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Single quantum querying of a database
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We present a class of fast quantum algorithms, based on Bernstein and Vazirani's parity problem, that
retrieves the entire contents of a quantum datab@ase a single query. The class includes binary search
problems and coin-weighing problems. We compare the efficiency of these quantum algorithms with the
classical algorithms that are bounded by the classical information-theoretic bound. We show the connection
between classical algorithms based on several compression codes and our quantum-mechanical method.
[S1050-294{@8)07909-9

PACS numbd(s): 03.67.Lx, 89.70+c

[. INTRODUCTION from the set of possible marked items. It thus takesl
queries to locate the marked item in the worst case. A sur-
Quantum computers have been shown recently to be ablarising result of Grover3] is that a quantum-mechanical
to solve certain problems faster than any known algorithmalgorithm can be faster than this and find the marked item
running on a classical computgt—3]. These problems in- with high probability inO(y/n) quantumqueries, contrary to
clude factoring, which can be performed in polynomial timeone’s ‘“classical” intuition. Grover's algorithm does not,
on a quantum computd2], but is widely believed to be however, violate the information-theoretic lower bound on
difficult on a classical computer, and database lookup, whiclthe minimal number of querielsl.
is provably faster on a quantum compuitg}. Understanding The information-theoretic lower bouridl] on M is given
the power of quantum algorithms and developing new algoby the amount of information in the database divided by the
rithms is of major interest as the building of a quantum com-maximal amount of information retrieved by a query that has

puter will require a huge investment. A possible answers, i.e.,
In this paper we present quantum algorithms for binary
search and coin-weighing problems in which the information H(Y)
in a quantum database is retrieved with a single query. These M= M* @

are applications of the Bernstein and Vazirani parity problem

[4,5] and provide a strong illustration of the power of quan-where H(Y)= —3,pylogapy, py is the probability forY to

tum computation and point out the limitations of classicalcontainy and=,p,=1.

information-theoretic bounds applied to quantum computers. A quantum algorithm employs a database that responds to
~ Information theory is a useful tool for analyzing the effi- superpositions of queries with superpositions of answers.

ciency of classical algorithms. Problems involving informa- The quantum database acts on two input registers: register

tion retrieval from a database are particularly amenable t@ontaining the query state) and registeiB, an output reg-

such analysis. Consider this database search problem: w&er of dimensiom initially containing statgb). We define
have a databas¥ that containa items, of which a Slngle the Operation of querying the database as

one is marked. This database is represented as a bit gtring
of length n with Hamming weight 1 ¥ has exactly one Ry:|x,b)—|x,[b+a(x,y)] mod A), ©)]
“1” ). One would like to locate the marked item in as few
queries to the database as possible. The queries are bit stringbereR, is a classical reversible transformation that maps
x of lengthn such that the database returns the answer  basis states to basis statébat is, a permutation matnix
depending on the contents of the database,a{Rrgy) is the
answer to query, given database state In a classical
a(x,y)=x-yz<2 xiyi) mod 2 (1)  query only query basis statés) are used and the output
i=1 registerB is initially set to|0). However, a quantum data-
base is not restricted to working only on basis states but can
wherex; andy; are theith bits ofx andy. A simple version handle arbitrary superpositions of inpli6§. Because of this
of this problem is the case in which the allowed queries the information that is retrieved by a single quantum query is
have Hamming weight 1. The information retrieved by anot bounded by logA. The relevant quantity in the quantum
single queryx;=g;; is small—it adds or eliminates itefin  setting is the accessible information in the registerand B
(together calledXB) and the internal state of the quantum
computerd about the databasé Together these are always
*Electronic address: terhal@phys.uva.nl in one of a set of pure statég)y),py}y . v and the accessible
"Electronic address: smolin@watson.ibm.com information ony is bounded by the Kholevo bourd]

n
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locd PXB)<S(PXB), 4 . 2n
lim M p(n)=——.
n—o |Og2(n)

(6)
where S(®XB) = —Trpgxpl00pexs iS the Von Neumann

entropy of ®XB and poxs=ZyPy|iy)(4yl. In the case of a |t gne has a spring scale capable of performing weighings in
classical query, the Von Neumann entro(®XB) iS  gyperposition, then one can use the Bernstein-Vazirani algo-
strictly less than loglim(B) =logzA, which gives rise to the  rithm to identify the defective coins perfectly with a single
classical bound2). The quantum algorithms analyzed in this weighing by using only the parity of the Hamming weight
paper “violate” the classical information-theoretic bound by 5nswer. We can compare the total running time of this quan-
extracting extra information in the phases of the query regy,m algorithm with that of the classical algorithm. The pre-
ister X. It is notable that Grover's Hamming weight 1 prob- processing and postprocessing of the registef the query

lem[3] has been proven optimg8,9]; no quantum algorithm  gtate and the preprocessing of Bieegister all consist of the
for this problem can violate the classical information- yadamard transforms on individual bits

theoretic bound?2).

The quantum algorithms presented here are a major im- 1(1 1
provement on the classical algorithms in terms of computa- H= —( 1 -1/ )
tion time if the computation performed by the database is V2

costly. All our algorithms make use of an interaction with the
database of the forra(x,y)=x-y. A direct implementation
of such a database tak&glog,n) time usingn Toffoli andn
XOR gates in parallel. In general we will be given some al-
gorithm that computes(x)=x-y for any inputxe{0,1}"
and that runs in some timg(n). We will compare the run-
ning time of the quantum algorithms including this cost to

which can be done in parallel. The total running time is then
simply 2+T(n). In the classical algorithm the database is
queried at leadtsee Eq. ] n/log,(n+1) times resulting in a
total running time of at least T(n)/log,(n+1).

Il. COMPRESSIVE ALGORITHMS

the classical running time. In this section we will consider modifications of this prob-
lem in which the information in the databakKY) is less
The parity problem and coin weighing thann bits. In these cases retrieving the data from the source

can be viewed as a problem of data compression of a source
rithm in which a single quantum query to the database i We will resf[rict ourselves here to the compressiqn of the
sufficient and a strong violation of the classical information—data from a single use of the Source. I_n the QIQSS'CaI case,
theoretic bound comes about. In their parity problem the)faach query to th_e da_tabasg retrieves a single d|g_|t pf the word
consider a databasé that contains an arbitrany-bit string into which th? bit stringy will be _encoded. The minimal set

y. The answer to queries representechilyit stringsx to the of predetermined classical queries will serve to construct the

database is the parity of the bits commorxtandy given by single quantum query algorithm. We will use cod.ing.
a(x,y)=x-y. Note that the problem is to determigein its schemes that minimize the amount of pre/postprocessing in

entirety, not to merely determine the parity gf. Bernstein the single query quantum algorithm. A classically optimal

and Vazirani have shown thagt can be determined in only encoding scheméf. [12]) has

two queries to the database. But by preparing the output

registerB in an initial superposition 1/2(]0)—|1)) [10], H(Y)<2, pilisH(Y)+1, )
the algorithm can be simplified to comprise a single query. !

Their algorithm can be directly applied to the COin_Weighingwherel- is the length of the compacteg and p; is the
I I

problem. Coin-weighing problems are a group of problems N : A .
in which a set of defective coins is to be identified in a totaIprObab'“ty that the database contains bit string It is not

set of coing11]. Assume there are two types of coins goodguarantged, however, that such an optimal en_coding .scheme
and bad ones, and we can weigh arbitrary sets of coins with&" be implemented by the type of database interaction that

a spring scalgwhich gives the weight of the set of coins omlenlfhgl\;elrr tzirlljse’ nzmne{}\// ex;;)resigﬁ)\;n | r ntum
directly, as opposed to a balance that compares two sets o[g © Toflowing seclion we present singie query quantu

coing. All sets of coins are equiprobable. A setrotoins is a ori_thms of WhiCh the construction is based on optimal
repreéented it s w.hereyi=1 indi- classical encoding schemes, namely Huffman coding. In the

S . A section thereafter we consider more general types of data-
cates that coinm is defective. A weighing can be represented .
: - o bases and use a random coding scheme. Each of these
by a query stringx, wherex; specifies whether coim is

included in the set to be weighed. The result of a classicaEChemes wil require precomputation .Of a set .Of queries
o . . L ased on the encoding schemes. The time for this computa-
weighing is the Hamming weight of the bitwise productxof

andy, wu(x/\y). For this problem the information-theoretic tion will not be counted in the total running time as the
bour):a(zl; give); : P queries can be precomputed once and reused on subsequent

problems.

Bernstein and Vaziranj4,5] have given the first algo-

n
M= logo(n+1)° (5) A. Binary search problem

The first part of this section is included for pedagogical
This is close to what the best predetermined algorithmpurposes. Binary search problems are defined as problems in
which perfectly identifies the set of coins, can achigi/g], which the database responds with one of two answers to the
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guery. Here we look at such a search problem in which the
gueries have Hamming weight2. The database contains a
bit stringy with Hamming weight 1. Let us first look at the
problem in which all these bit strings are equiprobable. We
assume that is an integer power of 2. For other one
simply extends the database size to the next higher power of
2.

Classically it is well known that the marked item can be
found in logn queries, which achieves the classical

information-theoretic bound2). The kth query, gy, is a
string of 21 zeros alternating with a string of*2* ones,
wherek=1, ... ,logn, i.e.,

g,=0101010 ...,
g,=0011001..., ©
g;=0000111...,
etc.
The result of queng, is
z=gk-y=algx,y), (10

wherez, is thekth bit of the encoding of y. Eachy will
have a different encoding and thusz uniquely determines
y. Theg,’s are the generators of the grokpof Walsh func-

tions whose group multiplication rule is addition modulo 2.

We can represent a Walsh functibpas

logyn

fs=2 giSi mod 2, (11
i=1

wheres is an arbitrary bit string of length lgg.

]
L

FIG. 1. “Walsh” Circuit.

1 ’
(ldy) =2 (~1* 5> =5y=0,.  (16)

As all states| ) and|¢,/) are orthogonal, they can be
distinguished by a measurement and no further queries to the
database are required.

What are the transformations that are required for prepro-
cessing and postprocessing of this single query? The prepa-
ration of the queries takestl(nlog,n)/2 steps. Registes is
prepared in superposition using parallel one-bit Hadamard
transforms and used as input to the circuit shown in Fig. 1.
The circuit in Fig. 1 uses multibikor’s, which we have
counted as being in series. The same sequence in reverse is
used as the postprocessing. The total running time is thus 2
+nlog,n+T(N). In the classical case the queries are also pre-
pared using the circuit in Fig. 1, but the multibior’'s can
be done in parallel, and the total time is jag T(n)log,n.

Note that in the Cirac-Zoller ion-trap moddi3] of quantum

The quantum-mechanical algorithm that takes a singlg omputation, a multibikor gate can be done in parallel by

makes use of superpositions of all the Walsh functions. Wey our algorithm in time 2 log,n+T(n).

construct the query state

1 0)—11)
=—2, |sfg®——— 12
) ﬁgl S (12
After one query the state becomes
1 |0)—11)
=—=2, (—1)asY|sfy® . 13
)= 52 (CDMVsfge—r = 13
It can be shown that
1 a(fg,y)+a(fg,y’)
(ly) =52 (~Dferralier=s,, . (14
We can write
logp n
a(fey)= 2 s@(gy) mod 2. (15)

Using Eq.(10), it follows thata(fs,y)=s-z, and with this
we can rewrite Eq(14) as

The straightforward Bernstein-Vazirani algorithm to re-
trieve y and subsequent compaction yfto z would have
taken time 2-T(n) for the algorithm pluslog,n time steps
for the compression, which amounts to the same running
time as this direct compression.

If we generalize this problem to databases that have un-
equal probabilities assigned to differeris, a scheme based
on Huffman coding12] is sometimes more efficient in terms
of pre/postprocessing. We assume that the probability distri-
bution, orH(Y), is known beforehand.

Huffman coding is a fixed-to-variable-length encoding of
a source, in our case the database, which is optimal in the
sense that it minimizes the average codeword leijth!;
<H(Y)+1 with H(Y) the entropy of the source. The encod-
ing prescribes a set of queries that play the role of the Walsh
generators in the equal probabilities case. This is illustrated
with an example in Fig. 2lIn fact, the Huffman construction
results in Walsh queries in the equal-probability case.

Classically, instead of querying with the Walsh genera-
tors, one can use these Huffman queries, until the marked
item has been found. The optimality of the Huffman code
assures that the expected number of queries is minimized.
Choose the set of queries that will take the place of the
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o103 Code Queries wherez, is thekth digit of z. Theg;’s are used to compress
p2=oiz . the stringy of lengthn to the codewordg of lengthm. What
b5 s o1 1=10011 is the probability that the codewormdetermines uniquely?
— 3 o0 —  g-=11000 The probability that two basé\ strings of lengthn are
pa=01 4 101 g3=00010 mapped onto the same codeword is equal té\Y1/ Thus,
p5=0.1 5 100 the probability of a collision witty is
FIG. 2. Example of a Huffman code. 1\ mlk-1
Pea=1—|1- (K) (20

Walsh generators in the following way. Select a setnof

gueries, the firsin queries that are used in the classical case
such that the probability of not finding the marked item after
thesem queries is very small. The value of will depend on o

k—1
the probability distribution. If Peo=1— ( 1- T) ~27(1-1K)+0(27%). (20

For small 2! we approximate

m=[log;nl, 19 This probability can be made arbitrarily small for only a

rgelatively smalll. ThusO(logsK) randomg;’s are sufficient
to retrieve the information with arbitrarily low probability of

Note that this requirement is not necessarily satisfied fop T or- It is clear that for negative the length of the code-

all probability distributions. For example, for the distribution words is not suffICIentIy. large to avoid collisions. A code_-

p,=1/10p.=9/10n,i =2 n, the length of— 1 encoded word length ofO(logyK) is thus necessary as well as suffi-

wlords willlbe abOl,JﬂOg’ r'ﬂ' '(’:h,oosing a number of queries cient. If the contents of the database are to be determined
2 .

that is less than the length of these words will result in a highxv'ttc;:deétam%’ tzg c((:)(;j”e_\slx_/grr]osl Ieanngdth th;]Stct:)%?agr?j Ia;(re%ert.h
probability of error. wi ISl wi w g

This set ofm queries will take the place of the Walsh O(2logak) always existqcf., the discussion of the birthday
generators in our quantum algorithm. The circuit that imple-prOblem[M])' . .
ments the Huffman queries will be as in Fig. 1 but with a Our quantum algorithm to determine the contents of the

different pattern ofxoR's corresponding the Huffman que- database in a single query with high probability makes use of

ries. All the database states that gave rise to distinct cod his classical random coding construction. A set of random

words after thesen classical queries will give rise to distinct inearly independent strings; , ':1{ oM, 1S the set (.)f
|4} in our quantum algorithm generators of a grou@,. The multiplication rule for this
v .

If we query only once, the total running time will be 2 group is a digitwise addition moduld and the identity ele-

+mn+T(n) if we are willing to accept a small chance of ment is the string 0. Members @f, can be written as
error. A classical algorithm that uses the same Huffman que-

ries and has the same probability of error takes mT(n) c(s) e Ca=C(S)k=2, (gi)ks mod A (22)
time. Thus for some probability distributionsy can be sig- [

nificantly smaller than logn and the algorithm is faster than

a straightforward search with the Walsh queries. with ¢(s) the kth digit of a group element(s) ands is a
baseA string of lengthm. Due to the linear independence of

the generators; 4 is a subgroup of {,)" with A™ elements.
In the quantum algorithm we construct a state

this Huffman scheme can be more efficient than a Wals
scheme.

B. Random coding

The binary search and the coin-weighing problem are spe-
cial cases of a more general problem in which we have a 1
databasef that containg arbitrary baseA strings of length [ = —mE |s.c(s))®—= >, walb), (23
n. Here we restrict ourselves to databases that corkain VAT VAB=0
equally probable strings.

The querie are all possible bas& strings of lengthn,

A-1

with wa=€e'?>"A. The query results in the state

the elements of4,)". The database returns the answer L 1 Al
n [ghy) = ﬁg wZa(C(s)’y)|S,C(S))®ﬁbZO walb).
a(x,y)=2 Xijyi mod A=x-y. (19
|

(24)

The informationH(Y) is equal to logk. A classical prede- We can write, using the encodingof y defined in Eq(19),

termined algorithm to determing with high probability

makes use ofm=log,k+I| random strings, wherkis a rela- ac(s)y)=s-z. (25
tively small integer. Pickm linearly independent random
: : . . Thus we have
base A strings of lengthn; these are the querieg;, i
=1, ... m. Similarly to Eq.(10) we define the encoding as 1
== o =5,,. (26)
gy, 19 (ldy)= 52 ok 22
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If two different stringsy andy’ are mapped onto a different lll. DISCUSSION

codeword, they are thus distinguishable by a measurement. \y/o have discussed the complexity of our quantum algo-
The probability that this occui€q. (21)] can be made arbi-  (jthms compared to a classical setup and shown that the
trarily small just as in the classical case since the encoding iéuantum algorithms are faster in situations in whign)
the same. In order to measure, we reverse the preparatiopo(n). In problems where querying the database would oc-
steps and then we perform a Fourier transform ov@)T,  cur repeatedly, a biggérea) separation between the classi-
cal computation time and the quantum computation time
1 could be achievedsee[5] for an instance of such a prob-
_E w5 Y2). 27) Iem).. . . .
JA™Z It is noteworthy that in the binary search problem in the
classical case only the generators of the Walsh functions are
i . ) ) required, while the quantum algorithm needs all the Walsh
A measurement in the query basis determimeand, with  fynctions to achieve this speedup. It would be interesting to
high probability,y. find out whether any speedup is possible if the database only
The circuit used to implement the random Coding is Simi-responds to queries that are the generators.
lar to that in Fig. 1 but the XOR’s are replaced by summation \We have chosen the quantum databRgeas defined in
baseA operators, expression3) to make a fair comparison with the classical
setting. A unitaryU,, could easily become more powerful, as
was pointed out ir[y15]. At its most general, a quantum da-
tabase could be defined by an arbitrary unitary transforma-
tion acting on an input register and a hidden quantum state
and their locations are according to the random queries. (the databage This has no good classical analog and might
The total quantum running time is+2mn+T(n) if we  be worthwhile to explore.

take the basic unit of time to be an operation on an \ye would like to thank Charles H. Bennett, David P.
A-dimensional Hilbert space. The classical time using thépjvincenzo, and Markus Grassl for helpful discussions, and
same random codewordsris+mT(n). Sincem is less than  the U.S. Army Research Office and the Institute for Scien-
n, this algorithm is better than the direct coin-weighing al-tific Interchange, Italy, for financial support. B.M.T. would
gorithm provided we are willing to tolerate a small chance oflike to thank Bernard Nienhuis and Paul Vitanyi for advice
error bounded by, . and encouragement.

®a(a,b)=(a+b) mod A, (28
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