A unified nomenclature for peroxisome biogenesis factors

Distel, B.; Erdmann, R.; Gould, S.J.; Blobel, G.; Crane, D.I.; Cregg, J.M.; Dodt, G.; Fujiki, Y.;
Moser, H.W.; Osumi, T.; Rachubinski, R.A.; Roscher, A.; Subramani, S.; Tabak, H.F.;
Tsukamoto, T.; Valle, D.; van der Klei, I.; van Veldhoven, P.P.; Veenhuis, M.

Published in:
Journal of Cell Biology

DOI:
10.1083/jcb.135.1.1

Citation for published version (APA):
nomenclature for peroxisome biogenesis factors. Journal of Cell Biology, 135, 1-3. DOI: 10.1083/jcb.135.1.1

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
or other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Mini-Review

A Unified Nomenclature for Peroxisome Biogenesis Factors


*Department of Biochemistry, Acadeimical Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; †Institut fiir Physiologische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany; ‡Departments of Biological Chemistry and Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ††Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York 10021; †‡The School of Biomolecular and Biomedical Science, Griffith University, Brisbane, QLD 4111, Australia; †¶The Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291; ††The School of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan; †‡The Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235; †§Institute for Biochemistry I, D-69120 Heidelberg, Germany; †¶‡Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Biological Centre, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands; †¶¶The Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York 10029; †¶¶¶Afdeling Farmakologie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium; †††The Kennedy Krieger Institute and The Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; †‡‡Department of Life Science, Himeji Institute of Technology, Hyogo, Japan; †‡¶Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada; †‡¶¶Department of Clinical Chemistry and Cell Biology, Children's Hospital, Munich, Germany; †¶¶¶¶The Department of Biology, The University of California, San Diego, La Jolla, California 92093-0322; †¶¶¶¶¶The Howard Hughes Medical Institute and the Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

For the past 10 years, there has been substantial progress in the field of peroxisome biogenesis. One key to this progress has been the use of genetic approaches in a wide variety of experimental organisms (4, 8, 11, 15, 18, 26, 35, 38, 47, 48). To date, these systems have been used to identify thirteen proteins required for peroxisome biogenesis, three of which have also been shown to be defective in the lethal peroxisome biogenesis disorders. However, the diversity of experimental systems has also led to a profusion of names for peroxisome assembly genes and proteins. These include the acronyms PAS, PAF, PER, PAY, PEB, and PMP and span an even greater array of numbering systems. At the request of the Editors of The Journal of Cell Biology and for the benefit of all concerned, we considered several options for gene and protein names, numbering systems, and possible definitions for the types of genes and protein to be included. We propose here a unified protein and gene nomenclature for peroxisome biogenesis factors.

Proteins involved in peroxisome (microbody) biogenesis (inclusive of peroxisomal matrix protein import, membrane biogenesis, peroxisome proliferation, and peroxisome inheritance) will be designated peroxins, with PEX representing the gene acronym. However, even though defects in peroxisomal metabolic enzymes or transcription factors may affect peroxisome proliferation and/or morphology, such proteins shall not be included in this group. The proteins and genes will be numbered by date of published characterization, both for known factors and for those identified in the future. When necessary, species of origin may be specified by one letter abbreviations for genus and species (e.g., ScPEX1 for the Saccharomyces cerevisiae PEX1 gene). To minimize ambiguities in naming additional proteins that may be identified in the future, we urge authors before publication to contact an ad hoc nomenclature committee (see below) who will be responsible for numbering new peroxins.

The new nomenclature for peroxisome assembly genes and proteins is outlined in Table I. Questions should be addressed to the first three authors of this letter, who organized the nomenclature revision and who will comprise the nomenclature committee for the next 12 months. We thank The Journal of Cell Biology for stimulating the unification of our nomenclature and for providing the opportunity to present our resolution. We hope that these

Please address all correspondence to Dr. Stephen J. Gould, Departments of Biological Chemistry and Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205. Tel: (410) 955-3085. Fax: (410) 955-0215. E-Mail: Stephen.Gould@qmail.bs.jhu.edu

1. Abbreviations used in this paper: Sc, Saccharomyces cerevisiae; Pp, Pichia pastoris; Rn, Rattus norvegicus; Hs, Homo sapiens; Pa, Podospora anserina; Hp, Hansenula polymorpha; Yl, Yarrowia lipolytica; Cb, Candida boidinii; PBD, peroxisome biogenesis disorder.
changes will make it easier for the general scientific community, as well as ourselves, to follow the interesting and exciting research on peroxisome biogenesis.

References


