and provide answers to
our research questions stated in §4.4.1.

4.5.1 Click prediction task
The results for the click prediction task are given in Table 4.3 and Figures 4.3, 4.4.
Table 4.3 lists the overall performance of the click models considered in terms of
perplexity and log-likelihood. Figure 4.3 plots perplexity vs. the number of times a
query occurred in the training set. Figure 4.4 shows perplexity values at different ranks.

Table 4.3: Performance on the click prediction task. Differences between all pairs of
click models are statistically signi�cant (p < 0:001). The best results are given in bold.

Click model Perplexity Log-likelihood

UBM 1:3431 �0:2646
NCMRNN

QD 1:3379 �0:2564
NCMLSTM

QD 1:3362 �0:2547
NCMLSTM

QD+Q 1:3355 �0:2545
NCMLSTM

QD+Q+D 1:3318 �0:2526

1 2 4 8 16 32 64 128 256 512 1024
number of times a query occurred in the training set
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Figure 4.3: Perplexity for different query frequencies. (Best viewed in color.)

RQ 3.1. Table 4.3 shows that NCMRNN
QD outperforms the best performing PGM-based

click model, UBM, in terms of perplexity and log-likelihood by a large margin. Fig-
ure 4.3 shows that NCMRNN

QD has lower perplexity than UBM for all query frequencies.
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Figure 4.4: Perplexity for different ranks. (Best viewed in color.)

Figure 4.4 also shows that NCMRNN
QD performs better than or, at least, as good as UBM

at all ranks.
From the above results we conclude that the DR-based approach, which models user

behavior as a sequence of distributed vector representations and learns patterns of user
behavior directly from data, has better predictive abilities than the PGM-based approach
used in state-of-the-art click models DBN, DCM, CCM and UBM, which models user
behavior as a sequence of observed and hidden events and which requires a carefully
hand-crafted set of rules describing user behavior (i.e., a probabilistic graphical model).
RQ 3.2. Table 4.3 shows that NCMLSTM

QD outperforms NCMRNN
QD in terms of perplexity

and log-likelihood. NCMLSTM
QD also performs better than, or at least as good as, NCMRNN

QD
for all query frequencies (Figure 4.3) and at all ranks (Figure 4.4).

From the above results, we conclude that the introduction of the LSTM block helps
to improve the learning abilities of the neural click models. Therefore, we use the
LSTM con�guration in the subsequent experiments.
RQ 3.3. Table 4.3 shows that NCMLSTM

QD+Q outperforms NCMLSTM
QD in terms of perplexity

and log-likelihood by a small but statistically signi�cant margin (p < 0:001). Figure 4.3
shows that NCMLSTM

QD+Q consistently outperforms NCMLSTM
QD in terms of perplexity for

all queries, with larger improvements observed for less frequent queries. In addition,
Figure 4.4 shows that NCMLSTM

QD+Q performs as good as NCMLSTM
QD in terms of perplexity

at all ranks.
From the above results, we conclude that the representation q(2) of a query q

provides the means to transfer behavioral information between query sessions generated
by the query q. And this, in turn, helps to better explain user clicks on a SERP.
RQ 3.4. Table 4.3 shows that NCMLSTM

QD+Q+D outperforms NCMLSTM
QD+Q in terms of per-

plexity and log-likelihood. Furthermore, Figure 4.3 shows that NCMLSTM
QD+Q+D consis-
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tently outperforms NCMLSTM
QD+Q in terms of perplexity for rare and torso queries, with

larger improvements observed for less frequent queries. Finally, Figure 4.4 shows that
NCMLSTM

QD+Q+D outperforms NCMLSTM
QD+Q in terms of perplexity at all ranks.

From the above results, we conclude that the representation d(3) of a document d
provides the means to transfer behavioral information between query sessions, whose
SERPs contain the document d. And this, in turn, helps to better explain user clicks on
a SERP.
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(a) All query sessions. (b) Query sessions generated by
queries that occur one time in the
training set.

(c) Query sessions with no clicks
generated by queries that occur
one time in the training set.

Figure 4.5: Two-dimensional t-SNE projections of vector states sr for different ranks r.
Colors correspond to ranks: black 0; purple 1; dark blue 2; light blue 3; light blue-green
4; green 5; light green 6; yellow 7; orange 8; red 9; grey 10. (Best viewed in color.)

4.5.2 Relevance prediction task

The results for the relevance prediction task are given in Table 4.4, which lists the
performance of the click models we consider in terms of NDCG scores at truncation
levels 1, 3, 5 and 10.

Table 4.4: Performance on the relevance prediction task. Improvements of (i) NCMRNN
QD ,

NCMLSTM
QD and NCMLSTM

QD+Q over CCM and (ii) NCMLSTM
QD+Q over the other neural click

models are statistically signi�cant (p < 0:05). The best results are given in bold.

NDCG

Click model @1 @3 @5 @10

CCM 0:741 0:752 0:785 0:846
NCMRNN

QD 0:762 0:759 0:791 0:851
NCMLSTM

QD 0:756 0:759 0:789 0:850
NCMLSTM

QD+Q 0:775 0:773 0:799 0:857
NCMLSTM

QD+Q+D 0:755 0:755 0:787 0:847
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4. A Neural Click Model

RQ 3.5. Table 4.4 shows that all neural click models outperform the best performing
PGM-based click model, CCM, in terms of NDCG. The differences between NCMRNN

QD

and NCMLSTM
QD are not statistically signi�cant. NCMLSTM

QD+Q outperforms NCMLSTM
QD and

NCMLSTM
QD by a large margin. Interestingly, the performance of NCMLSTM

QD+Q+D falls behind
that of NCMLSTM

QD+Q.
This shows that the neural click models produce better document rankings than

the PGM-based models. The differences between the neural click models can be
explained as follows. When ranking a query-document pair (q; d), NCMLSTM

QD uses
behavior information from historical query sessions generated by the query q and
whose SERPs contain the document d. NCMLSTM

QD+Q also uses behavioral information
from all historical query sessions generated by the query q, which helps, e.g., to
distinguish highly personalized SERPs and to discount observed clicks in these sessions.
NCMLSTM

QD+Q+D also uses behavioral information from all historical query sessions, whose
SERP contain the document d. However, this global information does not tell us much
about the relevance of the document d to the query q. It does, though, inform us
about the attractiveness of the document d, which leads to improvements on the click
prediction task (see Experiment 4).

4.5.3 Concepts learned by NCM

The results of the analysis of the NCMLSTM
QD+Q+D vector states are given in Figures 4.5 and

4.6. Figure 4.5 shows the t-SNE projections of the vector states sr for different ranks r.
It contains Figures 4.5(a), 4.5(b) and 4.5(c), in which the vector states sr are generated
for different sets of query sessions: Figure 4.5(a) uses a uniformly sampled subset of
query sessions in the test set (Sa); Figure 4.5(b) uses the query sessions in Sa that are
generated by queries that occur one time in the training set (Sb); Figure 4.5(c) uses the
query sessions in Sb that contain no clicks (Sc). Figure 4.6 plots the t-SNE projections
of the vector state s7 for different distances to the previous click.9 Here, we compute
the vector states for the query sessions in Sa, and then �lter out some vector states to
construct a balanced set that contains equal number of vector states for each distance
d = 0; 1; : : : ; 6.
RQ 3.6 (a). Figure 4.5(a) shows how the vector states sr for different ranks r are
positioned in the space learned by NCMLSTM

QD+Q+D. We �nd that the subspaces of s0 and s1
are well separated from the subspaces of sr computed at lower positions; the subspaces
of s2 and s3 are also separated from the subspaces of sr computed for other ranks,
but have a signi�cant overlap with each other. The subspaces of vector states sr for
ranks r > 3 have large overlaps with each other. We hypothesize that this is due to
the fact that other factors (e.g., query frequency and clicks on previous documents) are
becoming more important for modeling user behavior as rank r increases.

We test our hypothesis by �xing some of these factors. Figure 4.5(b) shows that
for query sessions generated by queries of similar frequencies (in our case, by queries
that occur one time in the training set), the subspaces of the vector states s0; : : : ; s6
are much better separated than the subspaces of the vector states s0; : : : ; s6 computed

9We choose s7 because the rank 7 is low enough to see a suf�cient number of distances but not too low to
suffer from sparsity.
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4.5. Results

Figure 4.6: Two-dimensional t-SNE projections of the vector state s7 for different
distances d to the previous click. Colors correspond to distances: black 0; blue 1;
blue-green 2; green 3; green-yellow 4; red 5; grey 6. (Best viewed in color.)

for query sessions generated by all queries (Figure 4.5(a)). Furthermore, Figure 4.5(c)
shows that for query sessions generated by queries of similar frequencies and having the
same click pattern (in our case, no clicks) the subspaces of sr are even better separated
by ranks. This is intuitive, because the less information there is to explain user behavior
(each query occurred only once and no clicks were observed), the more NCMLSTM

QD+Q+D
learns to rely on ranks.

Interestingly, Figure 4.5(b) shows that the subspaces of the vector states sr for
r > 1 consist of more than one dense clusters (see, e.g., s2). We explain this by the
fact that other factors, such as clicks on previous documents, are also memorized by
NCMLSTM

QD+Q+D. In particular, Figure 4.5(c) shows that for query sessions generated by
queries of the same frequency and having the same click pattern, the subspaces of the
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4. A Neural Click Model

vector states consist of single dense clusters.

From the above results, we conclude that NCMLSTM
QD+Q+D learns the concept �current

document rank� although we do not explicitly provide this concept in the document
representation. In particular, NCMLSTM

QD+Q+D strongly relies on the current document
rank to explain user browsing behavior on top positions. To explain user browsing
behavior at lower positions, NCMLSTM

QD+Q+D considers other factors to be more important.
However, NCMLSTM

QD+Q+D still discriminates most other ranks (we �nd this by limiting the
set of query sessions, which are used to compute the vector states sr, to query sessions
generated by queries of similar frequencies and having a particular set of clicks).

RQ 3.6 (b). Figure 4.6 shows how the vector states s7 for different distances to the
previous click are positioned in the vector state space learned by NCMLSTM

QD+Q+D. Here,
the distance to the previous click varies from 0 (no clicks above rank 7) to 6 (a click
on a document at rank 6). We �nd that the subspace of the vector states s7 in query
sessions containing a click at rank 6 (which corresponds to distance d = 1) is well
separated from the subspace of s7 in other query sessions. The subspace corresponding
to query sessions containing a click on the �rst position (d = 6) is also well separated
from the subspace corresponding to other query sessions. The subspaces of the vector
states s7 for distances d 2 f0; 2; : : : ; 5g have a signi�cant overlap with each other. Still,
the subspace corresponding to d = 2 is well separated from the subspace corresponding
to d = 5. Interestingly, the subspace corresponding to query sessions containing
no clicks on the �rst six documents (d = 0) has a larger overlap with the subspace
corresponding to query sessions containing a click on the second position (d = 5) than
with the subspace corresponding to query sessions containing a click on the �rst position
(d = 6).

These results show that NCMLSTM
QD+Q+D learns the concept of distance to the previous

click, although this information is not explicitly provided in the document representation.
In particular, the information about a click on the previous document is particularly
important. NCMLSTM

QD+Q+D also memorizes whether a user clicked on the �rst document.
NCMLSTM

QD+Q+D distinguishes well between the distances 2 and 5, but the subspaces of
the vector states computed for the pairs of distances (2; 3), (3; 4), (4; 5) have a large
overlap.

Zooming out, what we have learned from the t-SNE analysis of the NCMLSTM
QD+Q+D vector

states is that NCMLSTM
QD+Q+D learns to account (a) for the document rank, and (b) for the

distance to the previous click�the two most important concepts used in UBM, the
state-of-the-art PGM-based click model. However, these are not the only concepts
learned by NCMLSTM

QD+Q+D. All t-SNE projections contain a large number of clusters (of
different density and size) that group vector states by their similarities in the vector state
space learned by NCMLSTM

QD+Q+D. The large clusters are easily interpretable (e.g., they
group vector states by rank, distance to the previous click). Smaller clusters are less
easily interpretable, but their existence indicates that NCMLSTM

QD+Q+D also operates with
concepts that are not hard-coded in PGM-based click models.
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4.6 Conclusions and Future Work

In this chapter, we answered the following research question:

RQ 3 How to design a neural network that would be able to learn patterns in user click
behavior directly from logged interaction data?

We represented user browsing behavior as a sequence of vector states that describes the
information need of a user and the information available to the user during search. In
contrast to existing click models, which represent user browsing behavior as a sequence
of prede�ned binary events, the proposed representation is much richer, and thereby
enables us to capture more complex patterns of user browsing behavior than existing
click models. The proposed approach allows us to learn patterns of user behavior
directly from interaction data, circumventing the need for a prede�ned set of rules,
which are a key ingredient of existing click models.

We evaluated our approach on the click prediction task (i.e., to predict user clicks
on search engine results) and the relevance prediction task (i.e., to rank documents
by relevance based on historical user interactions). Our experimental results show
that the proposed approach (i) has better predictive performance in terms of perplexity
and log-likelihood for all query frequencies and at all ranks than DBN and UBM;
and (ii) produces better document rankings in terms of NDCG than DBN and UBM.
We also showed how to go beyond the level of query-document pairs and incorporate
information (i) about all query sessions generated by a given query and (ii) about all
query sessions containing a given document. The �rst yields a small improvement on the
click prediction task and a considerable improvement on the relevance prediction task.
The second yields a large improvement on the click prediction task and a signi�cant
deterioration on the relevance prediction task. Finally, we provided an analysis of the
best performing model on the click prediction task, which showed that (i) it learned
concepts such as �the current document rank� and �the distance to the previous click,�
which are used in UBM; and that (ii) it also learned other concepts that cannot be
designed manually.

As to future work, �rst, we want to extend our models to non-linear user browsing
behaviors, e.g., examining the �rst three documents and then clicking on the second
document. Second, we want to consider other types of (i) user action, e.g., clicking
on a sponsor advertisement, zooming on a result (in mobile search), reformulating a
query; (ii) query, e.g., audio queries (in voice search), image queries (in image search),
foreign language queries (in cross-lingual search); (iii) document, e.g., image results (in
image search); and (iv) interaction, e.g., mouse movements. Third, we want to extend
the modeling scope from a search engine result page to a search session. Fourth, we
want to incorporate information about the user, e.g., user pro�le, location, time, etc.

Another interesting future direction is to analyze the vector states that we used in this
chapter. A sequence of vector states provides a rich representation of the information
need of a user and its evolution during the search. The information encoded in such a
state can be used to detect positive abandonment or to distinguish user frustration from
exploration of search engine results.
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4.7 Appendix
Similarly to the neural click model framework described in §4.3.1, traditional click
models can be fully described by mappings I(�), U(�) and the function F(�) (see
Eqs. (4.1), (4.2) and (4.3)). Below, we specify these parameters for UBM and DBN.

User browsing model
The vector state sr can be represented with a tuple of four integer values (q; d; r; r0),
where the �rst component q denotes a query ID, the second component d denotes
the ID of a currently examined document, the third component r denotes the rank of
the currently examined document and the last component r0 denotes the rank of the
previously clicked document.

The mapping I(�) initializes s0 by setting the �rst component to the ID of a user’s
query and the other components to zero. The mapping U(�) updates the previous state
sr to the next state sr+1 as follows: the second component is set to the ID of the next
document dr+1, the third component is incremented by one, and the fourth component
is set to the third component of sr, if the previous document dr was clicked. The
interaction variable ir denotes a click event: ir = 1 if dr was clicked, and ir = 0
otherwise.

The function F(�) computes the probability that a user clicks on the currently exam-
ined document as a product of the examination probability r;r�r0 and the attractiveness
probability �q;d. Both r;r�r0 and �q;d are the parameters of the function F(�).

Overall, UBM can be formalized as follows.

I(q) = (QUERY ID(q); 0; 0; 0)
U(sr; it; dr+1) = (sr[1];DOC ID(dr+1); sr[3] + 1; h(sr; ir))

h(sr; ir) =

(
sr[3] if ir = 1
sr[4] otherwise

F(sr+1) = sr+1[3];sr+1[3]�sr+1[4] � �sr+1[1];sr+1[2]

Dynamic Bayesian network
The vector state sr can be represented with a tuple of two integer and one �oating-point
values (q; d; �), where the �rst component q denotes a query ID, the second component
d denotes the ID of a currently examined document, and the third component � denotes
the probability of examining the current document.

The mapping I(�) initializes s0 by setting the �rst component to the ID of a user’s
query, the second component to zero and the third component to one. The mapping U(�)
updates the previous state sr to the next state sr+1 as follows: the second component is
set to the ID of the next document dr+1, and the third component is updated according
the function g(sr; ir):

g(sr; ir) =

8
><

>:

(1� �sr[0];sr[1]) if ir = 1
(1� �sr[0];sr[1])sr[3]

1� �sr[0];sr[1]sr[3]
otherwise
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where , �q;d, and �q;d are the parameters of the mapping U(�).
The above formula can be interpreted as follows (see [34, Chapter 3] for more

details). If a user clicks on the current document (ir = 1), then according to DBN
she continues examining other documents if she is not satis�ed with the current one
(1� �q;d) and explicitly decides to continue (). The user skips the current document
(ir = 0) with probability (1� �q;d)�=(1� �q;d�), i.e., the user examines the current
document (�), but is not attracted by it (1� �q;d), normalized by the total probability of
no click (1��q;d�). In the case of a skip, the user continues examining other documents
with probability .

The function F(�) computes the probability that a user clicks on the currently
examined document as a product of the examination probability � and attractiveness
probability �q;d. Here, �q;d is the parameter of F(�), which is shared with the mapping
U(�).

Overall, DBN can be formalized as follows.

I(q) = (QUERY ID(q); 0; 1)
U(sr; it; dr+1) = (sr[1];DOC ID(dr+1); g(sr; ir))

F(sr+1) = sr+1[3] � �sr+1[1];sr+1[2]
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5
A Click Sequence Model

In Chapters 2, 3 and 4, we focused on modeling and predicting single interaction events,
namely clicks. In this chapter, we for the �rst time focus on modeling and predicting
sequences of interaction events. And in particular, sequences of clicks. We seek to
answer the following research question asked in §1.1:

RQ 4 What are the challenges in predicting sequences of clicks and how to solve them?

We formulate the problem of click sequence prediction and propose a click sequence
model (CSM) that aims to predict the order in which a user will interact with search
engine results. CSM is based on a neural network that follows the encoder-decoder
architecture. The encoder computes contextual embeddings of the results. The decoder
predicts the sequence of positions of the clicked results. It uses an attention mechanism
to extract necessary information about the results at each timestep. We optimize the
parameters of CSM by maximizing the likelihood of observed click sequences.

We test the effectiveness of CSM on three new tasks: (i) predicting click sequences,
(ii) predicting the number of clicks, and (iii) predicting whether or not a user will interact
with the results in the order these results are presented on a SERP. Also, we show that
CSM achieves state-of-the-art results on a standard click prediction task, where the goal
is to predict an unordered set of results a user will click on.

5.1 Introduction
Search engines play an important role in our everyday lives. One way to improve them
is by getting a better understanding of user search behavior, such as clicks, dwell times,
mouse movements, etc. So far, models of user behavior have focused on modeling and
predicting single events, e.g., clicks [34] and mouse movements [73], and properties of
these events, e.g., time between clicks [16]. In this work for the �rst time we focus on
modeling and predicting sequences of information interaction events and, in particular,
sequences of clicks.

Although people tend to make only one (or sometimes no) click on a search engine
result page (SERP), multi-click query sessions constitute a signi�cant part of search
traf�c. For example, about 23% of the query sessions in the Yandex relevance prediction

This chapter is based on Borisov, Wardenaar, Markov, and de Rijke [20].
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challenge dataset contain multiple clicks (see §5.4.1 for details). It is commonly assumed
that users traverse search results from top to bottom, which leads to the assumption
that clicks are ordered by the position of search results. However, it was shown that
in practice this assumption does not always hold, and that up to 27.9%�30.4% of
multi-click sequences, depending on the dataset, are not ordered by position [157].

We aim to create tools that help us understand, model and predict sequences of
clicks on search engine results, which is important because it provides an opportunity
for improving the user search experience. For example, knowing that a user is likely
to click on many results or that there are high chances that the user will interact with
the results in an order other than the one in which the results are presented on a SERP
can be used by a search engine to proactively show an advice or make a change in the
ranking.

We propose a click sequence model (CSM) that predicts a probability distribution
over click sequences. At the core of our model is a neural network with encoder-
decoder architecture. We implement the encoder as a bidirectional recurrent neural
network (bi-RNN) that goes over the search engine result page from top to bottom and
from bottom to top and outputs contextual embeddings of the results. We implement
the decoder as a RNN with an attention mechanism. The decoder is initialized with
the �nal states of the forward and backward RNNs of the encoder. It is used to predict
the sequence of positions of the clicked results. The whole network is trained by
maximizing the likelihood of the observed click sequences.

We evaluate our proposed CSM using a publicly available click log and show
that CSM provides a good means to generate a short list of K click sequences that
contains the observed click sequence with a high probability. We present an analysis
of the performance of CSM for query sessions with different numbers of clicks and
query sessions in which clicks are ordered/not ordered by position. We measure the
performance of CSM on three new tasks: predicting click sequences, predicting the
number of clicks and predicting ordered/unordered sequences of clicks. Additionally,
we show that CSM achieves state-of-the-art results on the standard click prediction task,
which allows us to compare CSM to traditional click models that model and predict
single events, namely clicks.

Overall, we make the following contributions:
C1 We formulate a novel problem of predicting click sequences.
C2 To solve this problem, we propose a click sequence model (CSM) based on neural

networks.
C3 We evaluate CSM on a range of prediction tasks, namely predicting click se-

quences, predicting the number of clicks, predicting ordered/unordered sequences
of clicks and, �nally, predicting clicks themselves.

As to the potential impact of the proposed CSM model, we believe it can be used to
predict that (i) a user will click on more than one result, which may indicate that a user
has a complex information need [96]; or that (ii) a user will interact with the results not
in the order in which these results are presented on the SERP, which may indicate that
a user is struggling and there are problems in the ranking of the results [125]. CSM
can help us identify queries for which there is room for improvement (in terms of user
experience) and it can serve as a quick analysis tool to interpret how a particular change
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in the ranking of the results will in�uence user click behavior.
The rest of the chapter is structured as follows. In §5.2 we provide a precise

statement of the click sequence modeling and prediction problems that we are tackling.
§5.3 introduces our neural network based model for predicting click sequences. In
§5.4 we describe the setup of our experiments and §5.5 presents the results of those
experiments. We describe related work in §5.6 and conclude in §5.7.

5.2 Problem Statement
In this section, we formulate the problem of click sequence prediction (§5.2.1) and
propose three prediction tasks that can be solved by a model capable of predicting click
sequences (§5.2.2).

5.2.1 Problem
Since the number and order of clicks may vary even for the same query and ranking
of results (e.g., due to different users and contexts), there exists no unique correct
click sequence, but a (possibly in�nite) set of probably correct sequences does exist.
Therefore, our main goal is to build a model that, given a query and a ranking of results,
describes these probably correct click sequences.

To achieve this goal, we de�ne the click sequence prediction problem as follows.
First, we learn a probability distributionM over all possible click sequences. Second,
we use this learned distribution to obtain the K most probable click sequences. These
K sequences are then used to reason about the properties of the set of probably correct
sequences mentioned above, e.g., predicting the expected number of clicks, the expected
order of clicks, etc.

More formally, we de�ne a click sequence modelM as follows:

M : P (s j q; r1; : : : ; rN ); (5.1)

where q is a query, r1; : : : ; rN is an ordered list of results and s is a sequence of positions
of the clicked results (p1; : : : ; pS).

5.2.2 Prediction tasks
There are many possible applications for a modelM that is capable of (i) predicting a
probability distribution over click sequences (Eq. 5.1), and (ii) retrieving the K most
probable click sequences. It can be used to simulate user behavior, which is important
in online learning to rank research [68, 142], or as a tool for analyzing how a particular
change in the ranking of results will in�uence user click behavior. However, we do not
investigate these applications in this work. Instead, we address three tasks that are both
practically useful and help to evaluate the performance of the modelM.

Task 1 (predicting the number of clicks)

The goal of this task is to predict on how many results a user will click. Clicking
on more than one result might indicate that a user has a complex information need.
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Clicking on more than three or four results might indicate that a user is struggling or
doing an exhaustive search [63, 125]. Both signals can be used by a search system to
proactively show an advice or make a change in the ranking. Thus, we formally de�ne
Task 1 as predicting whether a user will click on � L results.

To estimate the probability of clicking on � L results, we generate a large number
K (e.g., K = 1024) most probable click sequences s1; : : : ; sK and marginalize over
those sequences that have � L clicks:

P (jsj � L) =
X

s2fs1;:::;sKg

P (s)1[jsj � L]: (5.2)

Task 2 (predicting non-consecutive click sequences)

The goal of this task is to predict whether a user will interact with results in the order
these results are presented on a SERP or in a different order, which we refer to as a
non-consecutive order. Interacting with results in a non-consecutive order might indicate
that a user is struggling [140]. As mentioned in Task 1, such a signal can be used by a
search engine to proactively show an advice or make a change in the ranking.

Similarly to Task 1, we estimate the probability of clicking on results in a non-
consecutive order by summing probabilities of the K most probable click sequences
s1; : : : ; sK according toM in which a user clicks on a result ri after clicking on a result
rj located below ri (i < j):

P (#") =
X

s2fs1;:::;sKg

P (s)1[s is non-consecutive]: (5.3)

Task 3 (predicting clicks)

The last task is actually a standard task solved by click models [34]. The goal is to
predict a subset of the presented results r1; : : : ; rN on which a user will click. Being
able to predict that a user will not interact with a subset of results, opens the door for
reranking [172].

Similarly to Task 1 and Task 2, we estimate the click probability for position p by
summing probabilities of the K most probable click sequences s1; : : : ; sK according to
M in which a user clicks on that position:

Pclick(p j q; r1; : : : ; rN ) =
X

s2fs1;:::;sKg

P (s)1[p 2 s]: (5.4)

In practice, it is probably better to use simpler models to predict clicks. So we use this
task mainly to compare with existing work. We expect the results for a good modelM
to be not much worse compared to the results for click models speci�cally developed for
this task [34]. In fact, as we show in §5.5, CSM achieves state-of-the-art performance
on this task.
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5.3 Method

In this section we propose the click sequence model (CSM), a model for predicting
click sequences. We use s to denote a sequence of positions of the clicked results with a
special end of sequence (EOS) token appended to it, i.e., s = (p1; : : : ; pk;EOS).

CSM is a neural network that is trained to maximize the likelihood of observed click
sequences:

L(s1; : : : ; sjSj)! max
�
; (5.5)

where � denotes the network parameters and S = (s1; : : : ; sjSj) denotes click se-
quences used for training.

The network consists of two parts, called encoder and decoder. The encoder takes
a user’s query q and a list of search engine results r1; : : : ; rN as input and computes
embeddings of the results, r1; : : : ; rN . The embedded results r1; : : : ; rN are passed to
the decoder, which at each timestep t = 0; 1; : : : outputs a probability distribution over
N + 1 positions. Positions 1; : : : ; N correspond to clicking on the results r1; : : : ; rN .
The (N + 1)-th position corresponds to predicting that there will be no clicks (EOS).
Upon observing a click at timestep t, the decoder updates its current state using the
position pt of the clicked result. Figure 5.1 illustrates the work�ow in the form of a
UML sequence diagram.

In §5.3.1 we discuss the implementation of the encoder and decoder. Then, in §5.3.2
we explain how to achieve the main goal of this study, i.e., predict K most probable
click sequences using CSM. Finally, in §5.3.3 we specify training details.

5.3.1 Network architecture

Encoder

The aim of the encoder is to obtain information from a user’s query q and results
r1; : : : ; rN presented on a SERP, and pass this information to the decoder. We represent
the encoded information as a list of embeddings q; r1; : : : ; rN , where each result embed-
ding ri should contain: (i) information about the result ri, (ii) the results surrounding ri
and (iii) the query q. Below we sometimes use r0 instead of q to simplify the notation.

We propose to implement the encoder as a bidirectional recurrent neural net-
work, which goes over the SERP in the top down order, i.e., q; r1; : : : ; rN , and in
the reverse order, i.e., rN ; : : : ; r1; q. The �rst, forward RNN, produces embeddings
�!q (= �!r0:0);�!r0:1; : : : ;��!r0:N . The second, backward RNN, produces embeddings ���rN :N ,
. . . , ��rN :1, �q (=  ��rN :0). These embeddings are concatenated to form the �nal embed-
dings q(= r0); r1; : : : ; rN produced by the encoder.

We represent q; r1; : : : ; rN using the best performing behavioral features proposed
in Chapter 4. These features count the number of times a particular click pattern, i.e., a
set of positions of the clicked results, was observed on a SERP. A query q is represented
as a 2N dimensional vector, where each component counts the number of times a click
pattern was observed in query sessions generated by q. The representation of a search
result r consists of two parts, both of size N2N . The components of the �rst part count,
for each position p = 1; : : : ; N , the number of times a click pattern was observed
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5. A Click Sequence Model

Figure 5.1: Modeling click sequences with CSM.

in query sessions in which r appears on position p. The components of the second
part are similar, but include only query sessions generated by q. We apply a linear
transformation to these sparse behavioral features to obtain the embeddings x0; : : : ;xN
of q; r1; : : : ; rN , which are passed to the RNNs.
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We describe the encoder formally using Eqs. 5.6�5.9:

xi =

(
Embed(q) i = 0
Embed(ri) i = 1; : : : ; N

(5.6)

�!r0:0; : : : ;��!r0:N = RNNforward(x0; : : : ;xN ) (5.7)
 ���rN :N ; : : : ; ��rN :0 = RNNbackward(x0; : : : ;xN ) (5.8)

ri = [�!r0:i; ��rN :i] (i = 0; : : : ; N) (5.9)

Decoder

The aim of the decoder is to predict a probability distribution over (N + 1) positions at
each timestep. (As mentioned at the start of §5.3, the (N + 1)-th position corresponds
to predicting that there will be no clicks.) To make a good prediction at timestep (t+ 1),
we need to incorporate into the decoder the information about the position pt of the
result clicked at timestep t.

We propose to implement the decoder as an RNN that at each timestep t = 0; 1; : : :
outputs a vector ot used to predict the probability distribution, and updates its hidden
state using the position pt of the observed click at timestep t. We also use an attention
mechanism [5] to help the decoder extract the most relevant information from the list of
embeddings r0; : : : ; rN at each timestep.

We initialize the hidden state of the decoder RNN using the concatenation of the
�nal states of the forward and backward RNNs of the encoder, [��!r0:N ; ��rN :0], passed
through a linear transformation; we use Winit to denote the transformation matrix. To
obtain the probability distribution over (N + 1) positions at timestep t, we concatenate
the vector ot predicted by the decoder RNN and the attention vector at computed
at timestep t, and pass the result through a linear transformation Woutput followed by
softmax.1 We represent the position pt of the observed click at timestep t as a one-hot
vector pt of size N . And we apply a linear transformation Wpos to it before passing to
the decoder RNN.

We describe the decoder formally using Eqs. 5.10�5.13.

s0 = Winit[��!r0:N ; ��rN :0] (5.10)
at+1 = Attention(st; [r0; : : : ; rN ]) (5.11)

st+1;ot+1 = RNNstep(st;at;Wpospt) (5.12)
P (pt+1 j : : : ) = Softmax (Woutput[ot+1;at+1]) (5.13)

To alleviate the exploding gradient problem [9], we use gated recurrent units (GRUs) in
both the forward and backward RNNs of the encoder, and in the decoder RNN.

5.3.2 Beam search
As stated in §5.2.1, our main goal is to predict K most probable click sequences for a
given query and search results. These K sequences are then used to reason about actual

1 Using the output of an RNN together with an attention vector has been shown to improve prediction
performance [5, 129]. In the literature, this idea is known as deep output [129].
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user click behavior, i.e., sequences of clicks that a user could actually perform for the
given query and search results (we call them probably correct sequences, see §5.2.1).

CSM de�nes a probability distribution over in�nitely many click sequences. Ex-
tracting the K most probable sequences in this case is not straightforward (since we
cannot simply go over all sequences and pick the K best ones). We need a means of
generating the K most probable sequences without having to calculate the probability
for every possible click sequence. To do that, we suggest to use beam search [54].

In our experiments, we use K � 1024 and beam size = K. Setting the beam
size to K guarantees that the K sequences generated by beam search have the highest
probabilities according to CSM, i.e., they are indeed the most probable click sequences
according to CSM. Using a smaller beam size allows us to generate K sequences faster,
but does not guarantee that these sequences are the most probable ones.

5.3.3 Training

We learn the parameters � of the CSM network (both the encoder and decoder parts) by
maximizing the log-likelihood of observed click sequences. We optimize these parame-
ters using stochastic gradient descent (SGD). The learning rates for each parameter are
adjusted according to the Adam [90] algorithm using the default values of �1 = 0:9,
�2 = 0:999 and " = 10�8. We also use gradient clipping [130] with the norm set to 1
to alleviate the exploding gradient problem [9], which, as mentioned earlier, GRUs also
try to mitigate.

5.4 Experimental Setup

In this section we describe our experimental setup. We start by describing the data we
use to conduct our experiments (§5.4.1). Then we discuss our evaluation methodology
(§5.4.2), formulate research questions (§5.4.3) and list the experiments we run to answer
these research questions (§5.4.4).

5.4.1 Data

We use the Yandex Relevance Prediction dataset2 released in 2011 by Yandex, the major
search engine in Russia. The dataset consists of 146;278;823 query sessions ordered
by time. We use the �rst half of the dataset for training CSM, and 100;000 randomly
selected query sessions from the second half of the dataset for evaluation. In Chapter 4
we also use the �rst half of the dataset for training, which allows a direct comparison
with the results reported in this chapter.

The statistics about the number of query sessions in the test set split by the number
and order of clicks is given in Table 5.1.

2https://academy.yandex.ru/events/data_analysis/relpred2011/ (last visited
August 16, 2018)
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Table 5.1: The number of query sessions in the test set split by the number and order
of clicks. By ordered click sequences we mean those where a user clicks on results in
the order they appear on a SERP. The total number of click sequences in the test set is
100;000.

Number of clicks Ordered sequences Unordered sequences

0 30;466 0
1 46;550 0
2 8851 2143
3 3437 1856
4 1564 1290
5 751 814
6 407 512
7 244 305
8 156 195
9 85 137
10+ 73 164

5.4.2 Evaluation methodology
To properly evaluate the proposed CSM model, we would need to know a set of all (or
at least a sample of) probably correct click sequences for each test query and search
results. Then we could measure how well the K most probable sequences predicted by
CSM describe the properties of the known probably correct sequences.

In practice, however, we observe only one (or a few) of all probably correct click
sequences and, therefore, we cannot even argue about their properties. The best we
can do is to check whether the observed click sequence appears in the list of K most
probable sequences predicted by CSM. In particular, we measure recall@K, i.e., the
fraction of query sessions for which CSM includes the observed click sequence in the
list of K most probable sequences.

Since CSM is the �rst model for predicting click sequences, there are no baselines
to compare against. However, we can use as a reference level the percentage of query
sessions in which users interact with results in the order these results are presented on a
SERP. In our test data, this percentage equals 92:73%. This is an upper bound under
the assumption that a user scans search results sequentially from top to bottom. This
means that a model, that predicts only click sequences ordered by position, will contain
the observed click sequence in the list of K most probable sequences for � 92:73% of
query sessions.

Task 1 (predicting the number of clicks)

Predicting whether a user will click on � L results is a new task and, hence, there are
no standard metrics to evaluate performance on this task and no existing baselines to
compare to.

We propose to evaluate the performance on this task using perplexity and, because
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this is a classi�cation problem for a �xed L, area under curve (AUC). Perplexity
measures how �surprised� a model is upon observing � L clicks. AUC measures the
model’s discriminative power.

We use a naive baseline which predicts that a user will make � L clicks with a
constant probability calculated on the training set. The AUC of such a method is 0:5.

Task 2 (predicting non-consecutive click sequences)

Predicting whether a click sequence will be ordered by position is also a new task and,
similarly to Task 1, there are no standard metrics to evaluate the performance on this
task and no existing baselines to compare to.

Similarly to Task 1, we use perplexity and AUC. Our naive baseline predicts that a
click sequence will be ordered by position with a constant probability calculated on the
training set. The AUC of such a method is also 0:5, as in Task 1.

Task 3 (predicting clicks)

Following [46, 57, 59, 157], we evaluate the performance on the standard click predic-
tion task using perplexity, which measures how �surprised� a model is upon observing
an unordered set of clicks on search engine results.

We use the following click models as our baselines: DBN [27], DCM [60], CCM [60],
UBM [46] and NCM described in Chapter 4.

5.4.3 Research questions
We split RQ 4 into four subquestions:

RQ 4.1 How well does CSM, described in §5.3, predict probably correct click se-
quences?

(a) For how many query sessions does the observed click sequence occur in the
list of K most probable click sequences predicted by CSM? How fast does
this number increase with K?

(b) How well does CSM perform for query sessions in which clicks (i) follow the
order in which results are presented on a SERP, and (ii) do not follow the order
in which results are presented on a SERP.

(c) How well does CSM perform for query sessions with different numbers of
clicks?

(d) Do the K most probable click sequences provide a good means to reason about
the probability distribution over click sequences predicted by CSM?

RQ 4.2 How well does CSM predict the number of clicks on search results (see Task 1
in §5.2.2)?

RQ 4.3 How well does CSM predict whether or not a user will click on results in the
order they are presented on a SERP (see Task 2 in §5.2.2)?

RQ 4.4 How well does CSM predict clicks on search results (see Task 3 in §5.2.2)?
Does it reach the performance of the state-of-the-art click models?
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5.4.4 Experiments

We design our experiments to answer our research questions.

Experiment 1 (a). To answer RQ 4.1 (a), we measure the percentage of query sessions
for which the observed click sequence occurs in the list of K most probable click
sequences according to CSM. We use K = f1; 2; 3; : : : ; 1024g.

Experiment 1 (b). To answer RQ 4.1 (b), we measure the percentage of query sessions
for which the observed click sequence occurs in the list of K most probable click
sequences according to CSM separately (i) for query sessions in which clicks are
ordered by position, and (ii) for query sessions in which clicks are not ordered by
position. We use K = f1; 2; 3; : : : ; 1024g.

Experiment 1 (c). To answer RQ 4.1 (c), we measure the percentage of query sessions
for which the observed click sequence occurs in the list of K most probable click
sequences according to CSM for query sessions with � L clicks. We use K =
f1; 2; 3; : : : ; 1024g and L = f1; 2; 3; 4; 5g.

Experiment 1 (d). To answer RQ 4.1 (d), we compute the total probability of the
K most probable click sequences according to CSM. If this probability is close to
1, we conclude that using the K most probable click sequences is enough to form
a representative empirical distribution over click sequences. And, thus, the K most
probable click sequences provide a good means to reason about the properties of the
probability distribution over click sequences predicted by CSM. If the total probability
mass of the K most probable click sequences is small, we conclude that using these
sequences is not enough to reason about the probability distribution over click sequences
predicted by CSM. We use K = f1; 2; 3; : : : ; 1024g.

Experiment 2. To answer RQ 4.2, we compute probabilities of clicking on � L results
by marginalizing over the K most probable click sequences according to CSM (see
Eq. 5.2). We use these probabilities to compute perplexity and AUC. We use K = 1024
and L = f1; 2; 3; 4; 5g.

Experiment 3. To answer RQ 4.3, we compute the probability that a user will click on
results in the order these results are presented on a SERP by marginalizing over the K
most probable click sequences according to CSM (see Eq. 5.3). We use this probability
to compute perplexity and AUC, K = 1024.

Experiment 4. To answer RQ 4.4, we compute probabilities of clicking on each
result by marginalizing over the K most probable click sequences according to CSM
(see Eq. 5.4). We use these probabilities to compute perplexities for each position
and average these perplexity values over positions to obtain the �nal score. We use
K = 1024.

In our experiments, we use embeddings of size 256, and the same number of GRUs
in all RNNs. We train CSM using stochastic gradient descent with mini-batches of 64
query sessions and the parameters speci�ed in §5.3.3.
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5.5 Results
In this section we present the results of the experiments described in §5.4.4 and provide
answers to the research questions stated in §5.4.3.

5.5.1 Experiment 1 (a)
Figure 5.2 shows recall at different values of K (i.e., the percentage of query sessions
for which the observed click sequence occurs in the list of K most probable sequences
predicted by CSM) in linear and logarithmic scales. The percentage of query sessions
in which clicks are ordered by position equals 92:73%. We show it on the plots as a
reference level.

Figure 5.2: Percentage of query sessions for which the observed click sequence occurs
in the list of K most probable click sequences predicted by CSM (blue, solid) and
percentage of click sequences ordered by position (red, dashed).

We �nd that for 47:24% of query sessions, CSM assigns the highest probability
to the observed click sequence. For 62:76% of query sessions, the observed sequence
appears in the list of two sequences with the highest probabilities according to CSM.
Since the curve on the logarithmic scale is concave (see Figure 5.2, bottom plot),
we conclude that recall of CSM increases slower than logarithmically with K. The
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percentage of query sessions in which clicks are ordered by position can be seen as an
upper bound under the assumption that a user scans search results sequentially from top
to bottom. CSM does not make this assumption, and, as a result, is able to reach and
surpass this upper bound, achieving 96:26% recall at K = 1024.

Answering RQ 4.1 (a), we conclude that recall of CSM increases slower than loga-
rithmically with K, starting from 47:24% at K = 1 and reaching 96:26% at K = 1024,
which is higher than recall under the sequential assumption (92:73%).

5.5.2 Experiment 1 (b)

Figure 5.3 shows recall at different values of K (in linear and logarithmic scales) for
(i) all query sessions (black, solid), (ii) query sessions in which clicks are ordered by
position (blue, solid), and (iii) query sessions in which clicks are not ordered by position
(red, solid). Dashed lines show percentages of query sessions in the corresponding
groups, in which clicks on results happen in the order these results are presented on a
SERP. Obviously, the second group has 100% of query sessions with clicks ordered by
position (and, hence, the blue dotted line denotes recall of 1), while the third group has
no such sessions (and, hence, the red dotted line denotes recall of 0).

As we �nd in §5.5.1, CSM assigns the highest probability to the observed click
sequence for 47:24% of query sessions. If we consider only query sessions in which
clicks are ordered by position, this percentage goes up to 50:94% and then increases
slower than logarithmically with K (see Figure 5.3, bottom plot) achieving 99:62% at
K = 1024. However, if we consider only query sessions in which clicks are not ordered
by position, this percentage goes down to 0 and then increases logarithmically with K
for K � 5 (see Figure 5.3, bottom plot), achieving 53:37% at K = 1024.

It is to be expected that predicting click sequences, where clicks are not ordered
by position, is a much more dif�cult task than predicting ordered clicks. First, in
our training data the number of ordered click sequences is greater than the number of
unordered click sequences (see Table 5.1 for the statistic computed on the test set; the
training set shares the same distribution). Second, the number of possible ordered click
sequences is less than the number of possible unordered click sequences. For click
sequences of length L, there are

�N
L

�
= N !

L!(N�L)! possible ordered click sequences and
NL possible unordered click sequences.

And this is where CSM makes a difference: in more than 50% of cases, the observed
click sequence appears in the top K = 1024 sequences predicted by CSM. Note that
under the assumption that a user scans search results sequentially from top to bottom
such sequences cannot be predicted at all (see the red dotted line at zero recall). Even in
a simple case of predicting ordered click sequences, CSM almost reaches the perfect
recall of 1 for K = 1024.

Answering RQ 4.1 (b), we conclude that recall of CSM is much higher in query
sessions in which clicks follow the presentation order than in those in which users click
on higher ranked results after clicking on a lower ranked result.
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Figure 5.3: Recall at different values of K for (i) all query sessions (black, solid) (ii)
query sessions in which clicks are ordered by position (blue, solid), and (iii) query
sessions in which clicks are not ordered by position (red, solid). Dashed lines show
percentages of query sessions in the corresponding groups, in which clicks on results
happen in the order these results are presented on a SERP.

5.5.3 Experiment 1 (c)

Figure 5.4 shows recall at different values of K for (i) all query sessions and (ii) query
sessions with L clicks. Dashed lines show percentages of query sessions in which clicks
on results happen in the order these results are presented on a SERP.

For click sequences of length L = 0 and L = 1, recall of CSM approaches 1
(already for small values of K). Recall of CSM for sequences of length L = 2; 3; 4 at
K = 1024 is higher than the percentages of query sessions in which click sequences
of length L are ordered by position. For L = 5 and K = 1024, recall of CSM
approaches the percentage of query sessions in which click sequences are of length 5
and are ordered by position. For sequences of length � 2, recall of CSM �rst increases
logarithmically with K (for K � K0(L)), and then might increase both faster and
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Figure 5.4: Recall at different values of K for (i) all query sessions and (ii) query
sessions with L clicks. Dashed lines show percentages of query sessions in the cor-
responding groups, in which clicks on results happen in the order these results are
presented on a SERP.

slower then logarithmically with K depending on L and the range of K.
We can see that the longer a click sequence is, the more dif�cult it is to predict

such a sequence. This is intuitive and can be explained similarly to §5.5.2. First, we
have more training data for shorter click sequences (see Table 5.1). Second, the number
of possible click sequences of length L increases exponentially with L, making the
prediction task more dif�cult.

Answering RQ 4.1 (c), we conclude that recall of CSM is very high in query sessions
with a small number of clicks, and lower in query sessions with a larger number of
clicks.
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5.5.4 Experiment 1 (d)

Figure 5.5 plots, for different values of K, the total probability of K most probable
click sequences predicted by CSM averaged over query sessions in the test set. We
write

PK
i=1 PCSM(si) to denote this probability.

Figure 5.5: Total probability of the K most probable sequences predicted by CSM for
different values of K.

We �nd that the total probability of K most probable click sequences grows fast
with K, starting from 46:29% at K = 1 and 71:69% at K = 4, and achieving 91:81%
at K = 128 and 96:47% at K = 1024. Thus, even for modest values of K, the total
probability of the K most probable click sequences is not signi�cantly less than 1.

Answering RQ 4.1 (d), we conclude that the K most probable click sequences ac-
cording to CSM provide a good means to reason about the whole probability distribution
over click sequences predicted by CSM.

5.5.5 Experiment 2

The results on Task 1 (§5.2.2) are given in Tables 5.2 and 5.3. Table 5.2 shows the
perplexity of CSM upon observing a sequence of � L clicks. Table 5.3 shows the AUC
of CSM on the same task. Recall that the naive baseline predicts that a user will make
� L clicks with a constant probability optimized on the training set.

Table 5.2: Perplexity of observing a sequence of � L clicks. Lower values correspond
to better prediction performance.

L = 0 L � 1 L � 2 L � 3 L � 4 L � 5

Baseline 1:8512 1:7169 1:4450 1:2779 1:1784 1:1068
CSM 1:7155 1:6153 1:3852 1:2438 1:1602 1:1029

Both Tables 5.2 and 5.3 show that CSM predicts the number of clicks better than
the baseline and its performance increases with L (lower perplexity and higher AUC).
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Table 5.3: AUC for the task of predicting whether a user will click on � L results.

L = 0 L � 1 L � 2 L � 3 L � 4 L � 5

Baseline 0:5000 0:5000 0:5000 0:5000 0:5000 0:5000
CSM 0:7362 0:7278 0:7353 0:7535 0:7566 0:7795

The latter result is intuitive as more sequences have � L clicks for larger L and, thus,
the prediction task becomes easier as L grows.

Answering RQ 4.2, we conclude that CSM provides a good means to predict the
number of clicked results.

5.5.6 Experiment 3

The results on Task 2 (§5.2.2) are given in Table 5.4. The table shows the perplexity
and AUC of CSM when predicting a sequence of clicks ordered by position.

Table 5.4: Performance for the task of predicting whether a user will click on results in
the order these results are presented on a SERP. Lower values of perplexity and larger
values of AUC correspond to better prediction performance.

Perplexity AUC

Baseline 1:2984 0:5000
CSM 1:2788 0:6826

Table 5.4 shows that CSM outperforms the baseline in terms of both perplexity
and AUC. Thus, answering RQ 4.3, we conclude that CSM provides a good means to
predict whether a user will interact with results in the order these results are presented
on a SERP.

5.5.7 Experiment 4

The results on Task 3 (§5.2.2), i.e., the click prediction task, are given in Table 5.5.
Table 5.5 shows that CSM outperforms DBN, DCM, CCM and UBM by a large

margin and matches the performance of NCM proposed in Chapter 4. Answering
RQ 4.4, we conclude that CSM provides a good means to predict clicks on search
engine results, achieving the state-of-the-art performance.

5.6 Related Work

We describe two types of related work: user interactions in search and user modeling.
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Table 5.5: Perplexity for the click prediction task. Lower values correspond to better
prediction performance.

Click model Perplexity

DBN 1:3510
DCM 1:3627
CCM 1:3692
UBM 1:3431
NCM 1:3318

CSM 1:3312

5.6.1 User interactions in search

Log data from interactive systems such as search engines is one of the most ubiquitous
forms of data available, as it can be recorded at little cost [164]. These data have
become a popular source for improving the performance of search engines. In particular,
logged interactions have been successfully adopted to improve various aspects of
search, including document ranking [1, 80, 126], query auto-completion [79, 101]
and query suggestion [25, 166], to improve recommender systems [124], optimizing
presentations [161], and evaluation [67].

In the context of web search, many types of implicit information interaction behavior
have been studied over the years. Early work, e.g., by Craswell et al. [36], focuses on
single clicks and, in particular, on the �rst click. And assumes that a user abandons
examination of web results upon the �rst click. Guo et al. [60] expand on this by studying
sessions with multiple clicks, looking not just at the �rst click but also at follow-up clicks,
the last click and dependencies between clicks, re�ecting more complex information
behavior.

There is a very broad spectrum of research that studies and tries to interpret informa-
tion interaction behavior that involves multiple clicks, either by also taking additional
signals into consideration or by zooming in on speci�c aspects of sequences of clicks.
Examples of the former include work by Huurnink et al. [76] who examine click signals,
download behavior, and purchase signals in vertical search and �nd high degrees of
correlation between the three. Time, such as dwell time or time between user actions
such as clicks, has been found to be another important source of implicit signals [16]:
times elapsed between user actions provide a means to measure user satisfaction at the
result level [48, 89], session level [48, 61] and system level [29, 141]. And beyond that,
on mobile or screen-less devices there is range of interaction signals that are different
from signals familiar from desktop environment � due to the context of use and due to
gesture- and voice-based control, such as swipes, touch and voice conversations � and
that have not been studied extensively [92]. Our work differs from these publications as
we remain focused on click signals only and especially on sequences click signals.

Relevant examples of the studies that zoom in on speci�c aspects of multiple
click behavior include work on repeat behavior such as repeated examinations or
clicks [124, 170], which can be interpreted as strong evidence of the value ascribed
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to the result being examined or clicked again. In a similar vein, Scaria et al. [140]
consider back clicks and last clicks; in their view, back clicks suggest a lack of progress
on the current navigational path and, depending on contextual factors, last clicks mark
success or failure. Hassan et al. [63] and Odijk et al. [125] focus on aspects of click
sequences, including the number of clicks, their dwell time, and features to capture
whether the user was clicking on the same results or results from the same domain
multiple times, indicative of dif�culty locating a particular resource. Williams and
Zitouni [165] examine whether sequences of user interactions over time can be used
to differentiate between good and abandonment and train an LSTM to distinguish
between the two types of behavior. Especially relevant is the work by Wang et al.
[157], who consider non-sequential examination and click behavior, both through an
eye-tracking study and a log-based study. They arrive at several behavioral principles,
for instance (i) between adjacent clicks, users tend to examine search results in a single
direction without changes, and the direction is usually consistent with that of clicks;
and (ii) although the examination behavior between adjacent clicks can be regarded
as locally unidirectional, users may skip a few results and examine a result at some
distance from the current one following a certain direction.

5.6.2 Modeling user interactions
To understand, describe and predict various types of user interactions discussed above,
a number of user interaction models have been proposed aimed at modeling clicks [34],
mouse movements [39], dwell time [89, 106], etc.

So far, modeling user clicks in search has attracted the most attention [34]. Click
models usually represent clicks as binary random variables and construct a PGM that
describes the dependencies between clicks and other (usually hidden) random variables,
such as attractiveness (i.e., whether a snippet is attractive to a user given a query)
and examination (i.e., whether a snippet is examined by a user) [27, 36, 46, 59, 60].
The advantage of PGM-based click models is that they intuitively describe user click
behavior and can predict future clicks based on past observations [34]. Some click
models take into account the order in which a user interacts with the results in order
to better model and predict clicks [110, 157, 159, 168, 171]. However, such models
either do not aim at predicting click sequences [110, 157, 159, 168] or consider only
very short sequences of clicks [171].

Recently, neural click models have been proposed [17, 180]. The advantage of these
models is that they do not require manually constructed PGMs to describe and predict
user clicks, but rely on raw click data to learn hidden click patterns. Neural click models
have better click prediction accuracy, but suffer from uninterpretability of the learned
neural model as opposed to easily interpretable PGM-based click models. Also, as
before, neural click models cannot predict sequences of clicks.

In addition to clicks, mouse movements between search results and various search-
related timings have been studied and modeled. The probability of hovering over one
element of a SERP after hovering over another element is predicted using the Farley-
Ring model in [39]. Dwell time is modeled though Weibull and gamma distributions
in [89, 106]. More timings, such as time between clicks, time to �rst/last click, etc., are
considered in [16], where, in addition to the above distribution-based models, a context
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bias is modeled using neural networks.
What our work adds on top of the work listed above is our focus on sequences of clicks,
and in particular on describing a set of probably correct click sequences.

5.7 Conclusions and Future Work
We studied the problem of predicting sequences of user interactions and, in particular,
sequences of clicks. Speci�cally, we answered the following research question:

RQ 4 What are the challenges in predicting sequences of clicks and how to solve them?

We formally de�ned the problem of click sequence prediction and introduced the notion
of probably correct click sequences. Furthermore, we proposed CSM, a neural network
based model for predicting a probability distribution over click sequences. We advocated
for using the K most probable click sequences predicted by CSM as a set probably
correct click sequences. And we suggested to use these K click sequences to reason
about the properties of the probability distribution over click sequences, such as the
expected number of clicks and the expected order of clicks.

We evaluated the quality of CSM on a publicly available dataset. First, we showed
that even for modest thresholds the K (larger than the threshold) most probable click
sequences predicted by the CSM constitute a substantial part of the total probability
mass assigned by the CSM to all possible click sequences, and thus can be regarded as
probably correct click sequences predicted by CSM. We proposed to judge the success
of a click sequence modelM by the fact that the observed click sequence occurs in the
list of the K most probable click sequences predicted byM. We measured performance
of CSM using recall@K, a metric that is also used to evaluate the performance of
approximate nearest neighbor search methods [78, 120]. Our results showed that
recall@K grows fast with K, starting from 47:24% at K = 1 and reaching 96:26% at
K = 1024. We also found that recall@K increases slower with K in query sessions
with larger number of clicks and in query sessions where users click on higher ranked
results after clicking on a lower ranked result.

We also evaluated CSM on three prediction tasks: (i) predicting the number
of clicks, (ii) predicting non-consecutive click sequences, and (iii) predicting clicks.
The �rst two tasks were proposed in our work for the �rst time and the last one is a
standard task used to evaluate click models. We found that CSM shows reasonable
performance on the �rst two tasks, outperforming naive baselines that predict (i) that
a user will click on � L results, and (ii) that a user will click on the results in a non-
consecutive order with a constant probability optimized on the training set. Finally,
we observed that CSM reaches state-of-the-art performance on the task of predicting
clicks, outperforming PGM-based click models DBN [27], DCM [60], CCM [60] and
UBM [46] by a large margin, and matching the results of NCM proposed in Chapter 4,
which is also implemented as a neural network.

In contrast to previous studies, which focus on modeling and predicting separate
interaction events (e.g., a click on a result or mouse movement between two results)
and properties of these separate events (e.g., time between clicks), our work focuses on
understanding, modeling and predicting sequences of these events.
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As to future work, we see two main directions: (i) to consider other representations
of the user’s query and the results returned by a search engine, and (ii) to extend CSM to
non-linear SERP layouts. The user’s query can be represented by its text, and the results
by their content (title, snippet and main content). We believe that using content-based
representations will allow us to learn more interesting dependencies between the results,
and improve the performance for rare queries. The encoder proposed in §5.3.1 makes
use of the fact that search results are presented as a list. Recommender systems present
their results using non-linear layouts. Generalizing the encoder will make CSM suitable
for applications outside of web search.
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6
A Context-aware Time Model

In web search, information about times between user actions has been shown to be a
good indicator of users’ satisfaction with the search results. Existing work uses the
mean values of the observed times, or �ts probability distributions to the observed times.
This implies a context-independence assumption that the time elapsed between a pair
of user actions does not depend on the context, in which the �rst action takes place.
We test this assumption using logs of a commercial web search engine and discover
that it does not always hold. For between 37% to 80% of query-result pairs, depending
on the number of observations, the distributions of click dwell times have statistically
signi�cant differences in query sessions for which a given result (i) is the �rst item to
be clicked and (ii) is not the �rst. In this chapter, we answer the following research
question asked in §1.1:

RQ 5 How to correctly interpret times between user actions observed in different
contexts?

To account for the context bias effect mentioned above, we propose a context-aware
time model (CATM). The CATM allows us (i) to predict times between user actions
in contexts in which these actions were not observed, and (ii) to compute context-
independent estimates of the times by predicting them in prede�ned contexts. Our
experimental results show that the CATM provides a better means than existing methods
to predict and interpret times between user actions.

6.1 Introduction
Search engine logs provide a rich source of information about user browsing behavior
in web search. Recently, many models have been proposed to explain and predict user
clicks on search engine results [34]. While click events are the most widely logged form
of user interaction, there are also other behavioral signals that need to be understood,
interpreted and modeled, and that can be used for ranking or prediction purposes.

We focus on behavioral signals based on times between user actions. The ability
to accurately predict (i) click dwell time (i.e., time spent by a user on the landing page
of a search result), and (ii) times from submission of a query to the �rst/last click on

This chapter is based on Borisov, Markov, de Rijke, and Serdyukov [16].
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the results and to the next query submission (if none of the results will be clicked)
allows us to optimize search engines for constructing result pages and suggesting query
reformulations that minimize time it takes users to satisfy their information needs.

Existing work shows that times elapsed between user actions provide a means to
measure user satisfaction at the result level [48, 89], session level [48, 61] and system
level [29, 141]. To interpret times elapsed between user actions, existing work uses mean
values of the observed times [1�3, 26, 29, 61�63, 107, 108, 125, 141], or �ts probability
distributions to the observed times [89, 106]. This implies a context-independence
assumption that the time elapsed between a pair of user actions does not depend on the
context in which the �rst action takes place.

We test this assumption by comparing the distributions of times associated with the
same user action (i.e., submitting a given query or clicking on a given result presented
for a given query), but preceded by different sequences of user interactions with the
search engine. We �nd statistically signi�cant differences between these distributions,
which we explain by a context bias effect, not previously reported in the literature.

To account for the context bias effect, we propose a context-aware time model
(CATM) that allows us to predict probability distributions of times between two user
actions in a given context (which we represent by a sequence of previous user inter-
actions with the search engine). The CATM can be used (i) to predict times between
user actions in contexts, in which these user actions were not observed, and (ii) to
compute context-independent estimates of the times by predicting them in prede�ned
contexts. The context-dependent predictions can be used for personalized ranking and
personalized query suggestion. The context-independent predictions can be used for
predicting result relevance and in other tasks that use historical times between user
actions.

We evaluate the CATM on four temporal prediction tasks (i.e., tasks in which we
predict the time elapsed between two user actions), and �nd that the CATM outperforms
the standard time modeling approach that �ts probability distributions to the times
observed for the �rst user action. We test the CATM’s context-independent predictions
of times between consecutive clicks on a ranking task (i.e., to rank a set of results
by their relevance to a query), and �nd that the produced rankings result in better
performance in terms of relevance than the rankings produced by the standard time
modeling approaches.

In summary, we make the following contributions in this chapter.
C1 We introduce the notion of context bias in times elapsed between user actions,

which has not previously been reported in the literature, and use logs of a com-
mercial search engine to provide empirical evidence for it.

C2 We propose a context-aware time model. Through the use of contextual infor-
mation (and, in particular, previous user interactions with a search engine), it
provides a better means for predicting and interpreting times between user actions
than existing time modeling techniques.

The rest of the chapter is organized as follows. In §6.2 we specify the considered
temporal prediction tasks. In §6.3 we propose the context-aware time model. In §6.4 we
detail our experimental setup and in §6.5 we present the outcomes of our experiments.
We discuss related work in §6.6 and conclude in §6.7.
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6.2 Temporal Prediction Tasks
We describe and motivate temporal prediction tasks that we consider in our work. In
each task we aim to predict the time elapsed between a pair of user actions. The user
actions can be of several types: submission of a query, click on a search result, click
on an ad banner, scroll through search results, zoom in on a search result (in mobile
search), etc. Here, we focus on user actions of the �rst two types: submission of a query
(Q-action) and click on a search result (C-action), because these user actions occur in
all search systems.

To de�ne a temporal prediction task, we need to specify a set of action pairs between
which we aim to predict times. When choosing these pairs, we follow two principles:

1. We select pairs of user actions for which the time elapsed between them is
indicative of user satisfaction. The ability to predict times that help to anticipate
user satisfaction with search results, allows us to construct result pages that
maximize user satisfaction with the search.

2. We select pairs of user actions for which the times elapsed between them have
a similar nature (i.e., similar human interpretations). This is important, because
times that have different human interpretations are likely to be unequally useful
in practical applications, and can also be used in different scenarios. Thus, we
want to be able to measure the prediction performance of each group of times
separately.

We de�ne four temporal prediction tasks: time-to-�rst-click, time-between-clicks, time-
to-last-click, and time-from-abandoned-query. The pairs of user actions used in each
task are shown in Figure 6.1. Below, we describe them in more detail and provide

Figure 6.1: Times between pairs of user actions used in the considered temporal
prediction tasks.

motivations for our focus on these speci�c tasks.
Time-to-�rst-click is the time between a submission of a query and the �rst click on
search engine results (unde�ned if there were no clicks on search results). Existing
work shows that this time re�ects the quality of result presentation: the less time it
takes a user to �nd an attractive result, the better in terms of user experience the search
engine result page (SERP) is [134]. The ability to predict time-to-�rst-click allows
us to construct SERPs that are more intuitive to users, i.e., require less time/effort
to �nd relevant results. Practically speaking, the predicted time can be used in any
application that uses the average time-to-�rst-click observed in search engine logs as its
more precise alternative. Existing work uses the average time-to-�rst-click observed
for a query-result pair as a feature to predict search task dif�culty [3], search goal
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success [61, 62], urgent information needs (e.g., how to stem a severe bleeding) [119];
and the average time-to-�rst-click observed for a user to cluster users based on their
SERP examination strategies [24].
Time-between-clicks is the time between two consecutive clicks on search engine
results (unde�ned for the last click on search results). We use this time as a proxy for
click dwell time (i.e., the time spent by a user on the landing page of a search engine
result), which has been shown to be a good indicator of click satisfaction [89]. The
ability to predict click dwell time allows us to construct SERPs that yield more satis�ed
clicks, e.g., by using the predicted time-between-clicks as a feature for the search result
ranker. Agichtein et al. [1, 2] use average click dwell times to improve result relevance.
The Yahoo! Learning to Rank dataset [26] uses them as features for ranking. The
predicted dwell times can also be utilized in most other applications that make use of
the average click dwell times observed in search engine logs, which include prediction
of click satisfaction [89], result usefulness [107], search task dif�culty [3, 108], search
goal success [61, 62], struggling vs. exploring behavior [63, 125].
Time-to-last-click is the time between a submission of a query and the last click on
search engine results (unde�ned if there were no clicks on search results). Radlinski
et al. [134] show that this time re�ects the quality of search engine results: the less
time it takes a user to �nd a relevant result, the better in terms of user experience the
search engine results are. The ability to predict time-to-last-click allows us to suggest
queries that require less time (effort) to satisfy user’s information needs. The predicted
times can be used as features for query suggestion and for other applications such as
prediction of search task dif�culty and search goal success (playing a similar role as the
average time-to-�rst-click).
Time-from-abandoned-query is the time from a submission of an abandoned query
(i.e., a query with no clicks) to the next query submission. Song et al. [147] show
that this time re�ects the quality of search engine results in query sessions with no
clicks (thus, it is complementary to time-to-last-click, which is de�ned in query sessions
with at least one click). A short time interval indicates user dissatisfaction (negative
abandonment): the user could quickly see the problem with the presented results and
it took them little time to reformulate the query. A large time interval indicates user
satisfaction (positive abandonment): the user most likely could �nd the answer on the
SERP, and it took them some time to come up with the next query. The ability to predict
time-from-abandoned-query allows us to suggest queries with high chances of positive
abandonment and to avoid suggesting queries that are likely to be quickly reformulated.
Similar to time-to-last-click, the predicted time-from-abandoned-query can be used for
query suggestion, prediction of task dif�culty, search goal success, etc.

There are several other times-between-user-actions that have previously been con-
sidered in the literature, but that we do not seek to predict in this chapter for the reasons
discussed below.
Time-between-last-click-and-next-query is the time between the last click on search
engine results presented for one query and the submission of the next query. Some
previous work uses both this time and the time-between-clicks as a proxy for click dwell
time (called server-side click dwell time) [88, 89]. While both times approximate click
dwell time, there are important differences between them: time-between-clicks is a sum
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of the actual click dwell time and the time to choose the next result to click (which
is typically small and exhibits low variance), while time-between-last-click-and-next-
query is a sum of the actual click dwell time and the time to formulate the next query
(which is sometimes large, and exhibits high variance). Because of these differences in
nature, we do not want to model time-between-clicks and time-between-last-click-and-
next-query together (see principle 2). We do not create a temporal prediction task for
time-between-last-click-and-next-query, as it is very similar to the time-between-clicks
task, but the observed times are likely to be more noisy.
Time-to-�rst-satis�ed-click is the time between a submission of a query and the �rst
click classi�ed as satis�ed. This time can be seen as a generalization of time-to-�rst-click
and time-to-last-click: if we classify all clicks as satis�ed, time-to-�rst-satis�ed-click
reduces to time-to-�rst-click; if we classify only the last click as satis�ed, time-to-
�rst-satis�ed-click reduces to time-to-last-click. Most work de�nes satis�ed clicks
as clicks with dwell times larger than a prede�ned threshold (e.g., 30 seconds) [48].
Kim et al. [89] propose a method to adjust this threshold individually for each search
result. We do not create temporal prediction tasks for all possible de�nitions of satis�ed
clicks, because we believe that the temporal prediction tasks for time-to-�rst-click and
time-to-last-click capture the most important phenomena.

6.3 Method

Now that we have speci�ed the temporal prediction tasks, we describe our approach to
modeling times between user actions. In §6.3.1 we formalize the problem and introduce
the notation. In §6.3.2 we describe two frameworks for modeling times between user
actions. In §6.3.3 we describe the context-aware time model (CATM).

6.3.1 Problem statement
Let the sequence (a1; t1); : : : ; (an; tn) be a search history, which consists of user
actions a1; : : : ; an and their timestamps t1; : : : ; tn. We aim to design a time model for
predicting times �i!j = tj � ti elapsed from the action ai to the action aj . We consider
a probabilistic formulation of this problem, where the time �i!j is a random variable
with a probability density function f(x; �), where � denotes a set of parameters of the
probability distribution.

To describe a probabilistic time model we need to specify a probability density
function f(x; �) and an algorithm to compute its parameters �. Common choices for
f(x; �) are the exponential, gamma and Weibull probability density functions [89,
106]; see Table 6.1 for their parameterizations. Below, we discuss the frameworks for
computing the function parameters �.

6.3.2 Time modeling frameworks
We describe two frameworks for modeling times between user actions. The �rst
framework, called basic time modeling framework, makes the context-independence
assumption that time between a pair of user actions depends solely on the �rst action
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Table 6.1: Probability density functions and their parameters.

Distribution PDF f(x; �) Parameters �

Exponential ae�ax a > 0

Gamma
xa�1e�x=b

ba�(a)
a; b > 0

Weibull
a
b

�x
b

�a�1
e�(x=b)a

a; b > 0

ID, i.e., for submitting a query (Q-action), a unique identi�er of the query string, and
for clicking on a search result (C-action), an identi�er of the query-result pair. The
second framework, called context-aware time modeling framework, does not make the
context-independence assumption and assumes that time between a pair of user actions
depends on the �rst action ID and on the context in which the �rst action takes place.

Basic time modeling framework

Time models operating within the basic time modeling framework make the context-
independence assumption that time �i!j depends solely on the �rst action ID. We
formalize this as �i!j � f (x; � = �(ai)), where � denotes a mapping from the space
of actions A to the space of parameters of the probability density function f(x; �).1 We
learn the mapping � by maximizing the likelihood of the observed times �i!j . The
corresponding optimization problem can be formalized as follows:

DATA = f(ai; �i) j ai 2 A; �i 2 [0;1)gNi=1 (6.1)
�i � f(x; � = �(ai)) (6.2)

b� = arg max
�

NY

i=1

f(�i; � = �(ai)): (6.3)

Here, we write N to denote the total number of observations, b� to denote the solution
of this optimization problem, and we also change � indices to simplify the notation.

Without any constraints on the mapping b�, this optimization problem can be further
decomposed into a set of per action ID maximum likelihood estimation (MLE) problems
(we apply the logarithm function, which is monotonic and therefore does not change
the result of the arg max operator):

b�(a) = arg max
�

NX

i=1

Ia(ai) log f(�i; �); (6.4)

where Ia(x) denotes the indicator function, i.e., 1 if x = a and 0 otherwise. For the
exponential distribution, the MLE of its parameter (Table 6.1) is the inverse of the mean

1Where no confusion can arise, we write ai to denote both the action performed by a user and the action
ID.
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of the observed times. For the gamma and Weibull distributions, there is no closed form
solution for the MLE problem. But it is possible to express one of their parameters
as a function of the other one and �1; : : : ; �N , and to reduce the MLE problem to
minimization of a scalar function.

Existing work on modeling click dwell times [89, 106] operates within the basic time
modeling framework and follows the described approach to estimate their parameters.

Context-aware time modeling framework

We argue that considering only the ID of the �rst action is not enough to accurately
model the time �i!j , and propose, in addition to using the ID of ai, to use the context ci
in which the action ai takes place. We formalize this as �i � f (x; � = �(ai; ci)),
where � denotes a mapping from the Cartesian product of the space of actions A and
the space of contexts C to the parameters of the probability density function f(x; �).

Similar to Eqs. 6.1, 6.2 and 6.3, the optimization problem in the context-aware time
modeling framework can be formalized as follows:

DATA = f(ai; ci; �i) j ai 2 A; ci 2 C; �i 2 [0;1)gNi=1 (6.5)
�i � f(x; � = �(ai; ci)) (6.6)

b� = arg max
�

NY

i=1

f(�i; � = �(ai; ci)): (6.7)

However, without any additional constraints on the mapping b�, the solution of this
optimization problem will have very poor generalization due to the sparsity of action-
context pairs (ai; ci). Let us illustrate this using a few simple de�nitions of the context ci:
(i) number of previously clicked results, (ii) positions of previously clicked results,
(iii) positions of previously clicked results and times between previous clicks. For these
de�nitions of the context ci, we list in Table 6.2 the number of unique action-context
pairs (ai; ci) for which we need to estimate parameters �. We see that the number of b�

Table 6.2: Number of unique action-context pairs (ai; ci) for different de�nitions of the
context ci; N denotes the number of results on a SERP; T denotes the number of time
intervals we consider.

Context ci # of unique (ai; ci)

None O(jAj)
Number of previously clicked results O(jAj �N)
Positions of previously clicked results O(jAj �NN )
Positions of previously clicked results
and times between previous clicks O(jAj � (N � T )N )

parameters becomes too large to be able to estimate them using the amount of log data
that can be generated by search engines.

The natural way to handle this problem is to constrain the family of mappings b� in
Eq. 6.7. In §6.3.3, we describe the context-aware time model that operates within the
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proposed context-aware time modeling framework and provides a way to constrain the
family of mappings b�.

6.3.3 Context-aware time model
In §6.3.2 we introduced the context-aware time modeling framework that models times
between two user actions using the ID of the �rst action and the context in which it takes
place. To construct a model that operates within this framework, we need to specify
(i) the probability density function f(x; �), (ii) representation of the context ci, and
(iii) constraints on the mapping b� (Eq. 6.7). We also need to describe the solution of
the optimization problem (6.5)�(6.7) for the chosen constraints.

Probability density function f(x; �)

We follow previous work [89, 106] and use the exponential, gamma and Weibull
probability density functions.

Context ci

We represent the context ci, in which the action ai takes place, by a sequence of user
interactions with a search engine that preceded the action ai. We list the attributes that
we use to describe the user interactions in Table 6.3.

Table 6.3: Attributes we use to describe user interactions with a search engine.

General

Is Q-action (0: no, 1: yes)
Is C-action (0: no, 1: yes)
log (1 + observed time since previous action) (0: unde�ned)
log (1 + average time since previous action) (0: unde�ned)

Q-action

Is new search session (0: no, 1: yes)
Number of terms in issued query (0: unde�ned)
BM25 (issued query; previous query) (0: unde�ned)
BM25 (previous query; issued query) (0: unde�ned)

C-action

Is click on the 1st position (0: no, 1: yes)
. . . . . .
Is click on the 10th position (0: no, 1: yes)

The �rst two attributes from the general section distinguish between Q- and C-
actions. The third and fourth attributes inform us about the actual times observed
between the previous actions and the average times between them. This information is
useful to account for the user’s reading speed, persistence, etc.

82



6.3. Method

The �rst attribute from the Q-action section informs us about whether the query is
the �rst in a search session or not. It is useful to distinguish between the cases (i) when
a user has just started browsing, and (ii) when a user has been browsing for some time.
In §6.5.1 we show that these cases may result in different probability distributions of
times from submitting a query to the �rst click on the results, last click on the results
and next query submission (if none of the results will be clicked). The second, third and
fourth attributes from the Q-action section inform us about the query’s similarity with
the previous query.

The attributes from the C-action section inform us about the position of the clicked
result. Existing work shows that the position of a result in�uences users’ trust in the
result’s usefulness, which affects their decisions whether to click or not [34]. We allow
for the possibility that the result’s position might affect the time from clicking on the
result to other actions.

Constraints on the mapping b�(ai; ci)

Without any constraints on the mapping b�, the solution of the optimization prob-
lem (6.5)�(6.7) will have very poor generalization due to a very large number of
action-context pairs (see §6.3.2). To deal with this problem we impose additional
constraints on the family of mappings b�. In particular, we limit the family of possible
mappings b�(ai; ci) to the ones that can be decomposed into the mappings b�A(ai) and
b�C(ci) de�ned on the space of actions A and the space of contexts C, respectively.
Not only does this reduce the number of effective b� parameters from O(jAj � jCj) to
O(jAj+ jCj), but it also separates action-speci�c and context-speci�c parameters. The
latter allows us (i) to estimate times between user actions in contexts in which these
user action were not observed; and (ii) to estimate context-independent parameters of
times between actions, which can be used for ranking and other prediction tasks that
use historical times between user actions.

Now that we have described the constraints on the mapping b� at the functional level,
we need to explain the mapping b�A, the mapping b�C , and the decomposition of the
mapping b� into the mappings b�A and b�C in more detail.
Mapping b�A. The mapping b�A is an equivalent of the mapping � in the basic time
modeling framework. As in that setting, we treat it as a table of per action ID parameters,
which we call context-independent parameters of the function f(x; �). Thus, the number
of parameters of the mapping b�A is O(jAj).

Mapping b�C . The mapping b�C describes how to adjust context-independent parame-
ters computed by the mapping b�A to account for the context in which the �rst action
takes place. We want this mapping to have O(jAj) parameters so as not to increase the
asymptotic number of parameters compared to time models that operate within the basic
time modeling framework. Implementing the mapping b�C as a table of per context
parameters will lead to a total ofO(jCj) parameters, which is likely to dominateO(jAj).
Thus, we decide to implement the mapping b�C using a machine learning algorithm. In
particular, we implement it as a recurrent neural network (RNN) with long short-term
memory (LSTM) cells [66]. We choose this architecture, because we represent the
context ci as a sequence of numerical attributes (see §6.3.3); and for tasks that involve
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processing sequential data, RNNs have demostrated strong performance on a wide
range of tasks. See examples in language modeling [117], speech recognition [56] and
machine translation [148]. By using an RNN we reduce the number of b� parameters
to O(N �M), where N denotes the number of attributes we use to represent user
interactions with the search engine (18 in our work) and M denotes the maximum
number of units in the RNN layers (256 in our work). As N �M � jAj, we satisfy
the O(jAj) requirement.

Decomposition of b� into b�A and b�C . A decomposition of b� into b�A and b�C
describes how to compute the parameters � of the probability density function f(x; �)
from the action-speci�c parameters b�A(ai) and the context-speci�c parameters b�C(ci).
We want the action-speci�c parameters b�A(ai) to be context-independent estimates
of parameters of the probability density function f(x; �) for the action ID ai (see the
discussion above), and the context-speci�c parameters b�C(ci) to be coef�cients that
inform us about how to adjust b�A(ai) to account for the context ci. One natural way to
achieve it is (i) to have two context-speci�c parameters � and � for each action-speci�c
parameter �i, and (ii) to apply a linear transformation g(�i) = ��i + � to compute the
context-dependent parameters of the probability density function. We formalize it as:

b�(ai; ci) = b�A(ai) � b�0
C(ci) + b�1

C(ci): (6.8)

Here, b�0
C(ci) and b�1

C(ci) constitute the �rst and the last halves of the vector b�C(ci),
which contains two times more elements than b�A(ai), and the symbol � denotes the
element-wise product.

Learning the mappings b�A(ai) and b�C(ci)

Now, we describe an approximate solution of the optimization problem (6.5)�(6.7)
with the constraints on the mapping b� de�ned in §6.3.3. This problem does not have
closed form solutions for the mappings b�A and b�C . Therefore, we propose an iterative
algorithm to compute them (see Algorithm 1). We use b�(ai; ci) = F(b�A(ai); b�C(ci))
as a generalized version of Eq. 6.8.

The algorithm initializes the mapping b�A with the solution of the optimization
problem (6.1)�(6.3) in the basic time modeling framework (line 1). Then it alternates
between learning b�C while �xing b�A (line 3) and learning b�A while �xing b�C (line 4)
until convergence. In our experiments the process converges after 5�10 iterations (i.e.,
passes through the loop). It is easy to show that the likelihood does not decrease between
the iterations.

To �nd the best b�C while �xing b�A (Algorithm 1, line 3), we use the stochastic
gradient descent (SGD) algorithm with minibatches, because this is the most widely
used algorithm for training neural networks [8]. The learning rates for each parameter
are adjusted according to the ADADELTA algorithm [177] (we use the default values of
� = 10�6 and � = 0:95). We also use the gradient clipping technique [130] to alleviate
the exploding gradient problem [9] (we set the value of the threshold to 1).

To �nd the best b�A while �xing b�C (Algorithm 1, line 4), we decompose the
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Algorithm 1 Learn b�A(�); b�C(�)

1: b�A  arg max
�

NY

i=1

f(�i; � = �(ai))

2: while not b�A; b�C converged do

3: b�C  arg max
�C

NY

i=1

f(�i; � = F(b�A(ai);�C(ci))

4: b�A  arg max
�A

NY

i=1

f(�i; � = F(�A(ai); b�C(ci))

5: end while
6: return b�A; b�C

optimization problem into a set of per action ID MLE problems (similar to Eq. 6.4):

b�A(a) = arg max
�

NX

i=1

Ia(ai) log f(�i; � = F(�; b�C(ci)):

We solve these MLE problems using the limited memory BFGS with bound constraints
(L-BFGS-B) algorithm [181]. We use bound constraints to ensure that the distribution
parameters � take admissible values (e.g., the values of the parameters of the exponential,
gamma and Weibull distributions need to be positive).

To summarize, we predict a probability distribution over the time elapsed between a
pair of user actions. Unlike existing methods, which rely solely on the �rst action ID,
CATM also considers the context in which the �rst action takes place. CATM represents
this context as a sequence of user interactions with a search engine that precede the �rst
action, and employs a recurrent neural network that learns how to adjust the �rst action
ID parameters using this context representation. CATM can be used (i) to predict the
time elapsed between a pair of user actions in a context, in which these actions have not
been previously observed, and (ii) to obtain a context-independent estimate of the time
between two user actions by predicting it in a prede�ned context.

6.4 Experimental Setup

In this section we describe our experimental setup. We start with the research questions
that we seek to answer (§6.4.1). Then we describe the datasets that we use (§6.4.2)
and the evaluation methodology that we follow (§6.4.3). Finally, we describe the
experiments that we conduct to answer our research questions (§6.4.4).

6.4.1 Research questions

We split RQ 5 into three subquestions:
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RQ 5.1 Can we observe the context bias effect? More precisely, can we observe a
difference in time probability distributions for different contexts in which the
�rst action takes place?

RQ 5.2 Do the context-aware time models, which besides the �rst action ID make use
of its context, provide a better means to explain times between user actions
than the basic time models, which make the context-independence assumption
and rely solely on the �rst action ID?

RQ 5.3 Do the context-independent predictions of the CATMs, trained on the time-
between-clicks task, provide a better means to rank search results than existing
methods based on the observed times between clicks?

6.4.2 Dataset
To construct datasets for the temporal prediction tasks described in §6.2, we collected
three months of log data from a commercial web search engine. We use the �rst
two months of the log data to train time models and the last month to evaluate their
prediction performance. In each dataset, we �lter out times associated with actions IDs
that occur less than 25 times in the training set. For time-to-�rst-click and time-from-
abandoned-query, we also �lter out times larger than 1 minute; for time-to-last-click
and time-between-clicks, we �lter out times larger than 5 minutes (this complies with
actual times reported in [134]). The number of observations in the resulting datasets are
shown in Table 6.4.

Table 6.4: Number of observations in the datasets for each temporal prediction task.

Time between actions Number of observations

Time-to-�rst-click 30;747;733
Time-between-clicks 6;317;834
Time-to-last-click 30;446;973
Time-from-abandoned-query 11;523;351

To compare the performance of ranking models based on time-between-clicks, we
also collected relevance labels for 50;137 query-result pairs that occur in our time-
between-clicks dataset. The relevance labels were assigned by trained judges on a scale
from 0 to 4, with 0 = bad, 1 = fair, 2 = good, 3 = excellent, 4 = perfect.

6.4.3 Evaluation methodology
We evaluate the performance of time models using the log-likelihood and the root mean
squared error (RMSE) metrics. The log-likelihood metric shows how well a time
model explains the observed times between user actions. We report the logarithm of
the likelihood function, averaged over all observations in the test set. Larger values of
the metric indicate better performance. The RMSE metric shows the average difference
between the expected values of the time probability distributions predicted by a model
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and the observed times-between-actions. Lower values of the metric indicate better
performance. We also evaluate the time models for predicting time-between-clicks on
a ranking task (i.e., to rank a set of results by their relevance to a query). We use the
NDCG metric [77], and report its scores at truncation levels 1, 3, 5 and 10. Larger
values of the metric indicate better performance.

We perform signi�cance testing in terms of all metrics using a paired t-test; the
differences are considered statistically signi�cant for p-values lower than 0.05.

6.4.4 Experiments

Experiment 1. To answer RQ 5.1, for each action ID we split the observed times in
two context groups, which correspond to different sets of previous user interactions,
and run the two-sample two-sided Kolmogorov-Smirnov (KS) test [35] to determine
whether the observed times were drawn from the same distribution. The null hypothesis
states that the observed times were drawn from the same distribution, which means that
there is no context bias effect. Rejecting it, at least for some action IDs, will prove
the existence of the context bias effect for these action IDs. Not being able to reject
it might happen for several reasons. First, the context bias effect may not appear for
certain types of queries (e.g., navigational queries) and results (e.g., irrelevant results).
Second, we may not have enough data to reject the null hypothesis. Third, we may not
have chosen the best context groups.

When choosing a rule to split times-between-actions in two context groups based
on the context, we give preference to easily interpretable and easily reproducible ones.
For the time-to-�rst-click, time-to-last-click and time-from-abandoned-query, we split
the observed times based on whether the query is the �rst in the search task or not.
We say that a query is the �rst in the search task if it does not share terms with the
previous query in the search session, or if it is the �rst query in the search session. For
the time-between-clicks, we split the observed times based on whether the clicked result
is the �rst item to be clicked on SERP or not.

We use the KS test, because the more popular t-test is not applicable in our setting:
it requires the tested samples to be drawn from a normal distribution, which is not the
case for time observations. An alternative to the KS test could be the Mann-Whitney U
test [35], but following previous work [106] we use the KS test.

Without a suf�cient number of observations in both context groups, the KS test
would be unable to detect a difference between samples even if one exists. For this
reason, we apply the KS test only to actions IDs, for which there are, at least, N
observations in both context groups. Using a large value of N improves test sensitivity
(increases the number of action IDs for which the null hypothesis can be rejected), but
reduces the number of action IDs that we use in our experiment. Thus, we run our
experiment for different values of N . In particular, we use N in the range [25; 200].
Table 6.5 shows the number of action IDs with, at least, N observations in both context
groups for N = f25; 50; 100; 200g.

Experiment 2. To answer RQ 5.2, we compare the performance in terms of log-
likelihood and RMSE of the context-aware time models against the basic time models
on the four temporal prediction tasks described in §6.2.
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Table 6.5: Number of action IDs with at least N = f25; 50; 100; 200g observations in
each context group for different times-between-actions.

N

Time between actions 25 50 100 200

Time-to-�rst-click 60;284 24;368 7894 1545
Time-between-clicks 18;954 8335 3289 1288
Time-to-last-click 59;367 23;956 7756 1500
Time-from-abandoned-query 22;190 9180 2980 569

Experiment 3. To answer RQ 5.3, we compare the performance in terms of NDCG of
rankings models based on (i) the average values of the observed times between clicks,
(ii) the expected values of the probability distributions �tted to the observed times
between clicks, and (iii) the expected values of the context-independent probability
distributions predicted by the CATMs trained on the time-between-clicks task. To
predict the context-independent probability distributions we use the following �xed
context: (i) the query is the �rst in the search session; (ii) the result is presented on the
top position and is the �rst item to be clicked; (iii) the time elapsed between the query
submission and the click on the result is 4 seconds (the median of the times-to-�rst-click
observed in our dataset).

6.5 Results

In this section we present the results of the experiments described in §6.4.4 and provide
answers to the research questions stated in §6.4.1.

6.5.1 Experiment 1
The results of Experiment 1 are given in Figure 6.2. The �gure shows the percentage of
action IDs in each temporal prediction task, for which the Kolmogorov-Smirnov test
rejected the null hypothesis (p < 0:05) in favor of the alternative hypothesis, which
states that the times-between-actions in the chosen context groups were drawn from
different probability distributions. Equivalently, the alternative hypothesis states that
the context bias effect exists.
RQ 5.1. Figure 6.2 shows that for each time-between-actions there is more than 5%
action IDs, for which the null hypothesis is rejected. This proves the existence of the
context bias effect. Indeed, if times-between-actions did not depend on previous user
interactions (null hypothesis was true), the number of action IDs for which the null
hypothesis would be rejected had to be 5% (signi�cance level) of the total number of
the tested action IDs.

The percentage of action IDs for which the context bias effect is detected, increases
with the minimum number of observations in each context group (Figure 6.2). This
suggests that the actual number of action IDs for which the context bias effect appears,
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Figure 6.2: Percentage of actions IDs with observed context bias effect vs. minimum
number of observations in context groups.

is even larger than the number of action IDs for which we manage to detect the effect.
And with more interaction data, it should be possible to detect the effect in a larger
number of times-between-actions.

From the above results we conclude that there is a tangible context bias effect,
which results in statistically signi�cant differences in time-between-actions probability
distributions for different contexts (in our case, for different sets of previous user
interactions).

6.5.2 Experiment 2
The results of Experiment 2 are given in Table 6.6. The table shows the performance
of the basic time models and the context-aware time models in terms of log-likelihood
and RMSE on four temporal prediction tasks: time-to-�rst-click, time-between-clicks,
time-to-last-click and time-from-abandoned-query (§6.2).
RQ 5.2. Table 6.6 shows that the context-aware time models outperform the basic time
models in terms of both the log-likelihood and RMSE metrics on all temporal prediction
tasks. The improvements for each task and each distribution are statistically signi�cant
with p < 0:001. The improvements in terms of log-likelihood are comparable with the
differences between the basic time models using different probability density functions,
and in most cases exceed them. The improvements in terms of RMSE vary, depending
on the task, between 0:98�5:32%.

To further understand the performance difference between the basic time models
and the context-aware time models, we plot their performance vs. the actual times-
between-actions observed in the datasets. Figures 6.3 and 6.4 show the performance on
the time-between-clicks task. We start with Figure 6.3, which shows the performance
in terms of the log-likelihood metric. Here, similar to the differences between the

89



6. A Context-aware Time Model

Table 6.6: Performance of the basic time models and the context-aware time models on
four temporal prediction tasks. Larger values of the average log-likelihood metric and
lower values of the root mean squared error (RMSE) metric indicate better performance.
Improvements of the context-aware time models over the basic time models using
the same probability density functions (exponential, gamma, Weibull) are statistically
signi�cant (p < 0:001) in terms of both metrics.

Time model Distribution Log-likelihood RMSE

Time-to-�rst-click

exponential �2:9050 7:52
Basic gamma �2:8399 7:51

Weibull �2:8970 7:52

exponential �2:8715 7:29
Context-aware gamma �2:7636 7:25

Weibull �2:8449 7:27

Time-between-clicks

exponential �4:9219 60:73
Basic gamma �4:9105 60:76

Weibull �4:9077 60:76

exponential �4:8787 58:93
Context-aware gamma �4:8556 58:98

Weibull �4:8504 58:94

Time-to-last-click

exponential �3:8360 40:85
Basic gamma �3:7849 40:85

Weibull �3:7386 40:85

exponential �3:7924 40:45
Context-aware gamma �3:7456 40:45

Weibull �3:7073 40:51

Time-from-abandoned-query

exponential �3:5862 12:41
Basic gamma �3:5422 12:41

Weibull �3:5560 12:41

exponential �3:5210 11:75
Context-aware gamma �3:4235 11:76

Weibull �3:4554 11:77

basic time models using different probability density functions, we observe major
improvements of the context-aware time models over the basic time models for short
times. In Figure 6.4, which shows the performance in terms of the RMSE metric, we
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Figure 6.3: Time model performance in terms of the log-likelihood metric on the
time-between-clicks task vs. actual times observed in the dataset.

also observe major improvements for short times.

Figure 6.4: Time model performance in terms of the RMSE metric on the time-between-
clicks task vs. actual times observed in the dataset.

A reader might notice a drop in performance of the context-aware time models
compared to the basic time models between 17 and 99 seconds in Figure 6.4. This is
better seen in Figure 6.5, which plots the differences between the context-aware time
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models and the basic time models shown in Figure 6.4. Here, we see that the context-

Figure 6.5: Performance difference in terms of the RMSE metric between the context-
aware time models and the basic time models on the time-between-clicks task vs. actual
times observed in the dataset.

aware time models perform better for times shorter than 17 seconds and longer than
99 seconds, and perform worse for times in the range of 17�99 seconds. This can be
explained as follows. The average time-between-clicks in our dataset is 53:44 seconds.
A naive time model that always predicts time-between-clicks to be 53:44 seconds, would
have very low RMSE around 53:44 seconds and high RMSE for shorter and longer
times (the overall RMSE performance of this naive approach would be low). The basic
time models predict time-between-clicks across the whole time range including short
and long times, and have better overall RMSE performance. However, this is achieved
at the cost of having higher RMSE around the average time-between-clicks (i.e., 53:44
seconds) compared to that of the naive time model. The proposed context-aware time
models, on average, predict time-between-clicks better than the basic time models (and
especially so for shorter and longer times, see Figure 6.5). This is again achieved at
the cost of having higher RMSE around the average time-between-clicks (i.e., 53:44
seconds). In fact, shorter times-between-clicks usually correspond to dissatis�ed clicks,
and longer times-between-clicks correspond to satis�ed clicks [48]. Thus, in order
to improve user satisfaction with the search, it is more important to predict short and
long times-between-clicks rather than to distingush between times close to the average
time-between-clicks.

From the above results we conclude that the context-aware time models, which
besides the �rst action ID make use of its context, provide a better means to explain
times-between-actions that the basic time models, which rely solely on the �rst action
ID.
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6.5.3 Experiment 3
Table 6.7 shows the outcomes of Experiment 3, a comparison of the performance of
ranking models based on times-between-clicks.

Table 6.7: Performance of ranking models based on the time between clicks. Larger
values of the NDCG metric correspond to better rankings. The improvements of
the context-aware time models over the existing methods are statistically signi�cant
(p < 0:05).

NDCG

Time model Distribution @1 @3 @5 @10

Average n/a 0:651 0:693 0:728 0:812

exponential 0:651 0:693 0:728 0:812
Basic gamma 0:646 0:693 0:728 0:812

Weibull 0:656 0:699 0:730 0:811

exponential 0:668 0:710 0:743 0:820
Context-aware gamma 0:675 0:715 0:748 0:822

Weibull 0:671 0:709 0:745 0:821

RQ 5.3. Table 6.7 shows that the CATM-based ranking models outperform the ranking
models based on the basic time models and the ranking model that scores search results
by the average values of the observed times between clicks. All improvements are
statistically signi�cant with p < 0:05. Thus, we conclude that the context-independent
predictions of the CATMs trained on the time-between-clicks task provide a better
means to rank search engine results than existing methods.

6.6 Related Work

We discuss two types of related work: behavioral signals used to improve and evaluate
web search effectiveness (§6.6.1); and models of user behavior used to interpret these
signals (§6.6.2).

6.6.1 Behavioral information
Modern search engines log a large number of user behavioral signals to improve and
evaluate their effectiveness. We classify them in two groups: behavioral signals based
on user actions and behavioral signals based on times between user actions.
Behavioral signals based on user actions. User clicks provide an important source
of implicit user feedback [1�3, 26, 27, 29, 61, 80, 134, 141]. They have been used
(i) to infer user preferences over search results, i.e., target values for learning a ranking
function [27, 80], (ii) to design features for learning a ranking function [1, 2, 26] and for
other applications [3, 61], and (iii) to compare ranking functions [29, 134, 141]. Some
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work distinguishes different types of clicks: �rst click [26, 141], last click [26], long
dwell time click [26], satis�ed click [141] and only click [26]. Next to clicks, some
recent work considers mouse cursor movements on SERPs [39, 73, 74].
Behavioral signals based on times between user actions. Click dwell time, i.e., time
spent by a user on the landing page of a search result, provides valuable information
about user satisfaction with the clicked result [89]. Existing work uses it as a feature
for ranking [1, 2, 26] and in many tasks related to user satisfaction [3, 61�63, 89, 107,
108, 125]. Times from a submission of a query to (i) the �rst click [24, 29, 61, 141],
(ii) the �rst satis�ed click [141], and (iii) the last click [29] are used as features to
predict user satisfaction with the clicked result [61], compare two versions of a search
engine [29, 141] and to cluster users based on their SERP examination strategies [24].
Song et al. [147] use the time since a user issued an abandoned query (i.e., a query for
which there were no interactions with the search results) to the next query submission for
classifying the abandoned query into positively abandoned and negatively abandoned.
Dupret and Lalmas [44] use times between search engine visits to compare two versions
of a search engine.

6.6.2 Models of user behavior

Now that we have described behavioral signals, we focus on their interpretation. To
interpret a signal, we need to have a model that explains it. We start with models
for explaining behavioral signals based on user actions and then discuss models for
explaining behavioral signals based on times between user actions.
Modeling user actions. The simplest way to interpret click data is to compute click-
through rates (CTRs), i.e., the ratios of the total number of clicks and the total number of
impressions observed for a group of search engine results. Unfortunately, CTRs suffer
from the so-called position bias effect, i.e., results presented at higher positions receive
more clicks than results of similar quality presented at lower positions [36, 80, 81],
which leads to suboptimal performance when using CTRs for ranking. To account for
position bias, a large number of click models have been proposed [34].

Click models make a few assumptions about user interactions with search results,
which ultimately allow them to obtain per query-result scores that show better correlation
with relevance than CTRs. Among the most common assumptions are (i) the linear
traversal assumption that a user scans search results from top to bottom [36]; and (ii) the
examination hypothesis that a user clicks on a search result if, and only if, she examined
the search result and is attracted by it [36]. Recently, it has been shown that patterns
of user click behaviour can be learned automatically from interaction data [17]. In
addition to position bias, recent work examines other types of bias including (i) vertical
bias driven by visually salient vertical results (e.g., image results, video results, news
results) [30, 33, 156]; (ii) query bias, which occurs if a query does not match the user’s
information need [179], (iii) duplicate bias, which occurs if a result has been examined
earlier in the search task [179]; and (iv) bias driven by individual differences between
users [144].
The notion of context bias, introduced in our work for times between user actions,
generalizes the idea of bias in user actions (in particular, clicks and mouse hovers),

94



6.6. Related Work

and the proposed context-aware time model should be able to account for them with
appropriate representations of the context.

Modeling times between user actions. The simplest way to interpret times between
user actions is to compute their mean values. The average click dwell time is frequently
used as a feature for ranking [1, 2, 26] and other applications [3, 61�63, 107, 108, 125].
The average time between a submission of a query to the �rst click is used both
as a feature [61] and as an online metric for comparing two versions of a search
engine [29, 141]. The average time between a submission of a query and (i) �rst click
classi�ed as satis�ed, (ii) last click are also used as online metrics for comparing two
versions of a search engine [29, 141].

A more sophisticated way to interpret times between user actions is to �t a proba-
bility distribution [89, 106]. Liu et al. [106] �nd that the Weibull distribution provides
better goodness-of-�t to click dwell times than the exponential distribution. The authors
provide an interesting interpretation for the shape parameter of the �tted Weibull distri-
bution, which justi�es the task of modeling the full probability distribution rather than
just the mean of the distribution. Our work differs from their work in that we do not
make the context-independence assumption that the observed times were drawn from
the same probability distribution; we predict the probability distributions separately for
each click using its context, and the information about click dwell times observed for
the given query-result pair in other contexts. Liu et al. [106] also show that it is possible
to predict parameters of the Weibull distribution for a given result using the information
about the result’s landing page, such as HTML tags, frequent words that occur on the
page and times to download/render/parse the page. Our approach differs from their
method in that we use contextual, i.e., result-independent, information; thus, our work
is complementary to that of [106].

Kim et al. [89] �t gamma distributions to click dwell times, observed in a prede�ned
click segment and labeled as satis�ed or dissatis�ed. The authors use the �tted distribu-
tions to classify new clicks into satis�ed and dissatis�ed. In particular, they compute
the following features: (i) the differences between the �tted parameters of the satis�ed
and dissatis�ed click dwell time distributions for the clicked result’s segment, (ii) their
expected values and the difference between them, (iii) the absolute differences between
the observed click dwell time and the expected values of the satis�ed and dissatis�ed
distributions, (iv) the log-likelihoods of the observed click dwell time according to
the satis�ed and dissatis�ed distributions and the difference between them. The large
number of features used in their work shows the advantage of modeling the full proba-
bility distribution over modeling just the mean. Similar features, computed from the
probability distributions predicted in our work can potentially be used in a broad range
of applications.

Our work is the �rst to systematically address the problem of modeling times between
user actions. We introduce the notion of context bias effect and propose a context-aware
time model that predicts times elapsed between user actions using both the ID of the
�rst action (which is what existing methods rely on) and the context in which it takes
place (our novelty).
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6.7 Conclusions and Future Work
In this chapter, we answered the following research question:

RQ 5 How to correctly interpret times between user actions observed in different
contexts?

We introduced the notion of context bias effect in times between user actions (i.e., a
difference in probability distributions of times associated with the same user action,
but observed in different contexts); and proposed a context-aware time model (CATM)
that allows us to estimate parameters of a probability distribution of the time elapsed
between user actions in a given context. CATM’s ability to account for user context can
be used to predict times between user actions in a context in which these actions have
not previously been observed, and to obtain context-independent estimates of times
between actions by predicting them in prede�ned contexts.

We showed that, for 37%�80% of query-result pairs (q; r), depending on the number
of observations, the distributions of times elapsed between a click on the result r and
the next click on the same SERP differed in sessions, in which the result r was the �rst
item to be clicked, and in sessions, in which there were clicks on other results before the
result r was clicked. Similarly, we showed that previous user interactions in a search
task in�uence distributions of times between (i) submission of a query and the �rst click
on a SERP, (ii) submission of a query and the last click on a SERP, and (iii) submission
of an abandoned query (i.e., a query with no clicks on a SERP) and the next query
submission.

We evaluated the context-aware time model on four temporal prediction tasks (i.e.,
to predict the time elapsed between a pair of user actions) and a ranking task (i.e., to
rank a set of results by their relevance to a query). The results on the temporal prediction
tasks show that the proposed context-aware time model, which makes use of both the
ID of the �rst action and the context in which it takes place, provides a better means to
explain times between user actions than existing methods, which rely solely on the �rst
action ID. The results on the ranking task show that the context-independent estimates
of times between consecutive clicks, obtained with the context-aware time model, allow
us to construct rankings that result in better performance in terms of relevance than
the rankings produced by the mean values of the observed times between consecutive
clicks.

As to future work, we plan to consider other representations of the context. Besides
using context-independent estimates of times between consecutive clicks as features
for ranking, the predictions of context-aware time models can be used in a range of
other applications that use the average or predicted times between user actions. These
applications include prediction of click satisfaction [89], result usefulness [107], search
task dif�culty [3, 108], search goal success [61, 62], urgent information needs [119],
struggling vs. exploring behavior [63, 125], positive vs. negative abandonment [147]
and clustering users based on their SERP examination strategies [24].
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In the preceding research chapters, we represented queries and documents by their IDs.
Using such representations allows to make accurate predictions for SERPs consisting of
frequent query-document pairs, but does not generalize to new queries/documents/query-
document pairs. Therefore, in this chapter, we move our focus to content-based models
that represent queries and documents by their text. And in particular, to latent semantic
models, which have been proposed to bridge the lexical gap between queries and
documents that is due to the fact that searchers and content creators often use different
vocabularies and language styles to express the same concept.

Modern search engines simply use the outputs of latent semantic models as features
for a so-called global ranker. We argue that this is not optimal, because a single
value output by a latent semantic model may be insuf�cient to describe all aspects of
the model’s prediction, and thus some information captured by the model is not used
effectively by the search engine. Speci�cally, we answer the following research question
asked in §1.1:

RQ 6 How to extract potentially useful information from a trained latent semantic model
and how to utilize this information for improving ranking of search results?

To increase the effectiveness of latent semantic models in web search, we propose to
create metafeatures�feature vectors that describe the structure of the model’s prediction
for a given query-document pair�and pass them to the global ranker along with the
models’ scores. We provide simple guidelines to represent the latent semantic model’s
prediction with more than a single number, and illustrate these guidelines using several
latent semantic models.

We test the impact of the proposed metafeatures on a web document ranking task
using four latent semantic models. Our experiments show that (i) through the use of
metafeatures, the performance of each individual latent semantic model can be improved
by 10.2% and 4.2% in NDCG scores at truncation levels 1 and 10; and (ii) through the
use of metafeatures, the performance of a combination of latent semantic models can be
improved by 7.6% and 3.8% in NDCG scores at truncation levels 1 and 10, respectively.

This chapter is based on Borisov, Serdyukov, and de Rijke [18].
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7.1 Introduction
For the majority of cases in which search engine users complain that they cannot �nd
information, while the information does exist in the system, the reasons are due to a
mismatch between terms in queries and documents [100]. Term mismatch happens
because searchers and content creators often use different vocabularies and language
styles to refer to the same concepts [50]. To bridge this lexical gap between queries and
documents, latent semantic models have been proposed [100].

Today, the use of latent semantic models by search engines is restricted to simply
passing their outputs as features to a so-called global ranker, along with outputs of
other models used for ranking. We argue that this is not optimal, because a single value
output by a latent semantic model may be insuf�cient to describe all aspects of the latent
semantic model’s prediction. Let us illustrate this using the Latent Semantic Indexing
model [37].

The score produced by the Latent Semantic Indexing model is a sum of scores
per latent space dimension. This is where potentially useful information for a global
ranker may go missing as the model may assign similar scores to documents with
radically different sets of per dimension scores. See Figure 7.1 for an example of
this phenomenon: the sums of the per dimension scores are the same, but the lack of
information about the distributions of their values, illustrated by this example, may
hinder the global ranker when it attempts to reliably rank the two documents.

Figure 7.1: The plot shows the per dimension scores computed for two documents by
the Latent Semantic Indexing model. The sums of the scores are the same, but the
distributions of their values differ in interesting ways. (Best viewed in color.)

In previous work on latent semantic models in web search, comparisons of models
are performed on a web document ranking task using the models’ scoring functions
[6, 10, 22, 51, 52, 75, 145, 160, 162, 167, 173]. While the scores produced by latent
semantic models have demonstrated a strong correlation with document relevance, they
are just the �tip of the iceberg� in capturing the relation between a query and document.

We argue that considering a latent semantic model’s score only is not enough to
determine its effectiveness in search, and all potentially useful information captured
by the model should be considered. To increase the effectiveness of latent semantic
models in search engines, we propose to expose the structure of their predictions to the
global ranker. This is done through the use of metafeatures�feature vectors that we
construct for a latent semantic model to describe its prediction and the way it arrived
at this prediction. The latent semantic models’ metafeatures are passed to the global
ranker along with the models’ scores.

The problem of creating metafeatures requires a solid understanding of the model’s
internal workings. However, as we will see, for many latent semantic models, their
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scoring functions give a good starting point. In particular, we provide two simple and
broadly applicable guidelines for creating metafeatures based on the scoring functions
used by latent semantic models, and demonstrate the effectiveness of these guidelines
by inferring metafeatures from different latent semantic models in a systematic manner.

We test our ideas for complementing a latent semantic model’s scores with metafea-
tures on a web document ranking task, and demonstrate that metafeatures provide a
means to improve the performance of both (i) individual latent semantic models and
(ii) combinations of multiple latent semantic models.

The proposed approach for creating and using metafeatures is substantially more
than just feature engineering (where a signi�cant part of the efforts of search engine
employees goes). The process of feature engineering described by Domingos [41]
consists of three steps: (i) to choose a particular machine learning algorithm and a target
evaluation criterion (i.e., the difference in NDCG scores between the global ranker
trained with and without candidate features); (ii) to generate a large number of candidate
features; and (iii) to select the best features according to the chosen criterion. However,
this approach is dif�cult to apply in practice, because there are no clear guidelines for
selecting the candidate features (and, thus, the effectiveness of features often depends
more on an individual’s intuition rather than on a solid methodology). To alleviate
this problem, we propose a methodology that guides the design choice of new features.
Our proposal is both novel and ensures a broader impact of our technical contribution
beyond the particular task setting (web search) that we consider.

We discuss related work in §7.2. Our method for creating metafeatures for latent
semantic models and passing them along to a global ranker is detailed in §7.3. We
detail our experimental setup in §7.4 and present our results and analysis in §7.5. We
conclude in §7.6.

7.2 Related Work

We discuss three types of related work: latent semantic models, ranking models based
on latent semantic models, and combinations of latent semantic models.

7.2.1 Latent semantic models

Latent Semantic Indexing (LSI) [37] uses singular value decomposition (SVD) of a
document-term matrix to map queries and documents to low-dimensional concept
vectors. The relevance of a document to a query is assumed to be proportional to the
cosine similarity between their concept vectors. A major limitation of LSI that prevents
it from being used in very large scale applications, is the computational cost of SVD.
To overcome this limitation, a Regularized Latent Semantic Indexing (RLSI) [160] with
an ef�cient implementation in MapReduce has been proposed.

Probabilistic Latent Semantic Indexing [70] views documents as mixtures of topics
and ranks the documents by the probability of the query given the document distribution
over topics. Latent Dirichlet Allocation (LDA) [13, 162] extends PLSI and assumes
that topic distributions have a Dirichlet prior.
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With increasingly large volumes of user logs, supervised latent semantic models
trained on (clicked/not clicked) query-document pairs [6, 10, 22, 51, 52, 75, 145, 167,
173] have begun to outperform many unsupervised latent semantic models trained on
documents only. Supervised Semantic Indexing (SSI) [6] and Regularized Mapping to
Latent Spaces (RMLS) [167] learn weights for each query-document term pair using low
rank matrix decomposition. The Bilingual Topic Model (BLTM) [52] is an extension of
LDA, where queries and relevant documents are assumed to share the same distribution
over topics, while they might use different topic word distributions for queries and
documents.

Another approach to document ranking is based on statistical machine transla-
tion [10, 51]. The Word-based Translation Model (WTM) [10] ranks documents by the
probability of the query given the document unigram translation model. The Phrase-
based Translation Model (PTM) [51] extends WTM with phrases.

Recently, latent semantic models based on neural networks [22, 52, 75, 139, 145,
173] have gained popularity. The Discriminative Projection Model (DPM) [52, 173]
maps queries and document to concept vectors with the siamese network architecture
[22]. Salakhutdinov and Hinton [139] propose a deep generative model that maps
documents to memory addresses in such a way that semantically similar documents
are located at nearby addresses. The Deep Structured Semantic Model (DSSM) [75]
uses a deep feed-forward neural network to map queries and documents to concept
vectors. DSSM works at the level of character-trigrams, which allows generalization to
unseen word forms. The performance of DSSM degrades as the text length increases,
as its �bag of character-trigrams� representation leads to a combinatorial blow-up. The
Convolutional Latent Semantic Model (CLSM) [145] mitigates this disadvantage by
applying a DSSM-like model to word n-grams and combining their vectors at a later
stage.

In our experiments we use LDA, WTM, DPM and DSSM as typical representatives
of different families of models: topic models (PLSI, LDA, BLTM), translation models
(WTM, PTM), conventional models based on matching in latent space (LSI, RLSI, SSI,
RMLS, DPM) and recent models working at the level of character trigrams (DSSM,
CLSM).

7.2.2 Ranking with latent semantic models

The training objective for LSI and RLSI is to minimize the reconstruction error of
the document �bag of words� representation; PLSI and LDA (BLTM) minimize the
perplexity of the document corpus (clicked query-document pairs); SSI, DPM minimize
the ranking loss between clicked and unclicked documents. Common scoring functions
used by the latent semantic models are (i) the cosine similarity between the query and
document concept vectors (LSI, RLSI, SSI, RMLS, DPM, DSSM, CLSM) and (ii) the
query likelihood function (PLSI, LDA, BLTM, WTM, PTM). These scoring functions
are simple and intuitive, but we argue that they are not expressive enough to tune latent
semantic models for relevance prediction and that they do not use all potentially useful
information from the model.
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7.2.3 Combinations of latent semantic models
Most work on latent semantic models in search does not address the problem of combin-
ing latent semantic models and only provides a comparison of latent semantic models
with each other [6, 7, 10, 22, 51, 52, 75, 145, 160, 162, 173]. Some work also uses
linear interpolation with traditional retrieval models based on lexical matching (VSM,
TFIDF, BM25) for comparison [7, 167, 173]. Wu et al. [167] test the performance of
their proposed RMLS model by comparing the performance of a global ranker with
baseline ranking models used as features against the global ranker with the baseline
ranking models and RMLS. We provide an experimental analysis of the contribution of
metafeatures to the combination of latent semantic models.
What we add on top of the work mentioned above is the following. First, we show that
the common ways of using latent semantic models in web search (i.e., (i) to rank web
documents by scores of the cosine similarity and query likelihood functions, and (ii) to
pass these scores as features to global ranker) are suboptimal. Second, we propose an
approach that extracts more information from latent semantic models and leverages this
information to improve ranking performance of both individual latent semantic models
and their combinations.

7.3 Method
To increase the effectiveness of latent semantic models in (web) search engines, we
propose to complement their outputs with metafeatures, feature vectors that describe
the structure of the predictions of latent semantic models for a given query-document
pair, and pass them to a global ranker together with the latent semantic models’ scores
(see Figure 7.2).

Figure 7.2: Adding metafeatures to the output of latent semantic models and passing
their combination as features to a global ranker.

We start with a disclaimer. There is no general algorithm for generating metafeatures
for an arbitrary latent semantic model. However, as we will see, for many latent semantic
models, their scoring functions provide a good starting point. In §7.3.1, we offer two
guidelines for creating metafeatures for a latent semantic model based on its scoring
function. We operationalize these guidelines in §7.3.2 using a diverse set of latent
semantic models.
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7.3.1 Guidelines for creating metafeatures
We use Q to denote a query composed of terms q1, q2, . . . , qjQj and D to denote a
document composed of terms w1, w2, . . . , wjDj.

We write MFn(M; P ) to denote the n-th group of metafeatures for a latent seman-
tic model or a class of such models, M ; P denotes the parameters of the group of
metafeatures. We use a compact form MFn1;:::;nk (M; P ) to denote the metafeatures
MFn1(M; P ), . . . , MFnk (M; P ).

Guideline 1 (�Divide and Conquer�)

The values making up the score produced by a latent semantic model capture more
potentially useful information than the latent semantic model’s score by itself. They
could, for instance, help to distinguish the two documents shown in Figure 7.1.

Below, we provide guidelines (a)�(c) for different types of scoring functions. We
say that a scoring function F (Q;D) can be expressed as a composition of functions
F = ffi(Q;D)g, if for all query-document pairs (Q;D), it is possible to compute the
value of F (Q;D) by knowing the values of a subset of F . The values of some fi(Q;D)
might be not de�ned for a given query-document pair (Q;D), but it should still be
possible to compute the value of F (Q;D) using the values of other fi(Q;D) 2 F .
The occurrence probability of fi(�) is the probability that fi(�) is de�ned for a query-
document pair (Q;D) randomly drawn from the (unknown) distribution of query-
document pairs.
(a) For a scoring function F (Q;D) that can be expressed as a composition of a
�xed number (N ) of functions fi(Q;D), de�ne metafeatures MF1(F ) by composing
them of the values of the functions fi(Q;D) for a query-document pair (Q;D):

MF1(F ) = (f1(Q;D); : : : ; fN (Q;D)):

(b) For a scoring function F (Q;D) that can be expressed as a composition of a
very large or unlimited number of functions fi(Q;D), de�ne metafeatures MF1(F;N)
of size N by composing them of the values of N functions fi(Q;D) that have the high-
est occurrence probabilities; if the value of function fi(Q;D) is not de�ned for a given
query-document pair (Q;D), set the metafeatures’ component that corresponds to the
function fi(Q;D) with a NaN (Not a Number) value:

MF1(F;N) =
�
bf1(Q;D); : : : ; bfN (Q;D)

�
;

where bfi(Q;D) is fi(Q;D) if fi(Q;D) is de�ned, and NaN otherwise.
(c) For a scoring function F (Q;D) that can be expressed as a composition of a
very large or unlimited number of functions fi(Q;D) that have relatively high
occurrence probabilities, de�ne metafeatures MF1(F; k; p1; : : : ; pN ) by composing
them of the descriptive statistics of the distribution of values of the functions fi(Q;D)
for a given query-document pair (Q;D), e.g., the expected value E[fi(Q;D)], variance
Var[fi(Q;D)], k min / max values of fi(Q;D) and percentiles pi of ffi(Q;D)g. The
default value of k used in our study is 3; the default percentiles pi are 0.01, 0.03, 0.05,
0.125, 0.25, 0.5, 0.75, 0.875, 0.95, 0.97, 0.99.
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Note: For a scoring function F (Q;D) that can be expressed as a composition of
functions fi(Q;D) that come from two or more different groups G = fgk : k =
1; : : : ; jGjg, de�ne jGj scoring functions Fk(Q;D) by setting the values of fi 62 gk to
constants, and construct metafeatures for Fk(Q;D) using the guidelines (a)�(c).

Guideline 2 (�Find the Strongest and Weakest Links�)

For some latent semantic models, there is only a limited number of ways to express a
scoring function F (Q;D) as a composition of functions fi(Q;D). E.g., the scoring
functions of WTM and DSSM cannot be expressed as a composition of per document
term functions f1(Q;D); : : : ; fjDj(Q;D), where the functions fi(Q;D) describe all
relevant information about the i-th terms in the document D for computing the scoring
function F (Q;D). But if such functions f1(Q;D); : : : ; fjDj(Q;D) existed, their values
could be regarded as contributions of the document terms to the scoring function
F (Q;D), and in this way, might help the global ranker to distinguish the documents
that �answer� all query terms from those that match only some of them.

We suggest to create �surrogate functions� that perform the role of fi(Q;D). In
particular, we propose to compute gradients of the scoring function F (Q;D) with
respect to the occurrences of document terms. This is a reasonable choice, because the
components of these gradients measure how the score would change if we removed a
small fraction of a term. Below, we capture this intuition more formally.
For a symmetric scoring function F (Q;D) of query terms Q and document terms
D (i.e., a function that takes the same value for any permutation of query terms
and document terms), �rst de�ne a function F (q;d) of vectors q and d of vocabulary
size jV j, whose i-th components are the number of occurrences of the i-th term in query
Q and document D, respectively. Then de�ne a matrix MQ of size jQj � jV j, whose
i-th row is a one-hot vector with the component corresponding to the i-th query term qi
set to 1; and a matrix MD of size jDj � jV j, whose j-th row is a one-hot vector with
the component corresponding to the j-th document term dj set to 1. Finally, de�ne the
metafeatures MF1(F;N1) and MF2(F;N2) as gradients of F (q;d) with respect to q
and d,rQF (q;d) andrDF (q;d), multiplied by the matrices MQ(N1) and MQ(N2)
composed of the �rst N1 and N2 rows of the matrices MQ and MD:

MF1(F;N1) = MQ(N1)rQF (q;d);
MF2(F;N2) = MD(N2)rDF (q;d):

Sometimes, it is more convenient to apply a monotonic function g(x) to the scoring
function F (�), and use the resulting complex function g(F (�)) instead of F (�).

As we show in the next section, the presented guidelines help to extract a lot of
potentially useful metafeatures from existing state-of-the-art latent semantic models.

7.3.2 Application of our guidelines
In this section we demonstrate how to apply the guidelines presented in §7.3.1 to
different families of latent semantic models. Note that we do not aim to extract all
possible metafeatures that could be extracted according to Guidelines 1 and 2, as
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the main purpose of our study is not an exhaustive search for all of them (which
could potentially be a very large number), but a demonstration of the bene�ts of the
methodology of metafeature extraction in general. Thus, we focus on the extraction of
the most promising and interpretable metafeatures in this section.

Latent semantic models based on the language modeling approach

We describe the metafeatures that we infer for topic models [13, 52, 70] and the Word-
based Translation Model [10] that employ the language modeling approach. We start
with the common metafeatures and then take a closer look at each model’s scoring
function.

Latent semantic models based on the language modeling approach score a query-
document pair (Q;D) by the probability of the query Q given the document model
MD. Many latent semantic models make the �bag of words� assumption, which allows
one to decompose the probability of the query into the product of the query term
probabilities. Thus, the scoring function used by these models is the product of the
query term probabilities given the document model, P (qi jMD):

P (Q jMD) =
jQjY

i=1

P (qi jMD): (7.1)

Following Guideline 1 (b), we use the factors under the product sign of (7.1) to de�ne
metafeatures MF1(QL; N) that capture probabilities of the �rst N query terms given
the document model:

MF1(QL; N) = (P (q1 jMD); : : : ; P (qN jMD)) : (7.2)

These metafeatures may help the global ranker to distinguish between two documents
that get very similar scores by the query likelihood scoring function, but for very
different reasons. For example, consider two documents D1 and D2, such that:

� given the document model for D1, all query terms q1, . . . , qjQj have roughly the
same probabilities; and

� given the document model for D2, the �rst query term q1 has a very low probabil-
ity, and the other query terms q2, . . . , qjQj have higher probabilities than given
the document model for D1.

Intuitively, these are two different cases. We want the global ranker to know about this
through the use of metafeatures. The components of MF1(QL;N) can be seen as query
term contributions, and are in fact obtained using Guideline 2 for g(x) = log x.

Some work [10, 51, 52] reports that P (qi jMD) may be too coarse to be used for
retrieval and suggests to use linear interpolation with the document unigram language
model PLM(qijD) [10], the collection unigram language model PLM(qi j C) [51] or
both [52]:

eP (Q jMD) =
jQjY

i=1

(�1PLM(qi j C) + �2PLM(qi j D) + �3P (qi jMD)) ;
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where �1 + �2 + �3 = 1. Similarly, following Guideline 1 (b), we de�ne metafeatures
MF2;3(QL; N) that capture the probabilities of the �rst N query terms given the
document language model and the collection language model:

MF2(QL; N) = (PLM(q1 j C); : : : ; PLM(qN j C)) ;
MF3(QL; N) = (PLM(q1 j D); : : : ; PLM(qN j D)) :

These metafeatures provide extra information about the individual query terms that
might help the global ranker to make better use of MF3(QL; N). E.g., low query term
probabilities given the latent semantic model P (qi j MD) are less severe for query
terms qi for which PLM(qi j C) is high than for query terms qi for which P (qi jMD)
is low. A high query term probability given by the document model, PLM(qi j D),
indicates that a high probability of a query term given the latent semantic model,
P (qi j MD), is due to a lexical match. In this case, term-based models’ predictions
might be more reliable for the global ranker.
Topic models. Topic models (e.g., PLSI, LDA, BLTM) view documents as mixtures
of topics, i.e., MD = fP (tj j D) : 1 � j � jT jg, where P (tj j D) denotes the
probability of topic tj given the document D, and jT j denotes the number of topics.
The probability of a query term qi given document model MD, P (qi jMD), is de�ned
as the sum of the query term probabilities given the topic, P (qi j tj), weighted by topic
probabilities, P (tj j D):

P (qi jMD) =
jT jX

j=1

P (qi j tj)P (tj j D):

The document score is a function of (i) topic probabilities given the document, P (tj j D)
and (ii) query term probabilities given the topic, P (qi j ti). Guideline 1 suggests that
we de�ne metafeatures MF1;2(TM) that describe these values:

MF1(TM) =
�
P (t1 j D); : : : ; P (tjT j j D)

�
;

MF2(TM; N) =

0

@
P (q1 j t1); : : : ; P (q1 j tjT j);

: : : : : : ; : : :
P (qN j t1); : : : ; P (qN j tjT j)

1

A

:

However, the size of MF2(TM; N) might be too large to train the global ranker without
causing over�tting. In essence, MF1(TM) and MF2(TM; N) are meant to inform the
global ranker about how well the document topic distribution helps to maximize the
query probability. This can be achieved by comparing the document topic distribution
with the query topic distribution�the query topic distribution is, by de�nition, the topic
distribution that maximizes the query probability. This idea was originally proposed
in [98], where the authors used Kullback-Leibler divergence between the query and
document topic distributions as a scoring function:

KL(Q;D) =
jT jX

i=1

P (ti j Q) log
P (ti j Q)
P (ti j D) :

(7.3)
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Based on preliminary experiments, the Kullback-Leibler divergence scoring function
(7.3) performed much poorer than the Query Likelihood scoring function (7.1), but it
happened to be useful for creating metafeatures. Following Guideline 1 (a), we de�ne
metafeatures MF1(TM) (de�ned earlier) and MF3(TM) that capture the query and
document topic distributions:

MF3(TM) =
�
P (t1 j Q); : : : ; P (tjT j j Q)

�
:

The Word-based Translation Model. The Word-based Translation Model casts docu-
ment ranking as a statistical machine translation problem, in which query Q is assumed
to be a translation of document D. The document model MD is de�ned as a probability
distribution of terms given a document. The probability of term w given document
model MD is de�ned as the average translation probability of document terms w1, . . . ,
wjDj into term w. So the probability of query term qi given document model MD is:

P (qi jMD) =
1
jDj

jDjX

j=1

P (qi j wj):

The document score is a function of the translation probabilities of a document term into
a query term. Following Guideline 1 (b) we de�ne metafeatures MF1(WTM; N1; N2)
that capture probabilities of the query terms given the document terms:

MF1(WTM; N1; N2) =

0

@
P (q1 j w1); : : : ; P (q1 j wN2);

: : : : : : ; : : :
P (qN1 j w1); : : : ; P (qNq j wN2)

1

A:

As the number of P (qi; wj) that occur with a not low frequency is large, we also de�ne
metafeatures MF2(WTM) from the set of translation probabilities of document terms
into query terms fP (qi, wj)g1�i�jQj;1�j�jDj, following Guideline 1 (c).

Guideline 2 suggests that passing on information about the query and document term
contributions to the document score might be useful for the global ranker. The metafea-
tures MF1(QL; N) that we have de�ned earlier (see (7.2)) describe the query term
contributions. To de�ne metafeatures that describe the document term contributions, we
�rst apply a monotonic function g(x) = log x to the scoring function P (Q jMD) that
gives a new scoring function

F (Q;D) = g(P (Q jMD)) =
jQjX

i=1

log
1
jDj

jDjX

j=1

P (qi j wj):

Then we de�ne a function F (q;d) of q and d:

F (q;d) = qT (logAd� logBd);

where A and B are matrices of size jV j � jV j with Ai;j = P (ti; tj), and Bi;j =
1; log(x) denotes the element-wise logarithm of vector x. Finally, we de�ne the
metafeatures that capture quantitative contributions of document terms as follows:

MF3(F;N2) = MQ(N2)rDF (q;d)
= MQ(N2)(AT � inv(Ad)�BT � inv(Bd))q;
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where Z = X � y denotes the element-wise multiplication of matrix X by vector y:
Z[i; j] = X[i; j]y[i]; and z = inv(x) denotes the element-wise multiplicative inverse
of vector x: z[i] = 1=x[i], if x[i] 6= 0 and 0 otherwise. Brie�y, MF3(WTM; N2) are:

0

@
jQjX

i=1

P (qi j w1)
PjDj
j=1 P (qi j wj)

�
jQj
jDj

; : : : ;
jQjX

i=1

P (qi j wN2)
PjDj
j=1 P (qi j wj)

�
jQj
jDj

1

A:

The components of MF3(WTM; N2) characterize the contributions of document terms
wi with respect to the other terms in the document D: �k =

PjQj
i=1

P (qijwk)
PjDj

j=1 P (qijwj)
is the

actual quantitative contribution of the document term wi; � = jQj
jDj = 1

jDj
PjDj
k=1 �k is

the average contribution of the document terms w1; : : : ; wjDj.

Latent semantic models based on the latent space matching approach

Next, we describe metafeatures that we infer for latent semantic model that employ the
latent space matching approach. We start with metafeatures shared by all models of this
class and then take a closer look at the Deep Structured Semantic Model [75].

Latent semantic models based on the latent space matching approach learn vector
representations for queries and documents, such that the distance between a query vector
vQ and a document vector vD re�ects the degree of relevance of the document D to the
query Q. The standard choice for a distance function between the query and document
vectors is the cosine similarity measure [112]:

cos (vQ; vD) =
vQ � vD
j vQ jj vD j

=
NX

i=1

v(i)
Q v(i)

D

j vQ jj vD j
; (7.4)

where N denotes the dimensionality of the vector space and v(i) denotes the i-th
component of vector v.

Following Guideline 1 (a), we use the terms under the summation sign in (7.4) to
de�ne metafeatures MF1(COS) that capture the per dimension matching scores:

MF1(COS) =

 
v(1)
Q v(1)

D

j vQ jj vD j
; : : : ;

v(N)
Q v(N)

D

j vQ jj vD j

!

:

The rationale is analogous to the one underlying MF1(QL; N): we want to be able to
distinguish the two cases shown in Figure 7.1. One document has roughly the same
scores in all dimensions, the other one has much higher scores in two dimensions and
lower scores in other dimensions.

Viewed differently, the document score is a function of both the query vector vQ
and the document vector vD. Hence, following Guideline 1 (a), we de�ne metafeatures
MF2;3(COS) that capture the components of the query vector vQ and document vector
vD:

MF2(COS) =
�
v(1)
Q ; : : : ; v(N)

Q

�
;

MF3(COS) =
�
v(1)
D ; : : : ; v(N)

D

�
:
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The Deep Structured Semantic Model. The Deep Structured Semantic Model (DSSM)
uses a technique called word hashing, which represents queries and documents with
letter-trigram vectors. For example, San Francisco is encoded with the following letter-
trigrams #sa, san, an#, #fr, fra, ran, anc, nci, cis, isc, sco, co#, where # is a boundary
symbol. These letter-trigram vectors are passed through the three fully connected
layers of a feed-forward neural network to obtain vector representations vQ and vD, as
illustrated in Figure 7.3.

Figure 7.3: The Deep Structured Semantic Model (DSSM) [75].

Guideline 2 suggests that we construct metafeatures that capture the quantitative
contributions of query and document terms to the document score. But since DSSM
works at the letter-trigram level, we consider letter-trigram contributions.1

We use the following notation: jT jc is the length of text T in characters; jLj is the
total number of letter-ngrams; qc and dc are vectors of size jLj, whose elements on the
i-th position are the numbers of occurrences of the i-th letter-ngram in query Q and
document D, respectively; vQ(qc) and vD(dc) are functions of qc and dc that return
the semantic representations of query Q and document D (these functions are learned
by DSSM); MQ is a matrix of size jQjc � jV j, whose i-th row is a one-hot vector with
the component corresponding to the i-th query letter-trigram set to 1; MD is a matrix of
size jDjc � jV j, whose i-th row is a one-hot vector with the component corresponding
to the i-th document letter-trigram set to 1. We write MQ(N1) and MD(N2) for the
matrices composed of the �rst N1 and N2 rows of the matrices MQ and MD.

We de�ne metafeatures that account for the contributions of the query and document

1In the case of the DSSM model, term contributions are the sums of the contributions of the letter-trigrams
that constitute the term.
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letter-trigrams as follows:

MF1(DSSM; N1) = MQ(N1)rqc cos (vQ(qc); vD(dc)) ;
MF2(DSSM; N2) = MQ(N2)rdc cos (vQ(qc); vD(dc)) :

Using the chain rule rxF (y(x)) = JTx (y(x))ryF (y), where Jx (y(x)) denotes the
Jacobian matrix of a vector function y(x) of a vector x w.r.t. the vector x, and the
equality rx cos(x;y) = rx

xT y
jxj jyj = y

jxj jyj �
xT y
jxj3jyj , we rewrite MF1;2(DSSM; N1)

as follows:

MF1(DSSM; N1) = MQ(N1)JTqc
(vQ(qc))rvQ cos (vQ; vD)

= MQ(N1)JTqc
(vQ(qc))

�
vQ

j vQ jj vD j
�

vTDvQ
j vQ j3 j vD j

�
;

MF2(DSSM; N2) = MQ(N2)JTdc
(vD(dc))rvD cos (vQ; vD)

= MQ(N2)JTqc
(vD(dc))

�
vD

j vQ jj vD j
�

vTDvQ
j vQ j j vD j3

�
:

The elements of Jqc (vQ(qc)) and Jdc (vD(dc)) are the �rst derivatives of the functions
in the output layer of the neural network w.r.t. the input vectors qc and dc (see e.g., [8]
for the exact formulas).2

The metafeatures MF1(DSSM; N1) and MF2(DSSM; N2) do not capture informa-
tion about word boundaries. This might be a disadvantage because the importance of
a letter-trigram, which we de�ne as its expected contribution, varies with its position.
E.g., letter-trigrams at the end of a term are typically less informative than those in the
middle (for many European languages) [71].

To capture the boundaries between terms in the query and terms in the documents
we de�ne metafeatures MF3;4;5;6(DSSM; N):

MF3(DSSM; N1) = (start(Q; 1); : : : ; start(Q;N1)) ;
MF4(DSSM; N1) = (end(Q; 1); : : : ; end(Q;N1)) ;
MF5(DSSM; N2) = (start(D; 1); : : : ; start(D;N2)) ;
MF6(DSSM; N2) = (end(D; 1); : : : ; end(D;N2)) ;

where start(T; p) and end(T; p) denote the offsets of the p-th letter-trigram in the text
T from the �rst and the last trigrams of the term it falls. An illustration is given in
Figure 7.4.

Note that for more sophisticated latent semantic models, the metafeatures can be
more sophisticated. E.g., following Guideline 2 for DSSM and WTM we arrive at
the most non-trivial metafeatures among the ones that we have proposed, such as
MF1(DSSM;N1), MF2(DSSM;N2) and MF3(WTM;N2). However, as we demon-
strate in our experiments below, all metafeatures, regardless of their complexity, are
useful for improving retrieval quality.

2Since DSSM uses weight sharing, Jq c (vQ(qc )) = Jd c (vD(d c )).
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Figure 7.4: Metafeatures MF1;2;3;4;5;6(DSSM; 30) for query �niagara power station
tesla� and document �niagara falls hydroelectric plant�.

7.4 Experimental Setup

7.4.1 Research questions

We split RQ 6 into two subquestions:

RQ 6.1 Do metafeatures associated with latent semantic models help improve the
performance of individual latent semantic models on a web document ranking
task? In particular,

(a) Which of the metafeatures de�ned in §7.3.2 help to improve performance of
the underlying latent semantic models?

(b) Does employing a combination of different metafeatures inferred from a single
latent semantic model yield better performance than individual metafeatures?

(c) How does the performance of the global ranker, trained with metafeatures, vary
with the size of the training data set?

RQ 6.2 Do metafeatures associated with latent semantic models provide a means to
improve the performance of a combination of latent semantic models on the
web document ranking task?
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7.4.2 Data sets and evaluation methodology
In modern search engines, a document is described by multiple �elds, including body
text, title, URL and anchor texts [149]. In our experiments, we focus on the title �eld.
We do this for the following reasons. First, recent work on supervised latent semantic
models in web search focuses on the title �eld [51, 52, 75, 145, 167].3 Second, the title
�eld gives better [145] or, at least, as effective [149] retrieval results as the body text
�eld (using BM25). Third, some models achieve state-of-the-art performance using the
title �eld, but do not apply to other �elds (e.g., it is not feasible to train DSSM [75] on
the body text �eld, because of the extremely large number of non-zero elements in the
word hashing layer).

To train latent semantic models, we collected a training data set that comprises
130,024,971 search sessions sampled from a commercial web search engine over a six
months period.4 It contains a total of 51,117,758 unique user queries and 178,289,551
retrieved documents. Figures 7.5 and 7.6 show the query and document distributions of
the number of words and characters in the training data set. We use these statistics to
set the parameters of metafeatures in our experiments (§7.4.4).

Figure 7.5: The query and title distributions of the number of words in the training data
set. (Best viewed in color.)

Figure 7.6: The query and title distributions of the number of characters in the training
data set. (Best viewed in color.)

To evaluate the performance of the models, we collected an evaluation data set
that contains 111,203 queries sampled from the query-log �les of a commercial web
search engine.5 On average, each query is associated with 27 documents (URLs). Each
query-document pair has a human-generated relevance label on a scale from 0 to 4, with
0 = bad, 1 = fair, 2 = good, 3 = excellent, 4 = perfect. Performance is measured

3Although our work targets supervised latent semantic models, we include a comparison with LDA, as a
well-known baseline.

4There is no publicly available data set for training supervised latent semantic models [6, 10, 51, 52, 75,
145, 167, 173].

5There is no suf�ciently large publicly available dataset with relevance labels and disclosed query and
document terms (the TREC data set is too small to train the global ranker; the well-known Yahoo L2R and
MSLR data sets do not contain query terms and document terms).
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using mean Normalized Discounted Cumulative Gain (NDCG) [77] at truncation levels
1, 3, 5 and 10, using k-fold cross-validation. We use (k � 1) folds to train the global
ranker and 1 fold to evaluate the performance; the results over k folds are averaged. We
perform signi�cance testing using a paired t-test; differences are considered statistically
signi�cant for p-values lower than 0.001.

7.4.3 Model settings and baseline performance

We use four latent semantic models for which we infer metafeatures. The baseline
performance achieved by the models after optimization is listed in Table 7.1. Below
we describe how the models are trained. For comparison, we also list a state-of-the art
ranking model based on lexical matching, BM25.

BM25 (row 1 in Table 7.1) is a state-of-the-art document ranking model based on lexical
matching. The parameters k1 and b are optimized using Powell’s method [132].

LDA (rows 2�3 in Table 7.1) is our MapReduce implementation of the topic model
proposed in [13]. It is trained with 200 iterations of Gibbs sampling using � = 50=jT j
and � = 0:01 (the default values used, e.g., in [162]). The number of topics jT j is set
to 100 (used, e.g., in [52]).6 We consider ranking models based on the unsmoothed
LDA model and the LDA model smoothed using a title unigram language model and
a background unigram language model. The ranking model based on the smoothed
version of LDA model (row 3) outperforms the ranking model based on the unsmoothed
version of LDA model (row 2) by a large margin. In the rest of our experiments we use
the smoothed version.

WTM (rows 4�5 in Table 7.1) is our implementation of the Word-based Translation
Model [10]. It is trained on the query-title pairs. We consider ranking models based on
the unsmoothed WTM and the WTM smoothed using a title unigram language model
and a background unigram language model. We �nd that the ranking model based on
the smoothed version of WTM (row 5) outperforms the ranking model based on the
unsmoothed version of WTM (row 4) by a large margin. In the rest of our experiments
we use the smoothed version of WTM.

DPM (row 6 in Table 7.1) is our implementation of the Discriminative Projection
Model proposed in [52, 173]. It is trained on clicked query-title pairs. The number of
dimensions is set to 300 (the performance does not improve much for larger numbers
[173], while the training time is linear in the number of dimensions).

DSSM (row 7 in Table 7.1) is our implementation of the Deep Structured Semantic
Model proposed in [75]. It is trained by maximizing the conditional likelihood of the
clicked query-title pairs. We use the con�guration proposed in [75] (the numbers of
neurons in the hidden layers are f300, 300, 128g).

ALL (row 8�9 in Table 7.1) is a combination of LDA (w/ smoothing), WTM (w/ smooth-
ing), DPM and DSSM by a linear model (row 8) and Gradient Boosted Regression
Trees (GBRT [49], row 9).

6 Shen et al. [145] used LDA with 100 and 500 topics, but the observed changes were not marked as
statistically signi�cant.
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All ranking models based on latent semantic models outperform the BM25 ranking
model by a large margin, on all metrics. DSSM is the best performing individual
latent semantic model, again on all metrics. The two combination models outperform
all individual models and GBRT outperforms the linear model. In the rest of the
experiments, we use GBRT as our global ranker.

Table 7.1: Performance of the baseline ranking models.

NDCG

# Ranking model @1 @3 @5 @10

1 BM25 0.520 0.583 0.631 0.709
2 LDA (w/o smoothing) 0.538 0.608 0.657 0.734
3 LDA (w/ smoothing) 0.552 0.619 0.667 0.741
4 WTM (w/o smoothing) 0.545 0.611 0.659 0.736
5 WTM (w/ smoothing) 0.560 0.626 0.673 0.746
6 DPM 0.537 0.602 0.648 0.724
7 DSSM 0.568 0.640 0.687 0.759

8 ALL (linear model) 0.580 0.649 0.694 0.764
9 ALL (GBRT) 0.604 0.664 0.706 0.772

7.4.4 Experiments

We design two experiments to answer our research questions.

Experiment 1. To answer RQ 6.1, we compare the performance of each individual
latent semantic model’s score against the output of the global ranker trained with the
latent semantic model’s score as well as the metafeatures inferred from the latent
semantic model used as features.

In §7.3.2 we have introduced some metafeatures together (e.g., MF2(COS) and
MF3(COS)) and provided the intuitions why those metafeatures might be helpful for
the global ranker. We evaluate the impact of the metafeatures within the groups where
they were introduced (Table 7.2).

For the metafeatures MF1;2;3(QL; N), MF1(WTM; N1; N2) and MF2(WTM; N)
we set N = N1 = N2 = 15, because less than 0.3% of the queries and 0.2% of the
titles in the training set contain more than 15 words (Figure 7.5). For the metafeatures
MF1;2;3;4;5;6(DSSM; N) we set N = 80 because less than 0.4% of the queries and
0.2% of the titles in the training set contain more than 80 characters (Figure 7.6).

Experiment 2. To answer RQ 6.2, we compare the performance of the global ranker
trained with the individual latent semantic models’ scores only (for LDA, WTM, DPM,
DSSM) against the global ranker trained with those individual latent semantic models’
scores plus the metafeatures inferred from those models.
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Table 7.2: Experiment 1 (runs).

Metafeatures Latent semantic models

MF1;2;3(QL; 15) LDA, WTM
MF1;3(TM) LDA
MF1(WTM; 15; 15) WTM
MF2(WTM) WTM
MF1(QL; 15);MF3(WTM; 15) WTM
MF1(COS) DPM, DSSM
MF2;3(COS) DPM, DSSM
MF1;2;3;4;5;6(DSSM; 80) DSSM

7.5 Results
We present the outcomes of the two experiments described in §7.4.4, and provide
answers to our research questions.

7.5.1 Experiment 1
The results of Experiment 1 are given in Table 7.3 and Figure 7.7. Table 7.3 compares
the performance of each individual latent semantic model and the global ranker trained
using the latent semantic model’s score together with the metafeatures listed in Table 7.2
as features. Figure 7.7 plots the performance (in terms of NDCG@10) for the latent
semantic models with the metafeatures listed in Table 7.2 vs. the number of queries
used for training.

(a) Latent Dirichlet Allocation (LDA) (b) Word-based Translation Model (WTM)

(c) Discriminative Projection Model (DPM) (d) Deep Structured Semantic Model (DSSM)

Figure 7.7: Performance of the latent semantic models with different metafeatures for
different sizes of training data. (Best viewed in color.)

A �rst general observation from Table 7.3 is that for every latent semantic model, the
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Table 7.3: Performance of the ranking models based on the latent semantic models with
different metafeatures (10-fold cross-validation). Highest scores per latent semantic
model are indicated in boldface. The improvements of models with metafeatures over
their respective baseline models (i.e., LDA, WTM, DPM and DSSM) are statistically
signi�cant (p < 0:001).

NDCG

Global ranker features @1 @3 @5 @10

LDA 0.552 0.619 0.667 0.741
+ MF1;2;3(QL; 15) 0.564 0.631 0.680 0.754
+ MF1;3(TM) 0.619 0.679 0.720 0.784
+ ALL MF 0.625 0.684 0.725 0.787

WTM 0.560 0.626 0.673 0.746
+ MF1;2;3(QL; 15) 0.576 0.645 0.691 0.762
+ MF1(WTM; 15; 15) 0.599 0.660 0.704 0.772
+ MF2(WTM) 0.593 0.655 0.699 0.765

+ MF1(WTM; 15; 15) 0.605 0.667 0.710 0.775
+ MF1(QL; 15)

+ MF3(WTM; 15) 0.597 0.658 0.701 0.770
+ ALL MF 0.617 0.675 0.717 0.781

DPM 0.537 0.602 0.648 0.724
+ MF1(COS) 0.605 0.664 0.706 0.772
+ MF2;3(COS) 0.614 0.675 0.717 0.782
+ MF1;2;3(COS)

(= ALL MF) 0.615 0.676 0.718 0.782

DSSM 0.568 0.640 0.687 0.759
+ MF1(COS) 0.609 0.668 0.710 0.774
+ MF2;3(COS) 0.627 0.685 0.725 0.787
+ MF1;2;3(COS) 0.624 0.683 0.723 0.786
+ MF1;2;3;4;5;6(DSSM; 80) 0.617 0.673 0.715 0.780
+ ALL MF 0.634 0.691 0.731 0.791

addition of all metafeatures de�ned for that model yields the highest performance. We
also see that combinations of metafeatures nearly always lead to performance increases.
Let us now turn to each research question individually.
RQ 6.1 (a). We �nd that all metafeatures de�ned in §7.3.2 yield statistically signi�cant
improvements in NDCG scores at truncation levels 1, 3, 5 and 10 over the underlying
rankings produced by the latent semantic models’ scores, for all latent semantic models.
The relative improvements in NDCG scores at truncation levels 1, 3, 5 and 10 are above
10.2%, 7.8%, 6.4% and 4.2%, respectively (Table 7.4). Hence, our metafeatures have a
clear early precision enhancing effect.
RQ 6.1 (b). We �nd that the best results for each latent semantic model are obtained
by the combination of all latent semantic model metafeatures (�ALL MF�). However,

115



7. Metafeatures

Table 7.4: Relative improvements of the rankings given by the global ranker trained
with the individual the latent semantic models’ scores and all metafeatures de�ned
for the model over the rankings given by the individual latent sematic models’ scores
(10-fold cross-validation).

NDCG

Latent semantic model @1 @3 @5 @10

LDA +13.2% +10.5% +8.7% +6.2%
WTM +10.2% +7.8% +6.5% +4.7%
DPM +14.5% +12.3% +10.8% +8.0%
DSSM +11.6% +8.0% +6.4% +4.2%

combinations of metafeatures do not always lead to performance improvements. In par-
ticular, for DPM, the addition of MF1(COS) does not lead to a statistically signi�cant
improvement over the metafeatures MF2;3(COS). And for DSSM MF1;2;3(COS) does
not outperform MF2;3(COS). This can be explained by the fact that the components
of MF1(COS) are the products of the components of MF2(COS) and MF3(COS):
MF1(COS) does not bring any new information to the global ranker trained with
MF2;3(COS), but increases the number of features used by the global ranker, which
results in a stronger over�tting of the global ranker.
RQ 6.1 (c). We �nd that the gains obtained from metafeatures in terms of NDCG@10
are proportional to the logarithm of the size of the training data set: the average Pearson
correlation coef�cient, r = 0:860 (with all values in the interval [0:825; 0:921]). For
some models, viz. LDA, WTM, DSSM, the performance achieved with a relatively
small number of queries in the training set (i.e., < 12500) is below the performance of
the baseline (not using metafeatures). This is apparently a result of over�tting, as we
observed similar results for the global ranker trained with only one feature�the latent
semantic model’s score. With more queries added for training, all metafeatures end up
beating the baseline, and signi�cantly so.
Together, the above results lead to the conclusion that the proposed metafeatures improve
the performance of the latent semantic models on the web document ranking task that
we consider. Interestingly, through the addition of metafeatures the ranking of latent
semantic models has changed: from DSSM > WTM > LDA > DPM (on all metrics)
we went to DSSM > LDA > DPM �WTM (again, on all metrics) (Table 7.3). This
reveals an important experimental issue: a fair comparison of latent semantic models
w.r.t. a document ranking task assumes utilizing all potentially useful knowledge mined
during the building of these models.

7.5.2 Experiment 2
The outcomes of Experiment 2 are listed in Table 7.5. We �nd that the metafeatures yield
a statistically signi�cant improvement over the output of the global ranker trained with
the latent semantic models’ scores only. The relative improvements in NDCG scores at
truncation levels 1, 3, 5 and 10 are 7.6%, 6.17%, 5.38% and 3.75%, respectively.
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Table 7.5: Performance of the model combinations with the latent semantic models’
scores only and the latent semantic models’ scores and metafeatures (10-fold cross
validation). The improvements are statistically signi�cant (p < 0:001).

NDCG

Global ranker features @1 @3 @5 @10

models’ outputs 0.604 0.664 0.706 0.772
+ models’ metafeatures 0.650 0.705 0.744 0.801

Next, we take a closer look at the changes brought about by the inclusion of
metafeatures in the combination of latent semantic models. Table 7.6 provides a matrix
of the changes in relevance labels for the documents returned in the top position for each
query in the evaluation data set by the combination of the latent semantic models’ scores
only (w/o MF) and by the combination extended with the metafeatures (w/ MF). We
counted the number of times that the retrieved document is in each of the �ve relevance
categories, from bad to perfect, for both combinations.

We observe that for 70% of the queries, the relevance labels of the documents
returned in the top position did not change. For the remaining queries, the number of
cases in which the highest ranked document returned by the combination w/ MF is more
relevant than one returned by the combination w/o MF exceeds the number of cases in
which the combination w/o MF returns a more relevant document than the combination
w/ MF for all relevance label pairs. Furthermore, the relative number of cases in which
the combination w/ MF returns a more relevant document than the combination w/o
MF is smaller for low-performing queries (for which the retrieved documents’ labels
fall into bad, fair or good categories) than for high-performing queries (for which the
retrieved documents’ labels fall are excellent or perfect).

In sum, metafeatures help to bring high-quality documents to the top position rather
than that they help to replace non-relevant documents with partially relevant ones.

7.6 Conclusions and Future Work
In this chapter, we answered the following research question:

RQ 6 How to extract potentially useful information from a trained latent semantic model
and how to utilize this information for improving ranking of search results?

We have introduced an approach to increase the effectiveness of latent semantic models
on a web document ranking task. The approach is based on so-called metafeatures�
feature vectors that provide a �ne-grained description of a latent semantic model’s
prediction or some aspects of the prediction. We demonstrated our approach using four
latent semantic models, two of which are traditional latent semantic models (Latent
Dirichlet Allocation [13, 162] and Word-based Translation Model [10]) used in many
IR applications, while the other two are recently proposed latent semantic models
(Discriminative Projection Model [52, 173] and Deep Structured Semantic Model [75])
that specialize on the web document ranking task.
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Table 7.6: Change matrix of the relevance labels of the highest ranked documents
returned by the combination of the latent semantic models’ scores only (w/o MF) and
the combination of latent semantic models’ scores and metafeatures (w/ MF). The cell
in row X and column Y contains the number of queries for which the documents ranked
on the top positions by the combinations w/o MF and w/ MF belong to categories X
and Y, respectively.

w/ MF

bad fair good excellent perfect

bad 12694 3139 4111 486 534

fair 3096 14446 6294 1152 931

good 2943 4816 38396 2656 830

excellent 206 301 1141 4607 215w
/o

M
F

perfect 118 196 239 63 7593

Our experimental results show that through the use of metafeatures the performance
of a combination of latent semantic models on the document ranking task can be
improved by 7.6% and 3.8% in NDCG scores at truncation levels 1 and 10. Moreover,
through the use of metafeatures we manage to achieve better performance for each
individual latent semantic model by itself than the traditional way of combining all four
latent semantic models’ scores.

We believe that a latent semantic model’s metafeatures along with its score provide
a richer representation of the model’s prediction than the model’s score by itself. We
expect metafeatures to be useful in other applications that use the scores of latent
semantic models, e.g., online advertising [21], question answering [11], paraphrase
detection [40], and textual entailment [151].

As to the limitations of our study, the large size of some metafeatures might increase
the chances of over�tting for many machine learning algorithms. To mitigate the issue,
dimensionality reduction techniques, such as Principal Component Analysis (PCA)
[82], Autoencoder Neural Networks (AENNs) [38], Restricted Boltzmann Machines
(RBM) [65] and t-SNE [152], can be considered.

Our approach can be extended to other models whose scores are used as features
for a machine learning algorithm. For instance, in web search, a similar approach can
be applied to the PageRank model [127]. The score assigned to a document D by the
PageRank model is a sum of features over documents that contain a reference to D.
Providing information about components of the sum (e.g., mean, variance) might help
the global ranker when it attempts to rank documents that have received very similar
PageRank scores.
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8
Conclusions

In the beginning of this thesis, we motivated our research by a speculation that un-
derstanding people’s continuously changing needs is an integral part of intelligence.
Speci�cally, we focused on studying user behavior in web search.

In Chapters 2 and 3, we brought up two new angles to the analysis of click models.
First, we showed that click models deteriorate over time if retraining is avoided. Second,
we showed that click models trained with suboptimal hyperparameters are prone to
predict badly calibrated click probabilities. To combat these problems, we adapted
Online EM techniques and isotonic regression. And based on our experimental results,
we suggested changes to the click model evaluation protocol. We anticipate that the
aforementioned effects would be important for other user behavior models. And we
hope that our approaches would serve as a good starting point for dealing with similar
challenges in the future.

In Chapter 4, we pioneered the idea of modeling the user’s search journey as a
sequence of distributed vector representations, which we also exploited in Chapters 5
and 6. We proposed three neural network-based models, NCM, CSM and CATM,
that use distributed vector representations to explain and predict (i) clicks on a SERP,
(ii) sequences of clicks on a SERP, and (iii) times between user actions, such as time-to-
�rst-click, time-to-last-click, time-between-clicks and time-to-abandoned-query. We
believe that the ideas underlying these models can be reused for modeling (i) other
information interaction events, (ii) sequences of other information interaction events,
and (iii) times between other information interaction events. This altogether lays the
foundation for constructing a more realistic simulator of user search behavior than those
available today, which in turn would open the door to innovations in search algorithms
and provide new opportunities to improve our understanding of human information
interaction behavior.

In Chapter 7, we presented guidelines for extracting potentially useful information
about the latent semantic model’s prediction. And we showed that using this information
helps to increase the effectiveness of several latent semantic models in web search. We
believe that the proposed general approach can be applied to other machine learning
(ML) applications.

Below, we provide answers to the research questions posed in §1.1 and suggest
possible directions for future work.
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8.1 Main Findings
In Chapter 2, we studied click models in an online scenario, where a search engine deals
with a stream of click/skip observations. We focused on the most widely used class of
click models, i.e., probabilistic graphical model (PGM)-based click models, and the most
effective technique for inferring their parameters, i.e., expectation-maximization (EM).
We showed empirically that click models deteriorate over time if retraining is avoided
and asked the following research question:

RQ 1 How to keep click models up to date with changes in search engine algorithms
and user preferences?

We recognized two challenges in keeping click models up to date. First, how to
ef�ciently incorporate newly observed information into a trained click model? Second,
how to remove outdated information from a trained click model? We proposed Online
EM to ef�ciently update click models on the �y using readily available EM equations
as well as the EM with Forgetting method to deal with outdated click information
by discounting past observations depending on their age. Our experiments show that
Online EM is orders of magnitude more ef�cient than retraining the model from scratch
using standard EM, while losing little in quality. And that EM with Forgetting surpasses
the performance of complete retraining while being as ef�cient as Online EM.

In Chapter 3, we examined the calibration properties of PGM-based click models.
Speci�cally, we asked the following research question:

RQ 2 Does calibration help to improve click model performance and make it less
dependent on the choice of hyperparameters?

We proposed to use isotonic regression to ensure that click probabilities predicted by
a click model match the proportion of clicks (at each position) in the held-out data.
Our experiments show that (i) isotonic regression signi�cantly improves click models
trained with suboptimal hyperparameters in terms of perplexity; and that (ii) calibrated
click models are less sensitive to the choice of hyperparameters than their original
(non-calibrated) versions. Importantly, the relative ranking of existing click models in
terms of their predictive performance changes depending on whether or not we calibrate
their predictions. We advocate for making calibration a mandatory part of the click
model evaluation protocol.

In Chapter 4, we introduced an alternative to PGM-based click models. We described a
neural click modeling framework, in which user behavior is modeled as a sequence of
distributed vector representations, and asked the following research question:

RQ 3 How to design a neural network that would be able to learn patterns in user click
behavior directly from logged interaction data?

We instantiated the proposed neural click modeling framework using recurrent neural
networks (RNNs). Our experimental results show that the neural click model that uses
the same training data as traditional PGM-based click models, has better performance
on the click prediction task (i.e., predicting user clicks on search engine results) and
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the relevance prediction task (i.e., ranking documents by their relevance to a query).
We also showed how to go beyond the level of query-document pairs and incorporate
information (i) about all query sessions generated by a given query and (ii) about all
query sessions containing a given document. The �rst yields a small improvement on the
click prediction task and a considerable improvement on the relevance prediction task.
The second yields a large improvement on the click prediction task and a signi�cant
deterioration on the relevance prediction task. Finally, we provided an analysis of the
best performing model on the click prediction task, which showed that (i) it learned
concepts that are used in existing PGM-based click models; and that (ii) it also learned
other concepts that cannot be designed manually.

In Chapter 5, we investigated the problem of predicting click sequences. Speci�cally,
we asked the following research question:

RQ 4 What are the challenges in predicting sequences of clicks and how to solve them?

Since the number and order of clicks may vary even for the same query and ranking
of results (e.g., due to different users and contexts), there exists no unique correct
click sequence, but a (possibly in�nite) set of probably correct sequences does exist.
Therefore, we formulated our task as building a model that, given a query and a ranking
of results, describes these probably correct click sequences. We proposed a click
sequence model (CSM) that predicts a probability distribution over click sequences.
Our experiments show that the K most probable click sequences predicted by CSM
provide a good means to reason about properties of the probably correct click sequences,
such as the expected number of clicks, the expected order of clicks and the probability
that a user will interact with the results in a non-sequential order. Moreover, we
observed that CSM reaches state-of-the-art performance on the task of predicting clicks,
outperforming PGM-based click models by a large margin, and matching the results of
NCM described in Chapter 4.

In Chapter 6, we addressed the problem of modeling times between user actions.
Speci�cally, we asked the following research question:

RQ 5 How to correctly interpret times between user actions observed in different
contexts?

We introduced the notion of context bias effect in times between actions and proposed a
context-aware time model (CATM) that allows us to estimate parameters of a probability
distribution of the time elapsed between user actions in a given context. We found that
for between 37% to 80% of query-result pairs, depending on the number of observations,
the distributions of click dwell times have statistically signi�cant differences in query
sessions for which a given result (i) is the �rst item to be clicked and (ii) is not the �rst.
Similarly, we showed that previous user interactions in�uence distributions of times
between (i) submission of a query and the �rst click on a SERP, (ii) submission of a
query and the last click on a SERP, and (iii) submission of an abandoned query (i.e.,
a query with no clicks on a SERP) and the next query submission. Our experiments
show that CATM has better prediction performance than the standard approach that
�ts a probability distribution to the observed times. And that CATM provides a better
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means to infer result relevance from times between clicks than the standard approach
that computes the mean values of the observed times between clicks.

In Chapter 7, we shifted our attention from interaction-based models towards content-
based models. We aimed to improve the effectiveness of the best performing latent
semantic models, which utilize user behavioral signals for training. But we also wanted
to test the generalizability of our methods, and for this reason we also applied it to
unsupervised latent semantic models. Speci�cally, we asked the following research
question:

RQ 6 How to extract potentially useful information from a trained latent semantic model
and how to utilize this information for improving ranking of search results?

We proposed to create metafeatures�feature vectors that describe the structure of
the model’s prediction for a given query-document pair�and pass them to the global
ranker along with the models’ scores. We provided simple guidelines to represent the
latent semantic model’s prediction with more than a single value, and illustrated these
guidelines using several latent semantic models. Our experimental results show that
the proposed metafeatures help to improve the effectiveness of (i) the individual latent
semantic models and (ii) a combination of these latent semantic models.

8.2 Future Work

We look back at the research chapters and outline possible directions for future work.

8.2.1 PGM-based models

In Chapters 2 and 3, we asked two research questions: (i) how to keep PGM-based
click models up to date and (ii) how to ensure that the predictions of PGM-based click
models are well calibrated. We believe that these questions are relevant not only for
the PGM-based click models we studied but also for all other models of user behavior
(those that have already been proposed and the ones that will be proposed in the future).
Therefore, we encourage authors of future studies to consider these questions when a
new user model is proposed.

The calibration methodology proposed in Chapter 3 can be applied both to user
models that predict binary information interaction events, such as clicks, and to user
models that predict real value characteristics of information interaction events, such as
click dwell times. We do not follow this methodology in Chapters 2, 4, 5 and 6, because
the research described in these chapters was conducted before we advocated that models
of user behavior need to be calibrated to ensure a fair comparison. We expect the
neural network-based user models proposed in Chapters 4, 5 and 6 to suffer less from
the issue of bad calibration than the PGM-based click models studied in Chapter 3,
because neural networks tend to produce well-calibrated probabilities [123]. We leave
the analysis of their calibration properties and a fair comparison with the calibrated
PGM-based click models for future work.
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8.2.2 Neural network-based models
In Chapters 4, 5 and 6, we studied neural methods for modeling (i) clicks on a SERP,
(ii) sequences of clicks on a SERP, and (iii) times between user actions (e.g., time
between two consecutive clicks). We formulate the next research goal as building a
universal user model with the following properties:

� capable of learning from raw data of any form;

� capable of predicting all information interaction events and their properties;

� highly personalized and contextualized; and

� capable of explaining its predictions and providing insights on how to improve
the user experience.

Learning from raw data of any form

The models presented in Chapters 4 and 5, NCM and CSM, represent queries and search
engine results by their IDs and make predictions using only click/skip information
associated with the ID of the query submitted by a user and the IDs of the search
engine results. This leads to high-quality predictions for SERPs consisting of frequent
query-result pairs and low-quality predictions for SERPs with rare or previously unseen
query-result pairs. The CATM presented in Chapter 6 also takes into account the number
of terms in the query and the BM25 [136] scores computed between consecutive queries
in a search session.

Future user models should be capable of using all potentially useful information,
which includes, but is not limited to, (i) the user’s query, (ii) a description of each result
(URL, title, snippet, main content, images on the landing page, etc.), (iii) the SERP
layout, (iv) detailed user interactions with the results (clicks, touches, swipes, mouse
tracks, etc.), (v) a user pro�le, (vi) the user context, and (vii) previous user interactions.
Moreover, this information should be presented in raw form (as a list of texts, images
and audio), because neural networks have been shown to achieve their best performance
when they are applied to raw data.

Predicting all information interaction events and their properties

In Chapters 4, 5 and 6, we formulated the task as predicting (i) clicks on a SERP,
(ii) sequences of clicks on a SERP, and (iii) times between clicks and query submissions.

Future user models should be capable of predicting (i) all information interaction
events, such as touches (on mobile), swipes (on mobile), mouse movements (on desktop),
next queries, etc., (ii) sequences consisting of all information interaction events, and
(iii) times between all information interaction events.

Personalization and contextualization

The models proposed in Chapters 4, 5 and 6 do not use any information about the user.
Future user models should be capable of exploiting all potentially useful information

about the user, which includes, but is not limited to, (i) demographic information (age,
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gender, occupation, etc.), (ii) social network pro�le, circle and recent posts, (iii) short-
and long-term user interests and preferences, and (iv) location, time of the day, news
and nearby places.

Providing explanations and insights

In Chapters 4, 5 and 6, we put a strong focus on predicting future user behavior. An
important direction for future work is to provide interpretable explanations for user
models’ predictions. For example, a user is likely to be satis�ed by a search result
(i) because he likes 90% of the articles published on this web site; (ii) because this
article describes a nearby event; or (iii) because this article is similar to a few web pages
he spent a long time reading last week. Future studies of user models should also go
beyond individual explanations and help us gain insights into what leads to a suboptimal
user experience.

8.2.3 Metafeatures
In Chapter 7, we presented the idea of complementing predictions of latent semantic
models with so-called metafeatures that describe the structure of latent semantic models’
predictions. We believe that this general approach can be applied to other models whose
scores are used as features for ML algorithms. For instance, a score assigned to a
document D by the PageRank model [127] is used, together with the predictions of
latent semantic models, as a feature for the global ranker. It is computed as a sum over
documents that contain a reference to D. Providing information about components of
the sum (e.g., mean, variance) might help the global ranker when it attempts to rank
documents that have received very similar PageRank scores.
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Summary

Web search engines provide quick and easy access to information available online. In
the early days of the Internet, web links were the most valuable source of information
for predicting result usefulness. Nowadays, the whole web search stack relies on user
behavioral data, starting from crawling policies to optimizing presentation of the results.
However, accurately interpreting user interaction behavior is not straightforward due to
various types of bias. For example, users tend to click more on results ranked on top
positions (position bias) and visually salient results (attention bias). In this thesis, we
study existing tools for modeling and predicting user interactions with a search engine,
improve them and develop new ways of gaining insights about user behavior.

In the �rst two research chapters, we focus on the traditional approach to account
for biases in user click data, which requires a probabilistic graphical model (PGM) that
explains relationships between click/skip events (observed variables) and examination
(unobserved variables). We refer to these models as PGM-based click models and
bring two new angles to their analysis. First, we show that PGM-based click models
deteriorate over time if retraining is avoided and ask how to keep them up to date
with changes in search engine algorithms and user preferences. Second, we show that
PGM-based click models trained with suboptimal hyperparameters are prone to predict
badly calibrated click probabilities and investigate whether calibration helps to improve
their prediction performance.

In the next three research chapters, we propose an alternative to the PGM-based
approach. Speci�cally, we suggest to model user click behavior in web search using
recurrent neural networks (RNNs). We show that RNN-based click models achieve
better prediction performance compared to PGM-based click models. We explain this
by the fact that RNN-based click models learn user behavior patterns directly from the
data, while in PGM-based click models these patterns need to be set manually. Next
to the biases we observe in user click behavior, we �nd biases in times between user
actions. For example, users tend to spend more time interacting with results at the
beginning of a search session. And we show that RNN-based models can account for
biases in times between user actions too.

In the last research chapter, we turn our attention towards content-based models or,
as they are often referred to, latent semantic models. Today, the use of latent semantic
models by search engines is restricted to simply passing their outputs as features to a
so-called global ranker, along with outputs of other models used for ranking. We argue
that this is not optimal, because a single value output by a latent semantic model may
be insuf�cient to describe all aspects of the latent semantic model’s prediction. We
present guidelines for extracting potentially useful information about the latent semantic
model’s prediction. And we show that using this information helps to increase the
effectiveness of several latent semantic models in web search.
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Samenvatting

Zoekmachines geven snel en gemakkelijk toegang tot informatie op het internet. In
de begindagen van het web vormden links tussen documenten de meest waardevolle
informatie om te bepalen welke zoekresultaten relevant waren. Tegenwoordig staat de
interactie die gebruikers hebben met zoekmachines eerder centraal bij alles wat achter
de schermen gebeurt � van het beslissen welke pagina’s op te nemen in de index, tot
het optimaliseren van de opmaak van de pagina met zoekresultaten. Het interpreteren
van gebruikersgedrag is echter niet eenvoudig vanwege verschillende soorten bias die
zich voordoen. Zo zijn gebruikers geneigd vaker te klikken op resultaten die bovenaan
staan in een lijst, en wordt er eerder geklikt op visueel aantrekkelijke resultaten. In dit
proefschrift bestuderen we bestaande methodes om de interactie van gebruikers met
zoekmachines te voorspellen, verbeteren we deze, en ontwikkelen we nieuwe manieren
om inzicht te verkrijgen in het gedrag van gebruikers.

In de eerste twee onderzoekshoofdstukken besteden we aandacht aan traditionele
manieren van omgaan met bias in klikdata. We behandelen met name probabilistic
graphical models (PGMs) die de relatie beschrijven tussen zowel geobserveerde acties,
zoals het wel of niet klikken op resultaten, als niet geobserveerde acties, zoals het
bekijken van resultaten. We introduceren twee nieuwe inzichten wat betreft de analyse
van PGM-gebaseerde klikmodellen. Ten eerste tonen we aan dat klikmodellen slechter
worden door de tijd heen als ze niet opnieuw getraind worden, en stellen we ons de
vraag hoe de modellen up-to-date gehouden moeten worden wanneer de zoekalgoritmes
en het gebruikersgedrag waar ze mee werken veranderen. Ten tweede laten we zien
dat een suboptimale keus van hyperparameters bij het trainen van klikmodellen kan
leiden tot het voorspellen van slecht gekalibreerde kansen op kliks. We onderzoeken of
kalibratie de voorspelde kansen verbetert.

In de drie onderzoekshoofdstukken die volgen stellen we een alternatief voor de
PGM-gebaseerde modellen voor, gebaseerd op recurrent neural networks (RNNs). We
laten zien dat RNN-gebaseerde klikmodellen betere voorspellingen doen dan PGM-
gebaseerde modellen. De reden die wij hiervoor aandragen is dat de RNN-gebaseerde
modellen de patronen die ze herkennen in gebruikersdata direct leren van de data,
terwijl deze bij PGM-gebaseerde modellen handmatig moeten worden gespeci�ceerd.
Bovendien observeren we, naast de bias in gebruikershandelingen zelf, een vergelijkbare
bias in de tijd tussen gebruikershandelingen, bijvoorbeeld de tijd die mensen besteden
om naar resultaten te kijken. Ook deze bias kan door RNN-gebaseerde modellen worden
verklaard.

In het laatste onderzoekshoofdstuk richten we onze aandacht op inhoud-gebaseerde
modellen, of, zoals ze vaak worden genoemd, latent semantische modellen. Huidige
zoekmachines gebruiken de output van latent semantische modellen vaak als feature,
samen met de output van andere modellen, voor een zogenaamde globaal ranking-
algoritme. Wij stellen dat dit niet optimaal is, omdat het representeren van de voor-
spelling van van een latent semantic model als ·e·en getal te beperkt zou kunnen zijn om
alle aspecten te belichten van de voorspelling van het model. We stellen richtlijnen voor
om potentieel bruikbare informatie te onttrekken aan latent semantische modellen. We
tonen aan dat het gebruik van deze additionele informatie bijdraagt aan betere resultaten
van verscheidene latent semantic modellen voor zoekmachines.

135



O
n U

nderstanding, M
odeling and P

redicting U
ser B

ehavior in W
eb S

earch
A

lexey 
B

orisov Alexey Borisov

search

On Understanding, Modeling and Predicting 
User Behavior in Web Search

Web search engines provide quick and easy access to information
available online . In the early days of the Internet, web links were
the most valuable source of information for predicting result
usefulness . Nowadays, the whole web search stack relies on user
behavioral data, starting from crawling policies to optimizing
presentation of the results . However, accurately interpreting user
interaction behavior is not straightforward due to various types of
bias. For example, users tend to click more on results ranked on top
positions (position bias) and visually salient results (attention
bias) . In this thesis, we study existing tools for modeling and
predicting user interactions with a search engine, improve them
and develop new ways of gaining insights about user behavior .
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