Trace analysis of ethoxylated nonionic surfactants in samples of influent and effluent of sewage treatment plants by high-performance liquid chromatography.
Kiewiet, A.Th.; van der Steen, J.M.D.; Parsons, J.R.

Published in:
Analytical Chemistry

DOI:
10.1021/ac00119a033

Citation for published version (APA):
Covalent Association of β-1,3-Glucan with β-1,6-Glucosylated Mannoproteins in Cell Walls of Candida albicans

JOHAN C. KAPTEYN,* ROY C. MONTIJN, GERRIT J. P. DIJKGRAAF, HERMAN VAN DEN ENDE, AND FRANS M. KLIS

Institute of Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands

Received 10 February 1995/Accepted 21 April 1995

Yeast and hyphal walls of Candida albicans were extracted with sodium dodecyl sulfate (SDS). Some of the extracted proteins reacted with a specific β-1,6-glucan antiserum but not with a β-1,3-glucan antiserum. They lost their β-1,6-glucan epitope after treatment with ice-cold aqueous hydrofluoric acid, suggesting that β-1,6-glucan was linked to the protein through a phosphodiester bridge. When yeast and hyphal walls extracted with SDS were subsequently extracted with a pure β-1,3-glucanase, several mannoproteins that were recognized by both the β-1,6-glucan antiserum and the β-1,3-glucan antiserum were released. Both epitopes were sensitive to aqueous hydrofluoric acid treatment, suggesting that β-1,3-glucan and β-1,6-glucan are linked to proteins by phosphodiester linkages. The possible role of β-glucans in the retention of cell wall proteins is discussed.

Candida albicans is an opportunistic, dimorphic fungal pathogen that grows in either yeast or hyphal form, depending on the environmental conditions. It is generally assumed that the morphological transition from the yeast to the hyphal form is a prerequisite for successful tissue invasion by C. albicans. This transition is correlated with changes in the composition of cell wall mannoproteins (5, 8, 9). Cell wall mannoproteins are also involved in other pathogenicity-related aspects, such as adhesion of Candida cells to mammalian tissues and immunogenicity (3, 4). It is, therefore, of interest to obtain more knowledge of the mechanisms by which mannoproteins are incorporated into the fungal cell wall. Some of the cell wall-associated proteins are extractable with hot sodium dodecyl sulfate (SDS). These proteins are mainly O mannosylated and have relatively low molecular masses (8, 9). The remaining mannoproteins, which might have both N- and O-linked carbohydrate chains, can be extracted by β-1,3-glucanase digestion, suggesting that these proteins are linked to the β-1,3-glucan skeleton of the cell wall (8, 14, 17, 23). However, the exact nature of the bonds between these mannoproteins and the β-1,3-glucan skeleton is unknown. Recently, it was shown that the glucanase-extractable mannoproteins of C. albicans and Saccharomyces cerevisiae contain a novel type of side chain, carrying β-1,6-linked glucose residues, that was proposed to be involved in cell wall anchorage (13, 16, 19, 22, 23). Evidence that the β-1,6-glucan side chains of C. albicans are phosphodiester linked to the mannoproteins was presented (13). Interestingly, it has been shown that the alkali-soluble glucan of C. albicans cell walls consists of a β-1,6-glucan–β-1,3-glucan heteropolymer (1, 25). This raises the question whether the protein-bound β-1,6-glucan might also be part of such a heteropolymer in vivo.

Here, by immunological means, we show that the β-1,6-glucosylated cell wall proteins contain a β-1,3-glucan epitope. Both the β-1,6-glucan and β-1,3-glucan epitopes are presumably phosphodiester linked to the protein. We propose that the incorporation of proteins into the cell wall is accomplished by extracellular cross-linkage between a β-1,6-glucan–β-1,3-glucan heteropolymer and cell wall proteins.

MATERIALS AND METHODS

Strain. C. albicans C3153 was donated by G. W. Gooday (Department of Molecular and Cell Biology, Marischal College, University of Aberdeen, United Kingdom). Cells were grown at 28°C in succinate-buffered (0.25% [wt/vol]; pH 4.5) synthetic growth (SG) medium containing 0.17% (wt/vol) yeast nitrogen base (Difco, Detroit, Mich.), 0.5% (wt/vol) (NH₄)₂SO₄, and 2% (wt/vol) glucose. Cells were harvested by centrifugation, washed three times with 10 mM Tris-HCl (pH 7.4) containing 1 mM phenylmethylsulfonyl fluoride, and subsequently disrupted five times for 1 min each time (with 30-s intervals) at 0°C with glass beads in a Bead-Beater. The glass beads were separated by filtration over a nylon filter, and the cell walls were collected by centrifugation at 3,000 × g for 10 min. The resulting pellet was rinsed five times with 1 M NaCl and three times with 1 mM phenylmethylsulfonyl fluoride.

Isolation of glucanmannoproteins. Cells were harvested by centrifugation, washed three times with 10 mM Tris-HCl (pH 7.4) containing 1 mM phenylmethylsulfonyl fluoride, and subsequently disrupted five times for 1 min each time (with 30-s intervals) at 0°C with glass beads in a Bead-Beater. The glass beads were separated by filtration over a nylon filter, and the cell walls were collected by centrifugation at 3,000 × g for 10 min. The resulting pellet was rinsed five times with 1 M NaCl and three times with 1 mM phenylmethylsulfonyl fluoride. Isolated walls were boiled in the presence of SDS, EDTA, and β-mercaptoethanol to extract noncovalently linked mannoproteins, and they were subsequently digested with mullase laminarinase (Sigma, St. Louis, Mo.) (0.5 U g⁻¹ [wet weight of cell wall]) to obtain covalently linked wall mannoproteins (13, 19). Cell walls were also digested at 37°C for 17 h with Quantzyme ygl (Quantum Biotechnologies Inc., Montreal, Canada) (600 U g⁻¹ [wet weight] of cell walls), a recombinant β-1,3-glucanase, in 50 mM Tris-HCl buffer (pH 7.5) containing 40 mM β-mercaptoethanol.

Aqueous hydrofluoric acid (HF) treatment. Quantzyme-released cell wall mannoproteins and yeast invertase (Sigma) were treated with ice-cold aqueous HF (50% [vol/vol]) according to a modified procedure described by Ferguson (10). After aqueous HF treatment, the proteins were evaporated under a constant nitrogen flow, washed with 90% (vol/vol) ice-cold methanol, and taken up in sample buffer. This treatment removes the β-1,6-glucan side chains from wall mannoproteins but does not lead to significant protein breakdown or degradation of N and O chains (13; see also Fig. 2).

Analysis of cell wall proteins. Cell wall proteins were separated by linear gradient (2.2 to 20%) polyacrylamide gel electrophoresis (PAGE) and were visualized by silver staining (6), by staining with the periodic acid-Schiff (PAS) reagent according to the method of Zacharius et al. (26), and by blotting by electrophoretic transfer onto Immobilon polyvinylidene difluoride membranes (Millipore, Bedford, Mass.) for Western (immunoblot) analysis with affinity-purified polyclonal antiserum directed against β-1,6-glucan and β-1,3-glucan. The PAS reagent specifically stains glycoproteins. The β-1,6-glucan-specific antibodies were raised in rabbits by using a conjugate of pustulan oligosaccharides.
(β-1,6-glucan) and bovine serum albumin (BSA) as antigen (19). This antisera was purified by affinity chromatography on a pullulan-Epoxy-Sepharose 6B column. Similarly, the β-1,3-glucan-specific antibodies were raised by using a conjugate of BSA and laminarin (β-1,3-glucan). Before conjugation with BSA, laminarin was oxidized in 0.25 M NaIO₄ at 20°C for 60 min and subsequently desalted on a Sephadex G-25 column. The β-1,3-glucan antisera was purified on a laminarin (preoxidized)-Epoxy-Sepharose 6B column. Western analyses were carried out as described previously (19). However, instead of being determined with a solution of aminooctylcarbazole as the chromogenic substrate, the binding of the antisera was determined with an enhanced chemiluminescence detection reagent (Amersham International, Little Chalfont, Buckinghamshire, United Kingdom) because of its superior sensitivity.

RESULTS

Immunological identification of β-1,6-glucosylated, SDS-extractable cell wall proteins. As reported before (9, 13, 17), SDS extracts of yeast and hyphal cell walls contained many proteins with low molecular masses (<120 kDa) in addition to a polydisperse smear with an average molecular mass of about 500 kDa (Fig. 1, lane 1). The PAS reagent stained only the high-molecular-mass smear (Fig. 1, lane 3). Western analysis with the β-1,3-glucan antisera showed that none of the SDS-extractable proteins were β-1,3-glucosylated (data not shown). With the β-1,6-glucan antisera being used for the analysis, the 500-kDa smear was shown to contain a β-1,6-glucan epitope (Fig. 1, lane 5). The antisera also reacted with a band with an apparent molecular mass of 205 kDa (Fig. 1, lane 5), which was not seen with silver and PAS staining (Fig. 1, lanes 1 and 3). After periodate oxidation, which destroys β-1,6- but not β-1,3-linked glucose residues, or in the presence of pullulan (β-1,6-glucan), the epitope of the SDS-solubilized proteins was not recognized (Fig. 1, lanes 8 and 9), confirming that it contained β-1,6-glucose residues. Upon pronase digestion, the β-1,6-glucan signal disappeared, confirming that the epitope was protein linked (Fig. 1, lane 6). The β-1,6-glucosylated proteins were not affected by endo-β-N-acetylglucosaminidase H treatment (data not shown). This is consistent with the observation in S. cerevisiae that β-1,6-glucan-containing side chains are not modified N chains (19). The epitope was lost upon aqueous HF treatment (Fig. 1, lane 7). This treatment is used to specifically cleave phosphodiester bridges in glycosyl phosphatidylinositol (GPI) anchors (10). This result, therefore, indicates that the β-1,6-glucan epitope is linked to the protein through a phosphodiester bridge. Silver and PAS staining showed that after removal of the β-1,6-glucan epitope, the 500-kDa material had a lower mobility (Fig. 1; compare lanes 1 with 2 and 3 with 4). It is possible that this is due to aggregation of the dephosphorylated material, since a similar phenomenon was seen when yeast invertase was treated with aqueous HF, leading to di- and trimerization of this enzyme (Fig. 2, lane 3). This experiment also shows that aqueous HF did not significantly affect glycosidic or peptide linkages. The apparent resistance of the glycosidic linkages in invertase to aqueous HF is consistent with its being routinely used to isolate the glycan core structure of GPI anchors (Mano-1,2-Mano-1,6-Mano-1,4-GlcNα-1,6-myo-inositol) (10).

Immunological identification of β-1,3- and β-1,6-glucosylated cell wall proteins. SDS-extracted cell walls were digested with laminarinase to release covalently bound mannoproteins. The extracts were analyzed by SDS-PAGE and Western blot analysis with β-1,3- and β-1,6-glucan antisera. Laminarinase was found to release β-1,6-glucosylated mannoproteins from yeast and hyphal cell walls. Digestion of yeast cell walls resulted in bands with apparent molecular masses of 680, 460, 245, and 80 kDa (Fig. 3, lane 1), while in digests of hyphal walls, the β-1,6-glucan antisera recognized three bands with apparent molecular masses of 460, 125, and 80 kDa (Fig. 4, lane 1). None of the proteins released by laminarinase was recognized by the β-1,3-glucan antisera (data not shown).

In addition to its main β-1,3-glucanase activity, laminarinase contains small amounts of β-1,6-glucanase (7%) and α-mannanase (6%) activity (23). These contaminations might partially digest the β-1,6-glucosylated mannoproteins released. For this reason, a recombinant β-1,3-glucanase (Quantzyme ylg) was used to digest yeast and hyphal cell walls. Indeed, much more high-molecular-mass material reacting with the β-1,6-glucan antisera was now seen in the upper parts of the gels (Fig. 3 and 4; compare lanes 1 and 2). Three β-1,6-glucosylated yeast bands with apparent molecular masses of 220, 450, and 680 kDa could be distinguished (Fig. 3, lane 2). No obvious differences were found between the materials released from yeast and hyphal cell walls, except that the 450- and 680-kDa bands in hyphal extracts could not be discriminated from each other and migrated as one zone with an average molecular mass of 550 kDa (compare Fig. 3, lane 2, and Fig. 4, lane 2). Pronase treatment resulted in the disappearance of the β-1,6-glucosylated yeast bands, demonstrating that the β-1,6-glucan is bound to protein (Fig. 3, lane 3). These bands did not lose their antigenicity by endo-β-N-acetylglucosaminidase H.
treatment (data not shown), indicating that the β-1,6-glucan epitope is not linked to an N chain. Cold aqueous HF removed the β-1,6-glucan epitope from the Quantazyme released yeast and hyphal wall proteins (Fig. 3, lane 4, and Fig. 4, lane 3), suggesting that the β-1,6-glucan epitope is attached to the protein by a phosphodiester linkage. PAS staining of the aqueous HF-treated Quantazyme digest of yeast and hyphal cell walls resulted in a heavy high-molecular-mass smear which had a slightly lower mobility than that of untreated released material (Fig. 3, lanes 12 and 13, and Fig. 4, lanes 6 and 7). Silver staining of the Quantazyme released wall proteins led to the same protein profiles as those revealed by PAS staining and showed further that no significant protein breakdown had occurred upon aqueous HF treatment (unpublished results).

Heteropolymers of β-1,6- and β-1,3-glucan have been demonstrated in the cell walls of C. albicans (1, 11, 25). Therefore, the Quantazyme-released, β-1,6-glycosylated cell wall proteins were also subjected to Western analysis with the β-1,3-glucan antiserum. The β-1,6-glycosylated bands derived from the yeast form that ran at 220 and 680 kDa were also recognized by the β-1,3-glucan antiserum (Fig. 3, lane 7). With respect to the hyphal form, the material released bound to both glucan antisera (Fig. 4, lanes 2 and 4). After pronase digestion, the β-1,3-glucan-containing bands were not observed (Fig. 3, lane 8), whereas their antigenicity towards the β-1,3-glucan antisemur was retained after endo-β-N-acetylglucosaminidase H treatment (data not shown), indicating that in a case similar to that of the β-1,6-glucan epitope, the β-1,3-glucan epitope is linked to protein but probably not via N chains. Loss of antigenicity was, however, observed after aqueous HF treatment (Fig. 3, lane 9, and Fig. 4, lane 5), suggesting that the epitope is linked through a phosphodiester bridge.

Control experiments with periodate-oxidized, Quantazyme-released cell wall proteins and competitive Western analyses with pustulan (β-1,6-glucan) and laminarin (β-1,3-glucan) demonstrated that the epitopes recognized by the β-1,6-glucan and β-1,3-glucan antisera contained β-1,6- and β-1,3-linked glucose residues, respectively. Pustulan (100 μM) completely inhibited binding of the β-1,6-glucan antibodies to the Qua-
tazyme-extractable, glucosylated wall proteins (Fig. 3, lane 5). In addition, the β-1,6-glucan epitope was sensitive to oxidation by periodate, consistent with the presence of β-1,6-linked glucose residues (Fig. 3, lane 6). With regard to the β-1,3-glucan antisera, the signals obtained could be fully inhibited with 200 μM laminarin (Fig. 3, lane 10), whereas periodate did not abolish but rather enhanced recognition of the Quantazyme-released yeast cell wall proteins by the β-1,3-glucan antibodies (Fig. 3, lane 11). Most probably, the oxidation of the β-1,6-glucan and the N- and O-linked mannans by periodate enhanced the accessibility of the β-1,3-glucan epitope of these proteins to the antisera.

DISCUSSION

In a previous paper (13), we reported the identification of 125-kDa and 80-kDa β-1,6-glucosylated protein bands in laminarinase extracts of yeast and hyphal cell walls of *C. albicans* by Western analysis with the affinity-purified β-1,6-glucan antisera. Because of the more sensitive enhanced chemiluminescence detection method used in this study, we were able to identify some additional β-1,6-glucosylated, laminarinase-extractable proteins in both yeast and hyphal cell walls.

In the experiments for this report, we also used Quantazyme ylg, a recombinant β-1,3-glucanase, which unlike laminarinase does not contain α-mannanase and β-1,6-glucanase activities, to digest the yeast and hyphal cell walls of *C. albicans*. As expected, the β-1,6-glucosylated proteins that were released by Quantazyme had higher molecular masses than those liberated by laminarinase (Fig. 3 and 4; compare lanes 1 and 2). Interestingly, most Quantazyme-released, β-1,6-glucosylated protein bands contained a β-1,3-glucan epitope (Fig. 3, lane 7, and Fig. 4, lane 4). Presumably, Quantazyme had difficulty in passing β-1,6 branch points in the β-1,3-glucan polymers present in the cell wall, thereby leaving some undigestible β-1,3-glucan attached to the β-1,6-glucosylated mannanproteins. It is tempting to speculate that the protein-bound β-1,6-β-1,3-glucan demonstrated here is related to the β-1,6-glucan–β-1,3-glucan heteropolymers isolated from the alkali-soluble wall fraction of *C. albicans* (1, 11, 25).

Montijn et al. (19) have shown that the β-1,6-glucose-containing side chains of glucanase-extracted cell wall proteins of *S. cerevisiae* are not modified or extended N chains and are also not O linked. Van Berkel et al. (22) demonstrated that a secretary reporter protein extended with the GPI anchor addition sequence of the cell wall protein α-agglutinin became covalently associated with the cell wall of *S. cerevisiae* and contained β-1,6-glucan, whereas the nonextended and secreted form was not glucosylated. Moreover, a C-terminal truncated form of α-agglutinin, which is not GPI anchored and is secreted into the medium (24), did not react with the β-1,6-glucan antisera (16). In combination with our observation that aqueous HF removed both the β-1,6-glucan and β-1,3-glucan epitopes from the Quantazyme-released proteins (Fig. 3, lanes 4 and 9, and Fig. 4, lanes 3 and 5), these data indicate that the β-1,6-glucan moiety and probably also the β-1,3-glucan moiety might be connected to a GPI anchor, which is known to be phosphodiester linked to the C-terminal amino acid of the mature protein. This is consistent with the hypothesis put forward by De Nobel and Lipke (7) that proteins destined to be incorporated in the cell wall become linked to β-glucan through the glucan part of their GPI anchors. However, according to their model in its most simple form, SDS-extractable intermediate forms of cell wall proteins are not supposed to have a β-1,6-glucan epitope. Indeed, a nonglucosylated, SDS-extractable intermediate form of the cell wall protein α-agglutinin has recently been identified (16). How these are the presence of β-1,6-glucosylated proteins in SDS extracts of cell walls (Fig. 1C) be explained? A possible interpretation is that the SDS-extractable, β-1,6-glucosylated cell wall proteins represent degradation products of wall proteins caused by the action of endogenous β-1,3-glucanases. These enzyme activities have been found in the walls of *C. albicans* (12, 18, 20, 21). However, the possibility that the SDS-extractable, β-1,6-glucosylated cell wall proteins represent an additional intermediate step and that the final incorporation in the cell wall requires the extension of β-1,6-glucan with a β-1,3-glucan chain cannot yet be excluded.

ACKNOWLEDGMENT

J. C. Kapteyn acknowledges financial support from Glaxo Research Co.

REFERENCES

20. Notario, V. 1982. β-Glucanases from Candida albicans: purification, charac-

