Arrangement: a spatial relation between parts for evaluating similarity of tomographic section
Tagare, H.D.; Vos, F.M.; Jaffe, C.C.; Duncan, J.S.

Published in:
IEEE Transactions on Pattern Analysis and Machine Intelligence

DOI:
10.1109/34.406653

Citation for published version (APA):
Arrangement: A Spatial Relation Between Parts for Evaluating Similarity of Tomographic Section

Hemant D. Tagare, Member, IEEE, Frans M. Vos, Conrade C. Jaffe, James S. Duncan, Member, IEEE

Abstract—Medical tomographic images are formed by the intersection of the image plane and an object. As the image plane changes, different parts of the object come in view or drop out of view. However, for small changes of the image plane, most parts continue to remain visible and their qualitative embedding in the image remains similar. Therefore, similarity of part embeddings can be used to infer similarity of image planes. Part embeddings are useful features for other vision applications as well.

In view of this, a spatial relation called “arrangement” is proposed to describe part embeddings. The relation describes how each part is surrounded by its neighbors. Further, a metric for arrangements is formulated by expressing arrangements in terms of the Voronoi diagram of the parts.

Arrangements and their metric are used to retrieve images by image plane similarity in a cardiac magnetic resonance image database. Experiments with the database are reported which 1) validate the observation that similarity of image planes can be inferred from similarity of part embeddings, and 2) compare the performance of arrangement based image retrieval with that of expert radiologists.

Index Terms—Arrangement, image databases, recognition from parts, medical image processing, tomography, Voronoi diagram.

I. INTRODUCTION

Geometrically speaking, a medical tomographic image is formed by the intersection of a subject’s anatomy and the image plane (Fig. 1a). The same anatomical feature viewed in different image planes can have substantially different appearance. Consequently, most useful image comparisons are done with images obtained in similar planes.

This observation is crucial in creating a query-by-pictorial-example medical image database. A user queries such a database by providing an example image and indicating different anatomical features of interest. The database retrieves other images containing similar features. The user is expected to compare the anatomical features in the retrieved images with the example image and gain additional insight. For a meaningful comparison, the retrieved images should have image planes similar to the example image. Hence, a mechanism which can infer similarity of image planes from image content can be put to good use in the database. In this paper, we propose such a mechanism and demonstrate its use in a cardiac image database.

The mechanism is based on an intuitive understanding of how a tomographic image changes as the imaging plane is changed. To explain it, we begin with a discussion of imaging geometry (with the help of Fig. 1). Fig. 1a shows the heart imaged in parallel planes. The planes are displaced from each other along the common normal. This is the standard imaging practice.

Fig. 1. Tomographic view and section.

Infer similarity of image planes from image content can be put to good use in the database. In this paper, we propose such a mechanism and demonstrate its use in a cardiac image database.

The mechanism is based on an intuitive understanding of how a tomographic image changes as the imaging plane is changed. To explain it, we begin with a discussion of imaging geometry (with the help of Fig. 1). Fig. 1a shows the heart imaged in parallel planes. The planes are displaced from each other along the common normal. This is the standard imaging practice.

The image in each plane is the intersection of the plane and the heart (Fig. 1b shows the example image formed in the plane labeled Section 1). In medical imaging terminology, the entire set of images are said to have the same “tomographic view,” or simply the same “view.” Any image in the set is said to have a particular “tomographic section,” or simply a “section.” Thus, view refers to the common normal of the image planes while section refers to the normal as well as the location of the planes.

Hemant D. Tagare is with the Department of Diagnostic Radiology, Yale University, New Haven, CT 06520-8042, and with the Department of Computer Science, Yale University, CT 06520-8283.

Frans M. Vos is with the Department of Mathematics and Computer Science, University of Amsterdam, Amsterdam, The Netherlands.

Conrade C. Jaffe is with the Department of Diagnostic Radiology, Yale University, New Haven, CT 06520-8042.

James S. Duncan is with the Department of Diagnostic Radiology, Yale University, New Haven, CT 06520-8042 and with the Department of Electrical Engineering, Yale University, New Haven, CT 06520-2157.

IEEECS Log Number P95060.
If two image planes have similar sections (such as Section 1 and Section 2 in Fig. 1c), then most of the chambers of the heart visible in one image remain visible in the other. Furthermore, the chambers continue to surround each other in a similar pattern. Figs. 1b and 1d illustrate a case where the two ventricles and the two atria are visible and each is surrounded by exactly the same chambers. Intuitively, it is clear that the converse also holds. If two images contain same chambers, each surrounded similarly by neighbors, then we may conclude that the images have similar section.

The key idea of this paper is that the intuitive phrase "surrounded similarly by neighbors" can be made precise enough to design an algorithm which infers image plane similarity. In fact, two definitions are proposed to describe how chambers surround each other— that of the "local arrangement" around a chamber and that of an "overall arrangement" (or simply the "arrangement") in the image.

The local arrangement around a chamber is found by determining all its neighbors and noting the counterclockwise sequence in which they occur. For example, in Figs. 1b and 1d, the left ventricle has the right ventricle and the left atrium as neighbors (The right ventricle is too far away to be a neighbor. This is explained in Section II). The counterclockwise sequence in which they occur is the right ventricle followed by the left atrium. Thus the local arrangement around the left ventricle can be expressed by the string

\[\text{left ventricle: right ventricle left atrium}. \]

The initial substring "left ventricle:" indicates that the elements of remaining substring are neighbors of the left ventricle. The substring "right ventricle left atrium" indicates the counterclockwise sequence in which the neighbors occur. Any circular shift of this substring is considered equivalent.

The overall "arrangement" is simply the set of all local arrangements in the image. The arrangement in Figs. 1b (and also in 1d) is the set:

\[
\{ \text{left ventricle: right ventricle left atrium, right ventricle: right atrium left atrium, left atrium: left ventricle right ventricle, right ventricle: right ventricle right atrium} \}
\]

Since arrangements are defined in terms of neighbors, they are intimately connected to Voronoi diagrams. We find it useful to present some facts about Voronoi diagrams in Section II before formally defining arrangements in Section III.

In Section IV, changes in arrangement are analyzed by considering changes in the Voronoi diagram. This leads to the diagonal exchange operation and the definition of the metric between arrangements in Section V.

We use arrangements in a query-by-pictorial-example cardiac magnetic resonance image (MRI) database. The query mechanism allows combinations of features (such as shapes and sizes) to be used during retrieval. Here, we only report the part of the mechanism which deals with similarity of image planes.

Experiments with the database are reported in Section VI. The experiments validate the intuition that images with similar arrangements have similar image planes.

Arrangements describe how parts are embedded in the image and are likely to be useful in other applications. A number of authors consider part embeddings as important image features for human as well as computer vision [4], [5], [6], [7], and [19]. Section VII contains a brief discussion of how arrangements may be used in other applications.

Finally, we note that, in theory, it is possible to construct an object whose arrangements are similar for vastly different sections. This is not a serious problem since it leads only to additional retrievals in the database which maybe rejected by specifying more visual features (such as the size or shape of chambers) in the query.

II. VORONOI DIAGRAMS

For generality, we refer to the chambers as parts. Suppose that \(N - 1 \) parts, denoted \(P_i, i = 1, \ldots, N - 1 \), are embedded in an image. They are assumed to be nonintersecting points or regions. Each region is assumed to be a closed and bounded set, and to have a simply connected interior. All parts are assumed to lie inside a region of interest \(O \) (Fig. 2a). \(O' \), the complement of \(O \), is the "outside," and is an open set. Let \(\tilde{O}' \) be the closure of \(O' \) (Fig. 2a). It is convenient to treat \(\tilde{O}' \) as another part, and it is denoted \(P_N \).

Arrangements describe how parts are embedded in the image and are likely to be useful in other applications. A number of authors consider part embeddings as important image features for human as well as computer vision [4], [5], [6], [7], and [19]. Section VII contains a brief discussion of how arrangements may be used in other applications.

Finally, we note that, in theory, it is possible to construct an object whose arrangements are similar for vastly different sections. This is not a serious problem since it leads only to additional retrievals in the database which maybe rejected by specifying more visual features (such as the size or shape of chambers) in the query.

II. VORONOI DIAGRAMS

For generality, we refer to the chambers as parts. Suppose that \(N - 1 \) parts, denoted \(P_i, i = 1, \ldots, N - 1 \), are embedded in an image. They are assumed to be nonintersecting points or regions. Each region is assumed to be a closed and bounded set, and to have a simply connected interior. All parts are assumed to lie inside a region of interest \(O \) (Fig. 2a). \(O' \), the complement of \(O \), is the "outside," and is an open set. Let \(\tilde{O}' \) be the closure of \(O' \) (Fig. 2a). It is convenient to treat \(\tilde{O}' \) as another part, and it is denoted \(P_N \).

![Image of Voronoi Diagram](image)

Fig. 2. Parts, Voronoi diagrams, and arrangements.

The Voronoi domain of a part \(P_i \) is the set of all points in the plane that are closer to \(P_i \) than to any other part. The Voronoi domain of \(P_i \) is denoted \(V_i \) and is given by

\[V_i = \{ x \mid d(x, P_i) < d(x, P_j), \forall j \neq i \}, \]

where, \(d(x, P_i) \) is the Euclidean distance of the point \(x \) from the part \(P_i \). This distance is the minimum of the Euclidean distance from \(x \) to points in \(P_i \).

The Voronoi domain of a part \(P_i \) is the set of all points in the plane that are closer to \(P_i \) than to any other part. The Voronoi domain of \(P_i \) is denoted \(V_i \) and is given by

\[V_i = \{ x \mid d(x, P_i) < d(x, P_j), \forall j \neq i \}, \]

where, \(d(x, P_i) \) is the Euclidean distance of the point \(x \) from the part \(P_i \). This distance is the minimum of the Euclidean distance from \(x \) to points in \(P_i \).
Points that are equidistant from two or more \(P_i \) do not belong to any Voronoi domain. The set of all such points, which is the complement of \(\bigcup_{i=1}^{n} V_i \) is the Voronoi diagram (also called the exoskeleton or the skiz [13]) of \(P_i \) [1], [12].

Voronoi domains and diagrams have the following properties [13] (Fig. 2b):

1) Each Voronoi domain \(V_i \) is a connected open set.
2) The Voronoi diagram is a closed set, but it is not necessarily connected. Fig. 2b shows an example where it is not connected.
3) Locally, the Voronoi diagram is a finite union of simple arcs [13]. The point of intersection of two arcs is a vertex (see Fig. 2b). The arcs minus the vertices are the edges.
4) The only structurally stable configurations for Voronoi diagrams are those with every vertex having exactly three edges incident on it. By this we mean the following: If \(P_i \) are placed in such a manner that some vertex has more than three edges incident on it, then arbitrarily small displacements of \(P_i \) immediately rearrange the Voronoi diagram so that the vertex under consideration splits into a number of vertices with only three edges incident on each resulting vertex. Conversely, given a Voronoi diagram with only three edges incident on every vertex, small changes of part positions do not change the number of edges incident at any vertex.
5) There are no dangling arcs in the Voronoi diagram [13], i.e., arcs either begin and end at a vertex (such as “B” in Fig. 2b) or are closed curves (such as “A” in Fig. 2b).

From this, it follows that any connected component of a Voronoi diagram is either a single closed arc (such as Arc A in Fig. 2b), or has more than one vertex (such as Arc B is Fig. 2b), with each vertex having exactly three edges incident on it. We call the second type of connected component a cubic component since all of its vertices have degree three. In the rest of this paper, it is assumed that the Voronoi diagram has a single cubic connected component. In most cases of practical interest, the Voronoi diagrams in all of our experiments have a single cubic connected component. In most cases of practical interest, the Voronoi diagrams in all of our experiments have a single cubic connected component. In most cases of practical interest, the Voronoi diagrams in all of our experiments have a single cubic connected component. In most cases of practical interest, the Voronoi diagrams in all of our experiments have a single cubic connected component.
6) Two parts \(P_i, P_j \) are neighbors if and only if their Voronoi domains are separated by an edge of the Voronoi diagram. This is the definition of neighbors.
7) Since the Voronoi diagram is a plane graph it has a dual graph [18].

A. Representation for the Voronoi Diagram

We represent the Voronoi diagram by a modified incidence matrix. The matrix is constructed thus:

1) For every vertex of the diagram, the three parts \(P_i, P_j, \) and \(P_k \) that created the vertex are noted in a counterclockwise manner. The vertex is labeled as \(P_iP_jP_k \). Labels \(P_iP_jP_k, P_jP_kP_i, \) and \(P_kP_iP_j \) are considered the same. It is shown in the appendix that each vertex has a unique label.

2) Every edge of the Voronoi diagram is labeled \(P_iP_j \) if it separates part \(P_i \) from \(P_j \).

3) A modified incidence matrix is created whose entry in the \(p \)th row and \(q \)th column is the edge that connects the \(p \)th vertex to the \(q \)th. If two vertices are not connected by a single edge, the entry is 0, and all diagonal entries are 1. For example, the modified incidence matrix of the cubic connected component of the Voronoi diagram of Fig. 2b is shown in Table I.

<table>
<thead>
<tr>
<th>(P_i)</th>
<th>(P_j)</th>
<th>(P_k)</th>
<th>(P_l)</th>
<th>(P_m)</th>
<th>(P_n)</th>
<th>(P_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_iP_j)</td>
<td>(P_jP_k)</td>
<td>(P_kP_l)</td>
<td>(P_lP_m)</td>
<td>(P_mP_n)</td>
<td>(P_nP_o)</td>
<td>(P_oP_i)</td>
</tr>
</tbody>
</table>

Two Voronoi diagrams are considered label-isomorphic if there is a one-to-one correspondence between their vertices and edges, so that the corresponding labels are the same, and with that correspondence, the modified incidence matrices are identical.

III. ARRANGEMENT

The boundary of the Voronoi domain of \(P_i \) can be traversed by keeping its Voronoi domain to the left. In doing so, if \(P_{j_1}, P_{j_2}, \ldots, P_{j_n} \) is the sequence of neighbors that form the boundary, then the local arrangement around \(P_i \) is

\[
P_i : P_{j_1}, P_{j_2}, \ldots, P_{j_n},
\]

where any circular shift of \(P_{j_1}, P_{j_2}, \ldots, P_{j_n} \) is considered equivalent. The convention results in a counterclockwise traversal of the boundary of each part except the “outside.” For the “outside” the boundary is traversed clockwise.

Repeating the procedure for the entire set of parts we get the set of strings \(A(P_1, \ldots, P_n) \)

\[
A(P_1, \ldots, P_n) = \begin{pmatrix}
P_1 & \cdots & \cdots \\
P_2 & \cdots & \cdots \\
\vdots & \ddots & \ddots \\
P_n & \cdots & \cdots
\end{pmatrix}
\]

where, each string gives the local arrangement around a part. The set \(A(P_1, \ldots, P_n) \) is the arrangement of \(P_1, \ldots, P_n \).

Two arrangements \(A_1(P_1, \ldots, P_n) \) and \(A_2(P_1, \ldots, P_n) \) are identical if and only if the sets \(A_1(0) \) and \(A_2(0) \) are equal (any circular shift of the substring following “\(P_i \)” is considered equivalent).

In terms of the Voronoi diagram, the arrangement \(A(P_1, \ldots, P_n) \) is the list of cycles that make the boundaries of its faces. These cycles completely define the plane embedding of the graph structure of the Voronoi diagram. Two arrangements \(A_1(P_1, \ldots, P_n) \) and \(A_2(P_1, \ldots, P_n) \) can be shown to be identical iff their Voronoi diagrams are label-
isomorphic (see the Appendix). This completely characterizes equality of arrangements.

When arrangements are not equal, their (dis-)similarity can be computed by measuring the “effort” it takes to change one arrangement into another using the diagonal exchange operation discussed below. The diagonal exchange can be repeatedly applied to a given Voronoi diagram to transform it to another and number of applications of the diagonal exchange measure the “effort” required to transform one arrangement into another. In the physics literature, the diagonal exchange is known as the T_0 operator [1], [11].

IV. THE DIAGONAL EXCHANGE

The diagonal exchange is illustrated in Fig. 3. Consider the edge e in Fig. 3a. If the four Voronoi domains shown in the figures arise from four distinct parts P_1, P_2, P_3, and P_4, the diagonal exchange is the transformation that changes the configuration of Fig. 3a to the configuration of Fig. 3b. The edge e which separated the Voronoi domains of P_2 and P_4 before the exchange, separates the Voronoi domains of P_1 and P_4 after the exchange. The rest of the Voronoi diagram is unaffected.

The diagonal exchange can be seen to have the following properties:

1) It maintains the connectivity of the Voronoi diagram as well as the dual graph.
2) The number of edges and vertices of the Voronoi diagram as well as the dual are conserved during the operation.
3) It is reversible.

Exchanging the same edge twice gives back the original Voronoi diagram and the dual graph. If a sequence of diagonal exchanges on the edges $e_n, e_{n-1}, \ldots, e_1$ transforms one Voronoi diagram D_1 into another diagram D_2, then the sequence of exchanges on $e_1, \ldots, e_{n-1}, e_n$ transforms D_2 back into D_1, i.e., every sequence Γ of diagonal exchanges has an inverse sequence Γ^{-1} such that the composite sequence $\Gamma^{-1} \Gamma$ leaves the Voronoi diagram unaltered.

4) Successively exchanging the same edge an odd number of times gives the same result as exchanging the edge once. Successively exchanging it an even number of times gives the same result as not exchanging it.

The diagonal exchange is useful because it can be repeatedly applied to a Voronoi diagram to change it to any other Voronoi diagram caused by an embedding of the same parts. This is not immediately apparent because the diagonal exchange is defined only when the parts P_1, P_2, P_3, and P_4 associated with the edge are distinct. In a given Voronoi diagram it is quite likely that this condition is not met for some edges, and to transform the diagram a sequence of exchanges which do not use such edges has to be found. Below, we demonstrate a constructive algorithm that achieves this [14]. The algorithm shows that any cubic connected Voronoi diagram can be reduced by a sequence of diagonal exchanges to a canonical diagram called the flower. The flower is shown in Fig. 4. In it, the domains of P_2, \ldots, P_{n-1} appear as “petals” attached to a central domain in a counterclockwise manner. The central domain is the Voronoi domain of P_1. In the flower, the local arrangement of P_1 is “$P_1: P_2 P_N P_3 P_N \ldots P_{N-1} P_N$” the local arrangement of P_N is “$P_N: P_1 P_{N-1} P_1 P_{N-2} \ldots P_2$,” and the local arrangement of all other parts is “$P_j: P_{N} P_1$.”

The sequence of diagonal exchanges that reduce a Voronoi diagram to a flower repeatedly uses certain subsequences of exchanges. These subsequences are called contact reduction, neighbor reduction, and domain propagation. Below, these are explained first and the complete algorithm is explained later.
Fig. 4. The canonical transformation.

The following discussion assumes that the number of parts is greater than or equal to 4 \((N \geq 4)\). If the number of parts is three, then the cubic connected graph is already a flower (Fig. 4b) and there is no need to apply diagonal exchanges to reduce it to one.

A. Contact Reduction

Suppose \(P_i\) and \(P_j\) are neighbors whose Voronoi domains are separated by more than one edge. Let \(e\) be one such edge and let it be incident on vertices \(v_1\) and \(v_2\) (Fig. 5). If \(P_i, P_j, P_k\) are parts whose Voronoi domains create \(v_1\), and \(P_i, P_j, P_k\) are parts whose Voronoi domains create \(v_2\), then from the connectivity of Voronoi Domains it follows that \(P_k \neq P_k\). Thus the edge \(e\) can be operated upon by the diagonal exchange. Before the exchange, the edge separates the Voronoi domains of \(P_i\) and \(P_j\). Therefore, after the exchange, the Voronoi domains of \(P_i\) and \(P_j\) are not separated by the edge \(e\), and the number of edges separating them reduces by one. By repeatedly applying this to other edges shared between \(P_i\) and \(P_j\), the number of edges separating the two parts can be reduced to one.

The process can be repeated between other neighbors of \(P_i\) so that at the end of this step, \(P_i\) has as many neighbors as before, but is separated from each by exactly one edge (Fig. 5).

B. Neighbor Reduction

Suppose that \(P_i\) \((P_i \neq P_0)\) has three or more neighbors and that exactly one edge in the Voronoi diagram separates \(P_i\) from each of its neighbors. Then the boundary of the Voronoi domain of \(P_i\) has as many edges as \(P_i\) has neighbors (Fig. 6). Since this number is greater than or equal to three, every three consecutive edges separate three distinct neighbors. Hence, the diagonal exchange can be applied to any edge belonging to the boundary of the Voronoi diagram of \(P_i\). After the exchange, \(P_i\) loses the neighbor that was originally separated by the edge and the number of its neighbors reduces by one.

This can be repeated until \(P_i\) is left with exactly two neighbors, each of which is separated from \(P_i\) by exactly one edge in the Voronoi diagram. The configuration is shown in Fig. 6 and is called a lens.

C. Domain Propagation

Suppose \(P_i\) has a Voronoi domain which is a lens. Its boundary has two edges and two vertices. Let \(v\) be any one of the vertices. Since \(v\) is cubic it has an edge other than the two belonging to the boundary of the Voronoi domain of \(P_i\). Suppose this edge is incident at the other end on a vertex \(v'\). If \(v'\) happens to be the other vertex of the boundary of \(P_i\) then these two vertices along with the three edges form a connected component for exactly three parts (Fig. 7a). As mentioned above, the connected Voronoi diagram of three parts is already a flower and we need not consider any operations on it.
If v' does not belong to the boundary of P_n, then the three faces that are incident at v' are P_n, P_{n-1}, and P_m, with $P_l \neq P_v$. (If $P_l = P_v$, then the Voronoi domain of P_l is not connected—a contradiction). Therefore, the diagonal exchange can be applied to the edge between v and v' with the result shown in Fig. 7b. Now the four domains P_1, P_2, P_3, and P_4 are all different, any of the three edges of the boundary of P_1 is exchangeable. Exchanging any one of them inserts the region P_l as a lens into one of the edges incident at v' (Fig. 7b).

By repeating this, the lens can be propagated along any sequence of edges and inserted into any edge by a series of diagonal exchanges.

D. Transformation to a Flower

The above sequences of diagonal exchanges can be combined to reduce any Voronoi diagram to a flower. This is as follows: assume that there are at least four parts. Let parts P_1 and P_2 be neighbors and e be one edge from vertex v to v' separating the domain of P_1 from P_2. For the moment also assume that $m \neq N-1$ (this case is dealt with below).

By contact reduction, the Voronoi domain can be changed so that e is the only edge separating P_1 and P_2. Next, the Voronoi domain of the part labeled P_2 can be reduced to a lens by contact and neighbor reduction. The Voronoi diagram remains connected during this process and domain propagation can be used on the lens to propagate and insert it in the edge e (Fig. 8b). This splits e into two segments.

By a similar process, P_3 can be inserted as a lens in the segment of e that occurs in a counterclockwise travel of the boundary of the domain P_1 from lens P_2. Continuing this, we insert P_4, P_5, P_6, P_7, P_8, P_9, and P_{10} and obtain the graph of Fig. 8c.

The next series of exchanges reduces the domain of P_m to a lens between the domains of P_{m-1} and P_{m+1}. The sequence of exchanges has two stages. The initial steps of the first stage are shown in Fig. 8d and Fig. 8e. Note that after these two steps, the domain P_m has lost contact with P_m. Iterating these steps causes the domain of P_m to lose contact with P_{m-2}, P_{m-3}, \ldots, P_{m+1}. At the end of this stage, the Voronoi diagram looks like Fig. 8f. Repeating this process from the other end as shown in the figure reduces P_m to a lens situated on the boundary of the Voronoi domain of P_1, located between the Voronoi domains of P_{m-1} and P_{m+1} (Fig. 8g). The Voronoi diagram is thereby reduced to a flower.

The case when $m = N-1$ is similar to Fig. 8 except that the exchanges going from (c) to (d) to (e) to (f) are not required. The exchanges from (f) onwards may be directly applied to the graph obtained at (c).

Using this procedure, every cubic, connected Voronoi diagram can be transformed by a sequence of diagonal exchanges to a flower. Consequently, any two connected Voronoi diagrams formed by the embedding of the same parts can be transformed into each other by diagonal exchanges.

V. THE ARRANGEMENT METRIC

The above algorithm demonstrates the existence of one sequence of diagonal exchanges for transforming a Voronoi diagram into another. The sequence of exchanges is not unique. If an edge e_1 is exchanged in the sequence, then substituting that exchange with any odd number of consecutive exchanges of e_1 will have the same effect (by property 4 of diagonal exchanges). Therefore, there are infinitely many sequences of diagonal exchanges that transform one Voronoi diagram into another.

If $d(A_1, A_2)$ is the minimum number of diagonal exchanges required to transform the Voronoi diagram of arrangement A_1 to the diagram of arrangement A_2, then

1) $d(A_1, A_2) \geq 0$.
2) $d(A_1, A_2) = d(A_2, A_1)$. This is because $d(A_1, A_2)$ is the minimum number of diagonal exchanges and because diagonal exchanges are reversible.
3) $d(A_1, A_2) = 0$ iff the Voronoi diagrams of A_1 and A_2 are label-isomorphic.
4) $d(A_1, A_2) \leq d(A_1, A_3) + d(A_3, A_2)$, with equality iff A_3 occurs in the minimum exchange sequence from A_1 and A_2. Since $d(A_1, A_2)$ is the sequence with the minimum number of exchanges, all subsequences of the sequence also have the minimum number of exchanges for transforming the starting diagram of the subsequence to the the final diagram of the subsequence.

Therefore, $d(A_1, A_2)$ is a metric.

The metric can be easily extended to compare arrangements of sets of parts that are not identical. Let $\{P_l\}$ and $\{P_l^*\}$ be two different sets of parts that have some parts in common. Parts that are not common to both sets cannot be compared by the relation "arrangement" since the change in those parts is not of position but of existence—a change which the relation is not designed to consider. On the other hand, parts that are common to both sets remain embedded and can be compared.
Therefore, the embeddings of \(\{P_i\} \) and \(\{P_i^*\} \) can be compared by computing the metric between arrangements of the parts that are common to both.

A. Computing the Metric

The numerical value of the arrangement metric can be computed with the help of the diagonal exchange tree (Fig. 9a). The nodes of the tree represent arrangements and the branches represent exchangeable edges. Traversing the tree from a node to one below it involves starting from the arrangement at the first node, exchanging the edge corresponding to the branch in the tree, and obtaining the arrangement at the node at the end of the branch.

Note that every edge in an arrangement has at most four other edges which share its two vertices. Therefore, most pairs of edges in a Voronoi diagram do not have a vertex in common and this rule can be applied to all such pairs.

We use breadth first search with the pruning strategies given above to compute the arrangement metric in the experiments.

VI. EXPERIMENTS

As described in Section I, we expect two cardiac images whose arrangements are similar to have the same or similar sections. Retrieval by similarity of section is one of the modules in a query-by-pictorial-example image database system that we are currently developing.

In this database, as each image is entered, the outlines of the chambers are manually traced, labeled, and stored along with the image. The outlined chambers are any of left ventricle, right ventricle, left atrium, and right atrium that may be present in each image. The ascending aorta, the pulmonary artery, and the region of interest are also outlined. The Voronoi diagrams of the outlined parts are computed and saved along with the image. Currently, there are about a hundred images in the database.

The outlines are created only once and are viewed as a fixed data entry cost for every image. The outlines are traced with a mouse without the help of any refinement such as active contours or deformable templates. Three operators were involved in outlining and the outlines reflect the varying accuracies of the operators. Although we did not make any attempt to quantify operator variation, the results reported below use all of the outlines and are not based on using only the best outlines.

Once the images have been entered into the database, the user selects an example image at run time and asks to retrieve all images with similar section. Every image in the database is compared with the example image in the following way:

1) If \(P_{ex} \) is the set of parts in the example image and \(P_{im} \) is the set of parts in the image being compared, then the sets

\[
\text{Diff}_1 = P_{ex} \cap P_{im}
\]

\[
\text{Diff}_2 = P_{im} \cap P_{im}
\]

are computed. \(\text{Diff}_1 \) gives the parts in \(P_{ex} \) that are not present in \(P_{im} \) and \(\text{Diff}_2 \) gives the parts in \(P_{im} \) that are not present in \(P_{ex} \).

If \(\text{Diff}_1 \geq 2 \) or \(\text{Diff}_2 \geq 2 \), the image being compared is discarded since there are far too many differences in the parts that are present.

2) Otherwise, the arrangement metric is computed between the parts that are common to the example image and the image being compared (i.e., parts in the set \(P_{ex} \cap P_{im} \)). Since the metric is integer valued, the resulting image is binned according to whether the numerical value of the
metric is 0, 1 or ≥ 2. This scheme was obtained after some experimentation with the database and is likely to differ for other applications.

3) After the images are binned, they are presented to the user in the sequence 0, 1, ≥ 2. It is expected that images with low metric have the same or similar section as the example image.

Fig. 10 shows an example image. This image is a section from an "axial" view. Fig. 11 shows the outlined and labeled chambers and the region of interest, and Fig. 12 shows the computed Voronoi diagram. Note that each face of the Voronoi diagram does enclose one part, and that each vertex of the Voronoi diagram has degree three. The results of binning after comparison with the example images are shown in Figs. 13-15. Fig. 13 shows typical images from metric = 0 bin, Fig. 14 shows typical images from metric = 1 bin, and Fig. 15 shows typical images from metric ≥ 2 bin. In each of the figures, the example image is presented in the top left corner for comparison. Also the Voronoi diagrams have been superimposed on the images. As can be seen from the figures, the majority of the images in bins 0 and 1 are of the same or similar section as the example image, while those in bin ≥ 2 are not.

Another example of retrieval is shown in Figs. 16-19. Fig. 16 shows the example image. Fig. 17 shows typical images from the metric = 0 bin, Fig. 18 shows typical images from metric = 1 bin and Fig. 19 shows typical images from metric ≥ 2 bin. The Voronoi diagrams are omitted for clarity. It should be noted that in spite of the large variation in the geometry of the heart and the large variation in the position of the heart in the chest, the arrangement metric robustly retrieves appropriate sections.

With regard to computational efficiency, we report that the current implementation of the algorithm computes the metric and bins the images in about two seconds on a SUN SPARC-Station 2.

The database has been implemented and experimented with for over a year. Different sections have been used as examples and images with similar section successfully retrieved from the database. One of the authors is a radiologist and has verified the performance.

Besides subjective evaluations, two experiments were conducted to statistically compare the performance of the method with that of expert radiologists. These experiments are described below. Three expert cardiac radiologists participated in the two experiments which were conducted immediately in succession. These radiologists were unaware of the notion of "arrangement" and of any of the theory developed so far. A database of 100 cardiac MRI images were used in both experiments. Three images were chosen from this set to serve as query images. The query images had tomographic sections in the axial, sagittal, and coronal views.

1. Note that the rightmost image in the bottom row in Fig. 14 does not contain the left atrium, therefore its Voronoi diagram is compared to the Voronoi diagram of the example image with the left atrium in the example image deleted. The Voronoi diagram of the example image with the left atrium deleted is not shown in Fig. 12 or in Fig. 14.

2. C. Jaffe.
Masked versions of all the database and query images were also produced by blanking out all of the image content except the heart and the four chambers, i.e., no background information was present in the masked images.

A. The First Experiment: Validation of Arrangement as Indicator of Tomographic Section

The first experiment was designed to validate the intuition that arrangements of chambers provide a strong clue about tomographic section. Two ideas were tested:

1) that most of the information regarding tomographic section is contained in the arrangement, i.e., masking out all of the information except the arrangement of chambers does not result in a significant loss of a radiologist's ability to deduce section, and

2) that the performance of the arrangements technique was similar to that of expert radiologists.

The unmasked and masked database images were mixed together in one group and the unmasked and masked query images were mixed together in a query group for this experiment. The three participating radiologists were asked to rank similarity in the following manner: Each radiologist was shown one query image at a time. Upon presentation of the query image the radiologist was asked to compare each of the database images with the query image and give it a similarity rating based on Table II.

TABLE II

<table>
<thead>
<tr>
<th>Similarity Rating</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The two images have approximately the same view and section.</td>
</tr>
<tr>
<td>2</td>
<td>The two images have approximately the same view, but are from slightly different sections.</td>
</tr>
<tr>
<td>3</td>
<td>The intermediate between 2 and 4.</td>
</tr>
<tr>
<td>4</td>
<td>The two images have approximately the same view, but their sections are very different.</td>
</tr>
<tr>
<td>5</td>
<td>The two images are from different views.</td>
</tr>
</tbody>
</table>

No definitions of the terms "slightly different" and "very different" in Table II were provided. We expected the radiologists to define these in terms of everyday radiology practice.

After the experiment, the similarity ratings for unmasked and masked images were separated and tabulated as shown in Table III (in this table s... indicates the similarity rating).

A T-test revealed that the two columns of Table III were statistically different ($P < 0.001$). However, the average difference between the ratings in the two columns was only 0.018 ± 0.061, revealing that although masking the background does cause a difference in the performance of radiologists, the difference is quite small.

Next, the radiologists' ratings were compared to the arrangements method. First, the radiologists' ratings were used to create a "representative" rating. Since there were three radiologists, three ratings were available for every database image. The median of these ratings was chosen representative.

TABLE III

<table>
<thead>
<tr>
<th>Similarity Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmasked Query Unmasked Dbase Image</td>
</tr>
<tr>
<td>s_{1u}</td>
</tr>
<tr>
<td>\ldots</td>
</tr>
<tr>
<td>s_{100u}</td>
</tr>
<tr>
<td>\ldots</td>
</tr>
<tr>
<td>s_{500u}</td>
</tr>
</tbody>
</table>

Table III had 900 entries (database images × query images × physicians).

Fig. 14. Result of binning using the axial section: Metric = 1.

Fig. 15. Result of binning using the axial section: Metric ≥ 2.

Fig. 16. Retrieval for a coronal section: Example image.
Then, the arrangements method was used with the query images, and similarity ratings for it were given as shown in Table IV.

<table>
<thead>
<tr>
<th>Similarity Rating</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The two images are 0 diagonal exchanges apart.</td>
</tr>
<tr>
<td>2</td>
<td>The two images are 1 diagonal exchange apart.</td>
</tr>
<tr>
<td>3</td>
<td>The two images are 2 diagonal exchanges apart.</td>
</tr>
<tr>
<td>4</td>
<td>The two images are more than two diagonal exchanges apart.</td>
</tr>
<tr>
<td>5</td>
<td>There is more than one part not in common to the two images so they cannot be compared.</td>
</tr>
</tbody>
</table>

Table IV: Similarity Ratings for Arrangements

The representative and arrangement similarity ratings were tabulated in two $3 \times 100 \times 2$ tables (queries \times images \times similarity ratings for masked and unmasked images). Similarity ratings in both tables were compared using Spearman's rank-correlation test. The correlations are shown in Table V.

<table>
<thead>
<tr>
<th>Unmasked Query</th>
<th>Masked Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmasked Dbase Image</td>
<td>Masked Dbase Image</td>
</tr>
<tr>
<td>0.64</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Table V: Spearman's Rank Correlation of Similarity Ratings

Both correlations were significant ($P < 0.001$). A visual comparison of the similarity ratings revealed that most expert and arrangement similarity ratings either agreed or were off by a value of 1.

This experiment indicates that tomographic section can be inferred reliably from the embedding of the heart chambers in the image even when the rest of the image information is suppressed and that the similarity ratings of the arrangements technique are positively correlated to those of the radiologists.

B. The Utility of Arrangements in Image Retrieval

The second experiment evaluated the utility of the arrangements technique for retrieval by similarity of tomographic section. The masked query and database images were not used in this experiment since they are not representative of real-world MRI image databases.

The idea behind this experiment was to compare the performance of a radiologist acting as a database retriever to that of the arrangement technique. To achieve this, the set of 100 images was chosen as an image database and a set of three images chosen as queries.

- First, a "gold standard" was created which tabulated the images that a database engine ought to retrieve for each of the queries (this is described below).
- Second, an independent radiologist acting as a database engine ranked images which appeared to him to have sections similar to the query images.
- Third, the arrangements technique was used to rank sections similar to the sections of the query images. Accuracies of retrieval by the radiologist and the arrangements technique were computed and compared with respect to the gold standard.

The gold standard was established by the three radiologists who had participated in the first experiment. Upon presentation of a query image, the radiologists were asked to decide whether each image in the database ought to be retrieved for a "retrieval by similarity of section" query. If at least two radiologists agreed that an image should be retrieved, then it was considered appropriate to retrieve the image. This was taken to be the gold standard.
Next, the independent radiologist was asked to interpret the database and the query images using the following scheme: Each image was labeled with a two-dimensional tag: (view, section). The view field \(v \) could take three values: sagittal, axial, and coronal. The section field \(s \) could take five values (1, ..., 5), going from anterior to posterior, from superior to inferior, or from left to right (depending on the view). After the radiologist had tagged all database and query images, a database image \(I_{ab}(v_{ab}, s_{ab}) \) was considered desirable for retrieval if both had the same view \(v_{ab} = v \) and an absolute difference of their section-values was smaller than a threshold \(\delta (\|s_{ab} - s\| \leq \delta) \), which was varied from 0 to 4 in steps of 1. For each value of \(\delta \) two kinds of errors were measured by comparing the retrieved images with the gold standard. Errors of false retrievals were images that were retrieved by the radiologist but not retrieved in the gold standard, and errors of false rejects were images retrieved by the gold standard that were not retrieved by the radiologist.

Table VI summarizes the error (false retrievals + false rejects) in retrieval made by the radiologist as a function of the threshold \(\delta \).

Next, the arrangements technique was used to compare each query image with all the database images and the database images were binned in the order of their metric. For a query image, an image in the database was considered desirable for retrieval if the arrangement metric between the two was less than or equal to a threshold \(\epsilon (d(A_{ep}, A_{eb}) \leq \epsilon) \). The threshold was varied in steps of 1 from 0 to 3 and by comparing the retrieved images at each step to the gold standard; the error (false retrievals + false rejects) in retrieval was measured as above. Table VII shows the retrieval error as a function of \(\epsilon \).

Since the smallest errors were made for \(\delta = 0 \) and \(\epsilon = 0 \), these values of threshold were chosen for a more detailed comparison. The images which were retrieved at \(\epsilon = 0 \) and \(\delta = 0 \) were classified as desired retrievals (image was retrieved by the gold standard and the method), false retrievals (as defined before), desired rejects (image was not retrieved by the gold standard or the method), and false rejects (as defined before). The results are shown in Table VIII.

The \(\chi^2 \) test was used to compare the two rows of Table VIII presupposing \((H_0) \) that the row and the column variable were independent. The test rejected the hypothesis \((\chi^2 = 30.1 (P < 0.001)) \) showing that the performance of the expert and arrangements was dissimilar.

The last column of the table shows the accuracy (desired retrievals + desired rejects) of the expert and the arrangements method. The performance of the arrangements method is slightly worse than that of the expert. This should be considered in light of the fact that the expert uses the entire information in the image and that the arrangements method uses only relative position information. Adding further features like relative shapes and sizes of the chambers can be expected to improve the performance of the retrieval algorithm.

The main difference in the accuracy of the arrangements method and the expert is in the false retrievals column—the arrangements method has more false retrievals (15%) than the expert (2.6%). If the false positives column is deleted from the table, no significant difference is found between performance of the two \((\chi^2 = 1.77, \text{not significant at } P = 0.05) \).

This experiment demonstrates the utility of including arrangements in a tomographic image database. Although the accuracy of the technique is lower than that of an expert radiologist, the decrease in accuracy is due to extra retrievals. In practice, such an increase in false retrievals is not detrimental to the performance of the database. Given the variability between experts, a small increase in false retrievals might in fact be desirable.

VII. Remarks on Arrangements

Arrangements and the diagonal exchange operator are useful because they completely specify the neighborhood system of embedded parts and can transform one neighborhood system into another. Any "qualitative" property of the embedding which depends on the neighborhood system can be expressed in terms of the arrangement.

An additional advantage of using arrangements to describe qualitative properties is that properties which may be intuitively clear for point-like parts can be easily extended to region-like parts since arrangements are defined for both. As an example, consider the notion of directional relations between neighbors. Intuitively, they are most easily defined for point-like parts. By expressing them in terms of the arrangement, they can be meaningfully extended to region-like parts.
Let \(P_1, \ldots, P_n \) be points embedded in the plane and \(P_1 \) be the "outside." Suppose that \(P_1, P_2, \) and \(P_3 \) are neighbors and \(P_3 \) lies to the left of the directed line \(P_1 P_2 \). Then, traversing the boundary of the Voronoi domain of \(P_1 \) (Fig. 20a), we encounter the sequence \(\ldots P_2 P_3 \ldots \) so that one string in the arrangement is

\[
P_1: \ldots P_2 P_3 \ldots.
\]

(1)

If \(P_3 \) lies to the right of \(P_1 P_2 \), then the string is

\[
P_1: \ldots P_3 P_2 \ldots.
\]

(2)

\[\text{Voronoi diagram} \]

\[\text{Voronoi diagram} \]

(a) Directional relations between points

(b) Voronoi diagram

(c) Voronoi diagram

Fig. 20. Directional relations.

It is clear that the converse also holds, i.e., the occurrence of a string such as that of (1) implies that \(P_3 \) is to the left of \(P_1 P_2 \) and the occurrence of a string such as that of (2) implies that \(P_3 \) is to the right of \(P_1 P_2 \). Therefore, directional relations can be deduced from arrangement.

Having observed that directional relations between point parts can be deduced from arrangements, we can easily extend directional relations to parts which are not points. Consider Figs. 20b, 20c, and 20d. The figures show three parts in different configurations. In the progression shown in the figure, part \(P_3 \) starts in the configuration of Fig. 20b, extends itself around part \(P_2 \), and pulls up to the configuration in Fig. 20d. Assuming that \(P_1 \) is not the "outside," the strings for \(P_1 \) in the three arrangements are

- Fig. 20b: \(P_1: \ldots P_2 P_3 \ldots \)
- Fig. 20c: \(P_1: \ldots P_3 P_2 P_3 \ldots \)
- Fig. 20d: \(P_1: \ldots P_3 P_2 \ldots \)

Using the definition of directional relations in terms of arrangement - the first string shows that \(P_3 \) is to the right of \(P_1 P_2 \), while the last string shows that \(P_3 \) is to the left of \(P_1 P_2 \), which is as expected. On the other hand, the middle string shows that \(P_3 \) is simultaneously to the right as well as to the left of \(P_1 P_2 \) (the middle string is of the type \(P_1: \ldots P_2 P_3 \ldots \) as well the type \(P_1: \ldots P_3 P_2 \ldots \)). This makes sense, visually as well as semantically. Since \(P_3 \) is not a point, it can wrap around other parts in a variety of complex ways and can simultaneously appear to the left and right of other parts.

A point cannot be simultaneously to the left and right of another pair of points, whereas a region can. Using arrangements to express directional relations gives a consistent way of expressing this.

VIII. CONCLUSIONS AND DISCUSSION

We proposed a qualitative spatial relation called "arrangement" which describes how different parts are embedded in an image. Arrangements are closely related to Voronoi Diagrams, and based on this, a metric was defined between arrangements.

It was also proposed that similarity of part embeddings in medical tomographic images implies similarity of tomographic section. This observation, along with the arrangement metric, was used in a cardiac MRI database to retrieve images having sections similar to an example image.

Experiments which

1) demonstrate the utility of the metric in retrieving images with similar section, and
2) compare the effectiveness of this technique with that of expert radiologists were reported.

These experiments showed that the arrangements technique had a comparable though slightly inferior performance to that of expert radiologists.

APPENDIX

PROPERTIES OF LABELED VORONOI DIAGRAMS

This Appendix contains technical results used in the main paper. The main aim is to establish the equivalence of the arrangement and the labeled Voronoi diagram. We begin by showing that vertex and edge labels are unique.

A. Vertex Labels

Using Fig. 21 we present a geometrical demonstration that each vertex of the Voronoi diagram has a unique label. Each vertex is labeled by noting, in a counterclockwise manner, the parts whose domains define the vertex. Since stable vertices have degree three, the label for any vertex is of the form \(P_1 P_2 P_3 \).

The result is established by assuming that there are two vertices in a Voronoi diagram that are labeled \(P_1 P_2 P_3 \) and \(P_1 P_2 P_3 \) and showing that \(P_1 \neq P_3 \). Since both vertices have \(P_1 \) as well as \(P_2 \) in their label strings, the vertices occur on the boundary of the Voronoi domain of \(P_1 \) as well as \(P_3 \). Fig. 21a shows the boundary of the Voronoi domain of \(P_1 \) with the two vertices in it. A closed path can be traced by starting from the vertex \(P_1 P_2 P_3 \) continuing along the boundary of the Voronoi domain of \(P_1 \), to vertex \(P_2 P_3 P_1 \) then proceeding along the boundary of the Voronoi domain of \(P_2 \) and arriving back at the starting vertex. There are two ways of doing this: either as shown in Fig. 21b or as shown in Fig. 21c (the distinction between the two is that in Fig. 21b \(P_1 \) lies inside the path, while in Fig. 21c \(P_1 \) lies outside the path). In both situations it can be seen that the Voronoi domains of \(P_1 \) and \(P_3 \) lie on different sides of the closed path, and therefore, the closed path separates them.
Fig. 21. Vertices have a unique label.

Since the path is always through the Voronoi diagram, it follows that the Voronoi diagram separates the Voronoi domains of parts \(P_i \) and \(P_j \), i.e., the two are distinct parts. Therefore, \(P_iP_jP_k \neq P_jP_kP_i \) and each vertex has a unique label.

B. Identifying Edges

Since vertices have unique labels, every edge in the Voronoi diagram may be identified by the labels of the vertices it is incident on. However, more than one edge may be incident on the same two vertices and it is necessary to distinguish between them.

Edges incident on the same vertices can be distinguished by the Voronoi domains they separate. Since a vertex is a point that is equidistant from distinct parts, the three edges incident on any vertex separate three distinct parts, and each of the edges is uniquely identified by the two parts that it separates.

C. Arrangement and Label-Isomorphism

The arrangement and the modified incidence matrix of a Voronoi diagram convey the same information. To demonstrate this, consider the construction of the modified incidence matrix from the arrangement. The presence of a substring \(P_1: \ldots P_k \ldots \) or \(P_1: P_2 \ldots P_j \) in the arrangement implies that \(P_1, P_2, \ldots P_k \) are neighbors whose Voronoi domains meet at a vertex. If \(P_i \neq P_k \), the vertex has a label \(P_iP_k \). If \(P_i = P_k \), the vertex has a label \(P_iP_j \). Applying this rule to all the strings in the arrangement, the entire set of labeled vertices of the Voronoi diagram can be obtained. Of course, since each vertex occurs in the boundary of three Voronoi domains, applying the rule to every string in the arrangement generates each label three times. But since each vertex has a unique label, detecting repetition is straightforward.

The set of labeled edges can also be obtained from the arrangement. If \(P_i \neq P_k \) and the local arrangement of \(P_i \) is given by \(P_i: P_jP_k \ldots P_m \) or \(P_i: \ldots P_mP_kP_j \), then there is an edge \(P_iP_j \) between vertices \(P_iP_jP_k \) and \(P_iP_kP_j \). If \(P_i = P_k \) and the local arrangements are given as above, then the edge \(P_iP_j \) is still present except that the vertices that it joins are \(P_iP_jP_k \) and \(P_iP_kP_j \).

Applying this procedure to all strings in the arrangement, we obtain the entire set of edges. The algorithm counts each edge twice since each edge occurs on the boundaries of two Voronoi domains. However, repetitions are easy to spot since an edge is uniquely determined by its label and the labels of the vertices it is incident on.

Constructing the arrangement from the modified incidence matrix is also straightforward. For every \(P_i \) a list of vertices whose labels contain \(P_i \) is constructed. All of these vertices, and only these vertices, lie on the boundary of the Voronoi domain of \(P_i \). Suppose \(P_iP_jP_k \) is a vertex in this list. If \(P_i \neq P_k \), then we seek a vertex \(P_iP_jP_k \) in the list which is connected to it by an edge \(P_iP_k \). If \(P_i = P_k \) and the original vertex is \(P_iP_jP_k \), then we seek a vertex \(P_iP_jP_k \) connected by an edge \(P_iP_j \). Such vertices always exists since all vertices with the \(P_i \) in their label necessarily lie on a cycle of the Voronoi diagram.

Continuing the above, all vertices in the list are linked circularly. The circular list can be traversed to obtain the local arrangement of \(P_i \). If \(P_i \neq P_k \) and \(P_iP_jP_kP_l \) are consecutive vertices on the circular list, the local arrangement is \(P_iP_jP_k \). If \(P_i = P_k \), then \(P_iP_jP_k \) and \(P_iP_jP_l \) are consecutive vertices on the circular list, the local arrangement is \(P_iP_jP_k \).

ACKNOWLEDGMENTS

We gratefully acknowledge the discussions with Marjorie Senechal, Pradeep G. Mutalik, and Lisa R. Berlinger. We are also grateful to the three expert radiologists for participating in the experiments. We acknowledge the helpful suggestions made by the editors of PAMI and the reviewers of this manuscript.

This work was supported by the grant 1-R01-LM05007 from the National Library of Medicine.

REFERENCES

