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Single quantum querying of a database
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2IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
~Received 12 November 1997!

We present a class of fast quantum algorithms, based on Bernstein and Vazirani’s parity problem, that
retrieves the entire contents of a quantum databaseY in a single query. The class includes binary search
problems and coin-weighing problems. We compare the efficiency of these quantum algorithms with the
classical algorithms that are bounded by the classical information-theoretic bound. We show the connection
between classical algorithms based on several compression codes and our quantum-mechanical method.
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I. INTRODUCTION

Quantum computers have been shown recently to be
to solve certain problems faster than any known algorit
running on a classical computer@1–3#. These problems in-
clude factoring, which can be performed in polynomial tim
on a quantum computer@2#, but is widely believed to be
difficult on a classical computer, and database lookup, wh
is provably faster on a quantum computer@3#. Understanding
the power of quantum algorithms and developing new al
rithms is of major interest as the building of a quantum co
puter will require a huge investment.

In this paper we present quantum algorithms for bin
search and coin-weighing problems in which the informat
in a quantum database is retrieved with a single query. Th
are applications of the Bernstein and Vazirani parity probl
@4,5# and provide a strong illustration of the power of qua
tum computation and point out the limitations of classic
information-theoretic bounds applied to quantum comput

Information theory is a useful tool for analyzing the ef
ciency of classical algorithms. Problems involving inform
tion retrieval from a database are particularly amenable
such analysis. Consider this database search problem
have a databaseY that containsn items, of which a single
one is marked. This database is represented as a bit stry
of length n with Hamming weight 1 (y has exactly one
‘‘1’’ !. One would like to locate the marked item in as fe
queries to the database as possible. The queries are bit s
x of lengthn such that the database returns the answer

a~x,y!5x•y[S (
i 51

n

xiyi D mod 2 ~1!

wherexi andyi are thei th bits ofx andy. A simple version
of this problem is the case in which the allowed queriesx
have Hamming weight 1. The information retrieved by
single queryxj5d i j is small—it adds or eliminates itemi
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from the set of possible marked items. It thus takesn21
queries to locate the marked item in the worst case. A s
prising result of Grover@3# is that a quantum-mechanica
algorithm can be faster than this and find the marked it
with high probability inO(An) quantumqueries, contrary to
one’s ‘‘classical’’ intuition. Grover’s algorithm does no
however, violate the information-theoretic lower bound
the minimal number of queriesM .

The information-theoretic lower bound@11# on M is given
by the amount of information in the database divided by
maximal amount of information retrieved by a query that h
A possible answers, i.e.,

M>
H~Y!

log2A
, ~2!

whereH(Y)52(ypylog2py , py is the probability forY to
containy and(ypy51.

A quantum algorithm employs a database that respond
superpositions of queries with superpositions of answ
The quantum database acts on two input registers: registX
containing the query stateux& and registerB, an output reg-
ister of dimensionA initially containing stateub&. We define
the operation of querying the database as

Ry :ux,b&→ux,@b1a~x,y!# mod A&, ~3!

whereRy is a classical reversible transformation that ma
basis states to basis states~that is, a permutation matrix!
depending on the contents of the database, anda(x,y) is the
answer to queryx, given database statey. In a classical
query only query basis statesux& are used and the outpu
registerB is initially set to u0&. However, a quantum data
base is not restricted to working only on basis states but
handle arbitrary superpositions of inputs@6#. Because of this
the information that is retrieved by a single quantum query
not bounded by log2A. The relevant quantity in the quantum
setting is the accessible information in the registersX andB
~together calledXB) and the internal state of the quantu
computerF about the databaseY. Together these are alway
in one of a set of pure states$ucy&,py%yPY and the accessible
information ony is bounded by the Kholevo bound@7#
1822 © 1998 The American Physical Society



is
y

eg
b-

n-

im
ta
i

he

al

to

-

n
e

tp

ry
ng
m
ta
od
wi
s
ts

ed

ic

ic

m

s in
lgo-
le
ht
an-
e-

en
is

b-

rce
urce
the
ase,
ord
t
the
g

g in
al

eme
that

m
al
the
ata-
hese
ies
uta-
e

quent

al
s in
the

PRA 58 1823SINGLE QUANTUM QUERYING OF A DATABASE
I acc~FXB!<S~FXB!, ~4!

where S(FXB)52TrrFXBlog2rFXB is the Von Neumann
entropy ofFXB andrFXB5(ypyucy&^cyu. In the case of a
classical query, the Von Neumann entropyS(FXB) is
strictly less than log2dim(B)5 log2A, which gives rise to the
classical bound~2!. The quantum algorithms analyzed in th
paper ‘‘violate’’ the classical information-theoretic bound b
extracting extra information in the phases of the query r
ister X. It is notable that Grover’s Hamming weight 1 pro
lem @3# has been proven optimal@8,9#; no quantum algorithm
for this problem can violate the classical informatio
theoretic bound~2!.

The quantum algorithms presented here are a major
provement on the classical algorithms in terms of compu
tion time if the computation performed by the database
costly. All our algorithms make use of an interaction with t
database of the forma(x,y)5x•y. A direct implementation
of such a database takesO(log2n) time usingn Toffoli and n
XOR gates in parallel. In general we will be given some
gorithm that computesa(x)5x•y for any input xP$0,1%n

and that runs in some timeT(n). We will compare the run-
ning time of the quantum algorithms including this cost
the classical running time.

The parity problem and coin weighing

Bernstein and Vazirani@4,5# have given the first algo
rithm in which a single quantum query to the database
sufficient and a strong violation of the classical informatio
theoretic bound comes about. In their parity problem th
consider a databaseY that contains an arbitraryn-bit string
y. The answer to queries represented byn-bit stringsx to the
database is the parity of the bits common tox andy given by
a(x,y)5x•y. Note that the problem is to determiney in its
entirety,not to merely determine the parity ofy. Bernstein
and Vazirani have shown thaty can be determined in only
two queries to the database. But by preparing the ou
registerB in an initial superposition 1/A2(u0&2u1&) @10#,
the algorithm can be simplified to comprise a single que
Their algorithm can be directly applied to the coin-weighi
problem. Coin-weighing problems are a group of proble
in which a set of defective coins is to be identified in a to
set of coins@11#. Assume there are two types of coins, go
and bad ones, and we can weigh arbitrary sets of coins
a spring scale~which gives the weight of the set of coin
directly, as opposed to a balance that compares two se
coins!. All sets of coins are equiprobable. A set ofn coins is
represented as a bit stringy of length n whereyi51 indi-
cates that coini is defective. A weighing can be represent
by a query stringx, where xi specifies whether coini is
included in the set to be weighed. The result of a class
weighing is the Hamming weight of the bitwise product ofx
andy, wH(x`y). For this problem the information-theoret
bound~2! gives

M>
n

log2~n11!
. ~5!

This is close to what the best predetermined algorith
which perfectly identifies the set of coins, can achieve@11#,
-
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lim
n→`

Mpre~n!5
2n

log2~n!
. ~6!

If one has a spring scale capable of performing weighing
superposition, then one can use the Bernstein-Vazirani a
rithm to identify the defective coins perfectly with a sing
weighing by using only the parity of the Hamming weig
answer. We can compare the total running time of this qu
tum algorithm with that of the classical algorithm. The pr
processing and postprocessing of the registerX of the query
state and the preprocessing of theB register all consist of the
Hadamard transforms on individual bits,

H5
1

A2
S 1 1

1 21D , ~7!

which can be done in parallel. The total running time is th
simply 21T(n). In the classical algorithm the database
queried at least@see Eq. 5!# n/ log2(n11) times resulting in a
total running time of at leastnT(n)/ log2(n11).

II. COMPRESSIVE ALGORITHMS

In this section we will consider modifications of this pro
lem in which the information in the databaseH(Y) is less
thann bits. In these cases retrieving the data from the sou
can be viewed as a problem of data compression of a so
Y. We will restrict ourselves here to the compression of
data from a single use of the source. In the classical c
each query to the database retrieves a single digit of the w
into which the bit stringy will be encoded. The minimal se
of predetermined classical queries will serve to construct
single quantum query algorithm. We will use codin
schemes that minimize the amount of pre/postprocessin
the single query quantum algorithm. A classically optim
encoding scheme~cf. @12#! has

H~Y!<(
i

pi l i<H~Y!11, ~8!

where l i is the length of the compactedyi and pi is the
probability that the database contains bit stringyi . It is not
guaranteed, however, that such an optimal encoding sch
can be implemented by the type of database interaction
one is given to use, namely expression~3!.

In the following section we present single query quantu
algorithms of which the construction is based on optim
classical encoding schemes, namely Huffman coding. In
section thereafter we consider more general types of d
bases and use a random coding scheme. Each of t
schemes will require precomputation of a set of quer
based on the encoding schemes. The time for this comp
tion will not be counted in the total running time as th
queries can be precomputed once and reused on subse
problems.

A. Binary search problem

The first part of this section is included for pedagogic
purposes. Binary search problems are defined as problem
which the database responds with one of two answers to
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1824 PRA 58BARBARA M. TERHAL AND JOHN A SMOLIN
query. Here we look at such a search problem in which
queries have Hamming weightn/2. The database contains
bit string y with Hamming weight 1. Let us first look at th
problem in which all these bit strings are equiprobable. W
assume thatn is an integer power of 2. For othern one
simply extends the database size to the next higher powe
2.

Classically it is well known that the marked item can
found in log2n queries, which achieves the classic
information-theoretic bound~2!. The kth query, gk , is a
string of 2k21 zeros alternating with a string of 2k21 ones,
wherek51, . . . , log2n, i.e.,

g1501010101 . . . ,

g2500110011 . . . ,
~9!

g3500001111 . . . ,

etc.

The result of querygk is

zk[gk•y5a~gk ,y!, ~10!

wherezk is the kth bit of the encodingz of y. Eachy will
have a different encodingz and thusz uniquely determines
y. Thegk’s are the generators of the groupF of Walsh func-
tions whose group multiplication rule is addition modulo
We can represent a Walsh functionf s as

f s5 (
i 51

log2n

gisi mod 2, ~11!

wheres is an arbitrary bit string of length log2n.
The quantum-mechanical algorithm that takes a sin

query is similar to the Bernstein-Vazirani algorithm.
makes use of superpositions of all the Walsh functions.
construct the query state

uc&5
1

An
(

s
us, f s& ^

u0&2u1&

A2
. ~12!

After one query the state becomes

ucy&5
1

An
(

s
~21!a~ f s ,y!us, f s& ^

u0&2u1&

A2
. ~13!

It can be shown that

^cyucy8&5
1

n(s
~21!a~ f s ,y!1a~ f s ,y8!5dyy8 . ~14!

We can write

a~ f s ,y!5 (
k51

log2 n

ska~gk ,y! mod 2. ~15!

Using Eq.~10!, it follows that a( f s ,y)5s•z, and with this
we can rewrite Eq.~14! as
e

e

of

l

.

le

e

^cyucy8&5
1

n(s
~21!s•z1s•z85dzz85dyy8 . ~16!

As all statesucy& and ucy8& are orthogonal, they can b
distinguished by a measurement and no further queries to
database are required.

What are the transformations that are required for prep
cessing and postprocessing of this single query? The pr
ration of the queries takes 11(nlog2n)/2 steps. Registers is
prepared in superposition using parallel one-bit Hadam
transforms and used as input to the circuit shown in Fig
The circuit in Fig. 1 uses multibitXOR’s, which we have
counted as being in series. The same sequence in rever
used as the postprocessing. The total running time is thu
1nlog2n1T(n). In the classical case the queries are also p
pared using the circuit in Fig. 1, but the multibitXOR’s can
be done in parallel, and the total time is log2n1T(n)log2n.
Note that in the Cirac-Zoller ion-trap model@13# of quantum
computation, a multibitXOR gate can be done in parallel b
using the ‘‘bus phonon’’ modes. Such quantum comput
run our algorithm in time 21 log2n1T(n).

The straightforward Bernstein-Vazirani algorithm to r
trieve y and subsequent compaction ofy to z would have
taken time 21T(n) for the algorithm plusnlog2n time steps
for the compression, which amounts to the same runn
time as this direct compression.

If we generalize this problem to databases that have
equal probabilities assigned to differenty’s, a scheme based
on Huffman coding@12# is sometimes more efficient in term
of pre/postprocessing. We assume that the probability dis
bution, orH(Y), is known beforehand.

Huffman coding is a fixed-to-variable-length encoding
a source, in our case the database, which is optimal in
sense that it minimizes the average codeword length( i pi l i
<H(Y)11 with H(Y) the entropy of the source. The enco
ing prescribes a set of queries that play the role of the Wa
generators in the equal probabilities case. This is illustra
with an example in Fig. 2.~In fact, the Huffman construction
results in Walsh queries in the equal-probability case.!

Classically, instead of querying with the Walsh gene
tors, one can use these Huffman queries, until the mar
item has been found. The optimality of the Huffman co
assures that the expected number of queries is minimi
Choose the set of queries that will take the place of

FIG. 1. ‘‘Walsh’’ Circuit.
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Walsh generators in the following way. Select a set ofm
queries, the firstm queries that are used in the classical ca
such that the probability of not finding the marked item af
thesem queries is very small. The value ofm will depend on
the probability distribution. If

m< d log2ne, ~17!

this Huffman scheme can be more efficient than a Wa
scheme.

Note that this requirement is not necessarily satisfied
all probability distributions. For example, for the distributio
p151/10,pi59/10n,i 52, . . . ,n, the length ofn21 encoded
words will be aboutd log2ne. Choosing a number of querie
that is less than the length of these words will result in a h
probability of error.

This set ofm queries will take the place of the Wals
generators in our quantum algorithm. The circuit that imp
ments the Huffman queries will be as in Fig. 1 but with
different pattern ofXOR’s corresponding the Huffman que
ries. All the database states that gave rise to distinct co
words after thesem classical queries will give rise to distinc
ucy& in our quantum algorithm.

If we query only once, the total running time will be
1mn1T(n) if we are willing to accept a small chance o
error. A classical algorithm that uses the same Huffman q
ries and has the same probability of error takesm1mT(n)
time. Thus for some probability distributions,m can be sig-
nificantly smaller than log2n and the algorithm is faster tha
a straightforward search with the Walsh queries.

B. Random coding

The binary search and the coin-weighing problem are s
cial cases of a more general problem in which we hav
databaseY that containsk arbitrary baseA strings of length
n. Here we restrict ourselves to databases that contak
equally probable strings.

The queriesx are all possible baseA strings of lengthn,
the elements of (ZA)n. The database returns the answer

a~x,y!5(
i

n

xiyi mod A[x•y. ~18!

The informationH(Y) is equal to logAk. A classical prede-
termined algorithm to determiney with high probability
makes use ofm5 logAk1l random strings, wherel is a rela-
tively small integer. Pickm linearly independent random
base A strings of lengthn; these are the queriesgi , i
51, . . . ,m. Similarly to Eq.~10! we define the encoding a

zk5gk•y, ~19!

FIG. 2. Example of a Huffman code.
,
r

h

r

h

-

e-

e-

e-
a

wherezk is thekth digit of z. Thegi ’s are used to compres
the stringy of lengthn to the codewordsz of lengthm. What
is the probability that the codewordz determinesy uniquely?
The probability that two baseA strings of lengthn are
mapped onto the same codeword is equal to (1/A)m. Thus,
the probability of a collision withy is

pcol512F12S 1

AD mGk21

. ~20!

For small 22 l we approximate

pcol512S 12
22 l

k D k21

;22 l~121/k!1O~222l !. ~21!

This probability can be made arbitrarily small for only
relatively smalll . ThusO(logAk) randomgi ’s are sufficient
to retrieve the information with arbitrarily low probability o
error. It is clear that for negativel the length of the code-
words is not sufficiently large to avoid collisions. A cod
word length ofO(logAk) is thus necessary as well as suf
cient. If the contents of the database are to be determ
with certainty, the codeword lengthm must be made larger
A code with no collisions and with codeword leng
O(2logAk) always exists~cf., the discussion of the birthda
problem@14#!.

Our quantum algorithm to determine the contents of
database in a single query with high probability makes use
this classical random coding construction. A set of rand
linearly independent stringsgi , i 51, . . . ,m, is the set of
generators of a groupCA . The multiplication rule for this
group is a digitwise addition moduloA and the identity ele-
ment is the string 0. Members ofCA can be written as

c~s!PCA⇒c~s!k5(
i

~gi !ksi mod A ~22!

with c(s)k the kth digit of a group elementc(s) ands is a
baseA string of lengthm. Due to the linear independence o
the generators,CA is a subgroup of (ZA)n with Am elements.

In the quantum algorithm we construct a state

uc&5
1

AAm(s
us,c~s!& ^

1

AA
(
b50

A21

vA
b ub&, ~23!

with vA5ei2p/A. The query results in the state

ucy&5
1

AAm(s
vA

2a„c~s!,y…us,c~s!& ^
1

AA
(
b50

A21

vA
b ub&.

~24!

We can write, using the encodingz of y defined in Eq.~19!,

a„c~s!,y…5s•z. ~25!

Thus we have

^cyucy8&5
1

Am(s
vA

s•~z2z8!5dzz8 . ~26!
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1826 PRA 58BARBARA M. TERHAL AND JOHN A SMOLIN
If two different stringsy andy8 are mapped onto a differen
codeword, they are thus distinguishable by a measurem
The probability that this occurs@Eq. ~21!# can be made arbi
trarily small just as in the classical case since the encodin
the same. In order to measure, we reverse the prepar
steps and then we perform a Fourier transform over (ZA)m,

HA :us&→
1

AAm(z
vA

s•zuz&. ~27!

A measurement in the query basis determinesz and, with
high probability,y.

The circuit used to implement the random coding is sim
lar to that in Fig. 1 but the XOR’s are replaced by summat
baseA operators,

% A~a,b!5~a1b! mod A, ~28!

and their locations are according to the random queries.
The total quantum running time is 21mn1T(n) if we

take the basic unit of time to be an operation on
A-dimensional Hilbert space. The classical time using
same random codewords ism1mT(n). Sincem is less than
n, this algorithm is better than the direct coin-weighing
gorithm provided we are willing to tolerate a small chance
error bounded bypcol .
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III. DISCUSSION

We have discussed the complexity of our quantum al
rithms compared to a classical setup and shown that
quantum algorithms are faster in situations in whichT(n)
.O(n). In problems where querying the database would
cur repeatedly, a bigger~real! separation between the class
cal computation time and the quantum computation ti
could be achieved~see@5# for an instance of such a prob
lem!.

It is noteworthy that in the binary search problem in t
classical case only the generators of the Walsh functions
required, while the quantum algorithm needs all the Wa
functions to achieve this speedup. It would be interesting
find out whether any speedup is possible if the database
responds to queries that are the generators.

We have chosen the quantum databaseRy as defined in
expression~3! to make a fair comparison with the classic
setting. A unitaryUy could easily become more powerful, a
was pointed out in@15#. At its most general, a quantum da
tabase could be defined by an arbitrary unitary transform
tion acting on an input register and a hidden quantum s
~the database!. This has no good classical analog and mig
be worthwhile to explore.
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