Convergence of modified approximants associated with orthogonal rational functions
Bultheel, A.; Gonzalez-Vera, P.; Hendriksen, E.; Njastad, O.

Published in:
Journal of Computational and Applied Mathematics

DOI:
10.1016/0377-0427(93)E0235-E

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Convergence of modified approximants associated with orthogonal rational functions

A. Bultheel, P. González-Vera, E. Hendriksen, O. Njåstad

*Department of Computer Science, Katholieke Universiteit Leuven, Belgium
bDepartment of Mathematical Analysis, University of La Laguna, Tenerife, Spain
cDepartment of Mathematics, University of Amsterdam, Netherlands
dDepartment of Mathematics, University of Trondheim-NTH, Trondheim, Norway

Received 23 October 1992; revised 24 March 1993

Abstract

Let \{\xi_k\} be a sequence in the unit disk \(D = \{ z \in \mathbb{C} : |z| < 1 \}\) consisting of a finite number of points cyclically repeated, and let \(\mathcal{S}_z\) be the linear space generated by the functions \(B_k(z) = \prod_{i=0}^k (1 - \xi_i z)\). Let \(\{\phi_n(z)\}\) be orthogonal rational functions obtained from the sequence \(\{B_n(z)\}\) (orthogonalization with respect to a given functional on \(\mathcal{S}_z\)), and let \(\{\psi_n(z)\}\) be the corresponding functions of the second kind (with superstar transforms \(\phi^*_n(z)\) and \(\psi^*_n(z)\) respectively). Interpolation and convergence properties of the modified approximants \(R_n(z, u, v) = (u_n \phi_n(z) - v_n \psi_n(z)) / (u_n \phi_n(z) + v_n \psi_n(z))\) that satisfy \(|u_n| = |v_n|\) are discussed.

Keywords: Orthogonal rational functions; Rational interpolation

1. Preliminaries

We shall use the notation \(T = \{ z \in \mathbb{C} : |z| = 1 \}\), \(D = \{ z \in \mathbb{C} : |z| < 1 \}\) for the unit circle and the unit disk. The kernel \(D(t, z)\) is defined by

\[
D(t, z) = \frac{t + z}{t - z}.
\]

(1.1)

Let \(\mu\) be a finite Borel measure on \([-\pi, \pi]\). The integral transform \(\Omega_\mu\) is defined as the Carathéodory function

\[
\Omega_\mu(z) = \int_T D(t, z) \, d\mu(t).
\]

(1.2)

* Corresponding author.

0377-0427/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0377-0427(93)E0235-E
(We use the simplified notation above for $\int_{-\pi}^{\pi} D(e^{i\theta}, z) \, d\mu(\theta)$, and analogously in similar cases.)

The real part of a Carathéodory function is a positive harmonic function in D, and vice versa. (Recall the Riesz–Herglotz representation theorem. Note that the real part of the kernel $D(t, z)$ is the Poisson kernel.)

The substar conjugate f^*_* of a function f is defined as

$$f^*_*(z) = \overline{f(1/z)}.$$ (1.3)

When f is a rational function or a series expansion, this may also be written as

$$f^*_*(z) = \overline{f(1/z)},$$ (1.4)

where the bar denotes conjugation of the coefficients. The inner product \langle , \rangle_μ is defined on $C(T) \times C(T)$ by

$$\langle f, g \rangle_\mu = \int_T f(t) \overline{g(t)} \, d\mu(t) = \int_T f(t) g^*_*(t) \, d\mu(t).$$ (1.5)

Let $\{\alpha_n; n = 1, 2, \ldots\}$ be an arbitrary sequence of (not necessarily distinct) points (interpolation points) in D. We define the Blaschke factor $\zeta_n(z)$ as the function

$$\zeta_n(z) = \frac{\alpha_n - z}{|\alpha_n| (1 - \overline{\alpha_n} z)}, \quad n = 1, 2, \ldots.$$ (1.6)

(Here $|\alpha_n| = -1$ if $\alpha_n = 0$.) We also define

$$\pi_0(z) = 1, \quad \pi_n(z) = \prod_{k=1}^{n} (1 - \overline{\alpha_k} z), \quad n = 1, 2, \ldots,$$ (1.7)

$$\omega_0(z) = 1, \quad \omega_n(z) = \prod_{k=1}^{n} (z - \alpha_k), \quad n = 1, 2, \ldots.$$ (1.8)

The Blaschke products $B_n(z)$ are defined by

$$B_0(z) = 1, \quad B_n(z) = \prod_{k=1}^{n} \zeta_k(z) = \eta_n \frac{\omega_n(z)}{\pi_n(z)}, \quad n = 1, 2, \ldots,$$ (1.9)

where

$$\eta_n = (-1)^n \prod_{k=1}^{n} \frac{\alpha_k}{|\alpha_k|}. $$ (1.10)
We shall also make use of the functions $B_{n,k}(z)$ defined by

$$B_{n,0}(z) = 1, \quad B_{n,k}(z) = B_{n}(z)/B_{k}(z) = \prod_{j=k+1}^{n} \zeta_j(z) \quad \text{for } 0 \leq k < n, \quad n = 1, 2, \ldots.$$ \hspace{1cm} (1.11)

(The product means the constant 1 when $k = n$.)

We define the spaces \mathcal{L}_n and \mathcal{L}_n^* by

$$\mathcal{L}_n = \text{Span}\{B_k: k = 0, 1, \ldots, n\}, \quad (1.12)$$

$$\mathcal{L}_n^* = \{f^*: f \in \mathcal{L}_n\}, \quad (1.13)$$

and set $\mathcal{L} = \bigcup_{n=0}^{\infty} \mathcal{L}_n$, $\mathcal{L}^* = \bigcup_{n=0}^{\infty} \mathcal{L}_n^*$. We may then write

$$\mathcal{L}_n = \left\{ \frac{p_n(z)}{\pi_n(z)} : p_n \in \Pi_n \right\}, \quad (1.14)$$

$$\mathcal{L}_n^* = \left\{ \frac{q_n(z)}{\omega_n(z)} : q_n \in \Pi_n \right\}, \quad (1.15)$$

where Π_n denotes the space of all polynomials of degree at most n.

For $f_n \in \mathcal{L}_n$ we define its superstar conjugate f_n^* by

$$f_n^*(z) = B_n(z)f_n(z).$$ \hspace{1cm} (1.16)

Note that this transformation depends on n. It must be clear from the context what n is. Also note that when $f_n \in \mathcal{L}_n$, then $f_n^* \in \mathcal{L}_n^*$.

The theory of the function spaces described above is connected with the Nevanlinna–Pick interpolation problem with interpolation points $\{z_n\}$ (cf. [16, 17]). These function spaces were introduced by Djrbashian in 1969 (see [11]), and independently in [1, 2, 10]. The theory has recently been further developed in [3, 5, 6, 8] (cf. also [14]). For connections between Nevanlinna–Pick interpolation and system theory, see [9].

We shall in this paper mainly be concerned with a special case, which we shall call the cyclic case. In this case the sequence $\{z_n\}$ consists of a finite number p of points cyclically repeated. Thus $z_{p+k} = z_k$ for $k = 1, \ldots, p, \quad q = 0, 1, 2, \ldots$. For more details on the cyclic case see [4, 7, 12].

When all the interpolation points coalesce at the origin, the space \mathcal{L} reduces to the space of polynomials, and the orthogonal rational functions in \mathcal{L} (see Section 2) are orthogonal polynomials, Szegő polynomials. For a survey of this special situation, see e.g. [13].

2. Orthogonal rational functions

Let the sequence $\{\varphi_n: n = 0, 1, 2, \ldots\}$ be obtained by orthonormalization of the sequence $\{B_n: n = 0, 1, 2, \ldots\}$ with respect to \langle , \rangle_μ. These functions are uniquely determined by the requirement that the leading coefficient κ_n in

$$\varphi_n(z) = \sum_{k=0}^{n} \kappa_k B_k(z)$$ \hspace{1cm} (2.1)
is positive. We then have $\kappa_n = \varphi_n^* (\varphi_n)$. The following orthogonality properties are valid:

$$\langle f, \varphi_n \rangle_{\mu} = 0 \quad \text{for } f \in \mathcal{L}_{n-1}, \quad (2.2)$$

$$\langle g, \varphi_n^* \rangle_{\mu} = 0 \quad \text{for } g \in \mathcal{L}_{n-1} \quad (2.3)$$

(see [3, 5]). We define the functions $\varphi_n(z, u, v)$ by

$$\varphi_n(z, u, v) = u \varphi_n(z) + v \varphi_n^*(z), \quad u, v \in \mathbb{C}, \quad (u, v) \neq (0, 0). \quad (2.4)$$

We note that $\varphi_n(z, u, v)$ belongs to \mathcal{L}_n (as a function of z). We call these functions paraorthogonal when $|u| = |v|$.

We define the functions ψ_n of the second kind by

$$\psi_0(z) = 1, \quad \psi_n(z) = \int D(t, z) [\varphi_n(t) - \varphi_n(z)] d\mu(t), \quad n = 1, 2, \ldots \quad (2.5)$$

For the functions ψ_n and ψ_n^* various equivalent expressions can be given. Let us recall the following result (see [3, 5]).

Theorem 2.1. For $n = 1, 2, \ldots$ the following formulas are valid:

$$\psi_n(z) = \int D(t, z) \left[\frac{B_k(z)}{B_k(t)} \varphi_n(t) - \varphi_n(z) \right] d\mu(t), \quad k = 0, 1, \ldots, n - 1, \quad (2.6)$$

$$\psi_n^*(z) = - \int D(t, z) \left[\frac{B_{n,k}(z)}{B_{n,k}(t)} \varphi_n^*(t) - \varphi_n^*(z) \right], \quad k = 0, 1, \ldots, n - 1. \quad (2.7)$$

We shall next prove a result valid in the cyclic situation.

Theorem 2.2. In the cyclic case with p points the following formulas are valid for $n = p + 1, p + 2, \ldots$:

$$\psi_n(z) = \int D(t, z) \left[\frac{B_{n,qp}(z)}{B_{n,qp}(t)} \varphi_n(t) - \varphi_n(z) \right] d\mu(t) \quad \text{where } qp < n, \quad (2.8)$$

$$\psi_n^*(z) = - \int D(t, z) \left[\frac{B_{qp}(z)}{B_{qp}(t)} \varphi_n^*(t) - \varphi_n^*(z) \right] d\mu(t) \quad \text{where } qp < n. \quad (2.9)$$

Proof. We may write

$$B_{n,qp}(z) = \prod_{j=n-qp+1}^{n} \zeta_j(z) = \prod_{j=1}^{qp} \zeta_j(z) = B_{qp}(z).$$

The results now follow by using $k = qp$ in (2.6) and (2.7).
We define the functions $\psi_n(z, u, v)$ of the second kind by
\begin{equation}
\psi_n(z, u, v) = u\psi_n(z) - v\psi_n^*(z), \quad u, v \in \mathbb{C}, \quad (u, v) \neq (0, 0).
\end{equation}

Theorem 2.3. In the cyclic case with p points the following formulas are valid for $n = p + 1, p + 2, \ldots$:
\begin{align}
\psi_n(z, u, v) &= \int_T D(t, z) \left[\frac{B_{q_p}(z)}{B_{q_p}(t)} \varphi_n(t, u, v) - \varphi_n(z, u, v) \right] d\mu(t) \quad \text{where } q_p < n, \\
\psi_n(z, u, v) &= \int_T D(t, z) \left[\frac{B_{n,q_p}(z)}{B_{n,q_p}(t)} \varphi_n(t, u, v) - \varphi_n(z, u, v) \right] d\mu(t) \quad \text{where } q_p < n.
\end{align}

Proof. Follows by combining (2.7) and (2.8) (resp. (2.6) and (2.9)) for the situation $k = q_p$. \qed

3. Interpolation by rational approximants

We shall in this section study interpolation properties of the rational functions
\begin{equation}
R_n(z, u, v) = \frac{\psi_n(z, u, v)}{\varphi_n(z, u, v)}
\end{equation}
given by (2.4) and (2.10) to the function $-\Omega_n(z)$ defined in (1.2).

Let us recall the following result (see [8]).

Theorem 3.1. The function $\Omega_n(z)$ has in D the following Newton series expansion:
\begin{equation}
\Omega_n(z) = \varphi_n + 2 \sum_{m=1}^{\infty} \mu_m z^{\omega_{m-1}}(z),
\end{equation}
where the general moments μ_m are given by
\begin{equation}
\mu_m = \int_T \frac{d\mu(t)}{\omega_m(t)}, \quad m = 0, 1, 2, \ldots.
\end{equation}

In the following we shall use the notation $q(n), r(n)$ as defined below:
\begin{equation}
n = q(n)p + r(n), \quad r(n) \in \{1, \ldots, p\}.
\end{equation}

Theorem 3.2. The rational function $R_n(z, u, v)$ interpolates the function $-\Omega_n(z)$ in the sense that for $n > p$:
\begin{equation}
\psi_n(z, u, v) + \varphi_n(z, u, v)\Omega_n(z) = f_n(z)z^{\omega_{n-1}}(z),
\end{equation}
where $f_n(z)$ is analytic in D.
Proof. One can easily establish the identity
\[
1 + 2 \sum_{m=1}^{n-1} \frac{z \omega_{m-1}(z)}{\omega_m(t)} = \frac{t + z}{t - z} \left[1 - \frac{z \omega_{n-1}(z)}{t \omega_{n-1}(t)} \right] - \frac{z \omega_{n-1}(z)}{t \omega_{n-1}(t)}.
\] (3.6)

Hence, after integrating (3.6) with measure \(\mu \), we get
\[
\mu_0 + 2 \sum_{m=1}^{n-1} \mu_m z \omega_{m-1}(z) = \int_T \left\{ D(t, z) \left[1 - \frac{z \omega_{n-1}(z)}{t \omega_{n-1}(t)} \right] - \frac{z \omega_{n-1}(z)}{t \omega_{n-1}(t)} \right\} d\mu(t).
\] (3.7)

By combining (2.11) and (3.7) we then obtain (since \(q(n)p < n \))
\[
\psi_n(z, u, v) + \phi_n(z, u, v) \left[\mu_0 + 2 \sum_{m=1}^{n-1} \mu_m z \omega_{m-1}(z) \right]
= \int_T D(t, z) \left[\frac{B_{q(n)p}(z)}{B_{q(n)p}(t)} \phi_n(t, u, v) - \frac{z \omega_{n-1}(z)}{t \omega_{n-1}(t)} \phi_n(z, u, v) \right] d\mu(t)
- \phi_n(z, u, v) z \omega_{n-1}(z) \int_T \frac{1}{t \omega_{n-1}(t)} d\mu(t)
\] (3.8)

and hence
\[
\psi_n(z, u, v) + \phi_n(z, u, v) \left[\mu_0 + 2 \sum_{m=1}^{n-1} \mu_m z \omega_{m-1}(z) \right]
= -\mu'_n \phi_n(z, u, v) z \omega_{n-1}(z) + \omega_{q(n)p}(z) \sigma_n(z),
\] (3.9)

where
\[
\mu'_n = \int_T \frac{1}{t \omega_{n-1}(t)} d\mu(t)
\] (3.10)

and
\[
\sigma_n(z) = \int_T D(t, z) \left[\frac{\pi_{q(n)p}(t)}{\pi_{q(n)p}(z) \omega_{q(n)p}(t)} \phi_n(t, u, v) - \frac{z \prod_{k=q(n)+1}^{n-1} (z - \alpha_k)}{t \omega_{n-1}(t)} \phi_n(z, u, v) \right] d\mu(t).
\] (3.11)

(If \(q(n)p = n - 1 \), the product means the constant 1.)

We are going to prove that \(\sigma_n(\alpha_k) = 0 \) for \(q(n)p + 1 \leq k \leq n - 1 \). Let \(q(n)p + 1 \leq k \leq n - 1 \), if \(n(q) < n - 1 \). Then
\[
\sigma_n(\alpha_k) = \frac{1}{\pi_{q(n)p}(\alpha_k)} \int_T D(t, \alpha_k) \frac{\pi_{q(n)p}(t)}{\omega_{q(n)p}(t)} \phi_n(t, u, v) d\mu(t).
\] (3.12)
We note that

\[D(t, \alpha_k) \left[\frac{\pi_{q(n)}p(t)}{\omega_{q(n)}p(t)} \right] = c \frac{1 + \tilde{\alpha}_k t \omega_{q(n)}p(t)}{1 - \tilde{\alpha}_k t \pi_{q(n)}p(t)} = c \zeta_n(t) L(t), \]

where \(L(t) \in \mathcal{L}_{n-1} \) and \(c \) is a constant, while also

\[D(t, \alpha_k) \frac{\omega_{q(n)}p(t)}{\pi_{q(n)}p(t)} \in \mathcal{L}_{n-1}. \]

Because we may note that

\[\frac{(1 + \tilde{\alpha}_k t)\omega_{q(n)}p(t)}{(1 - \tilde{\alpha}_k t)\pi_{q(n)}p(t)} = \frac{(t - \alpha_k)\pi_{q(n)}p(t)}{(1 - \tilde{\alpha}_k t)\pi_{q(n)}p(t)}, \]

where \(s_{q(n)}p(t) \) is a polynomial of degree \(q(n)p \), that \((1 - \tilde{\alpha}_k t)\pi_{q(n)}p(t) \) is a factor in \(\pi_n(t) \), and that \(t - \alpha_k \) is a factor in \(\omega_{q(n)}p(t) \), thus

\[\left[\frac{\pi_{q(n)}p(t)}{\omega_{q(n)}p(t)} \right] \in \mathcal{L}_{n-1} \cap \zeta_n \mathcal{L}_{n-1}, \]

and hence

\[\sigma_n(\alpha_k) = \frac{1}{\pi_{q(n)}p(\alpha_k)} \left\langle \varphi_n(t, u, v), \left[\frac{\pi_{q(n)}p(t)}{\omega_{q(n)}p(t)} \right] \right\rangle_\mu = 0. \quad (3.13) \]

Analogously we find \(\sigma_n(0) = 0 \).

We have now seen that the second term on the right-hand side of (3.9) in addition to having the factor \(\omega_{q(n)}p(z) \) also has the extra factor \(z \) and the extra factors \((z - \alpha_k) \) for \(q(n)p + 1 \leq k \leq n-1 \) (since \(\sigma_n(0) \) and \(\sigma_n(\alpha_k) = 0 \) for the values of \(k \) indicated).

It follows that the second term on the right of (3.9) is of the form \(A_n(z)z\omega_{n-1}(z) \). Thus

\[\psi_n(z, u, v) + \varphi_n(z, u, v) \left[\mu_0 + 2 \sum_{m=1}^{n-1} \mu_m z \omega_{m-1}(z) \right] = g_n(z)z \omega_{n-1}(z), \quad g_n(z) \text{ analytic.} \quad (3.14) \]

Since

\[\Omega_n(z) + \left[\mu_0 + 2 \sum_{m=1}^{n-1} \mu_m z \omega_{m-1}(z) \right] = h_n(z)z \omega_{n-1}(z), \quad h_n(z) \text{ analytic}, \quad (3.15) \]

we conclude that (3.5) holds. \(\square \)

4. Convergence of rational approximants

We recall that we call the function \(\varphi_n(z, u, v) \) paraorthogonal when \(|u| = |v| \). Paraorthogonal functions give rise to quadrature formulas. Let us recall the following result (see [3, 6]).

Theorem 4.1. The zeros of \(\varphi_n(z, u, v) \) for \(|u| = |v| \) are all simple and lie on \(T \). Let the zeros be denoted by \(\xi_k^{(n)}(u, v) \), \(k = 1, \ldots, n \). Then there exist positive constants \(\lambda_k^{(n)}(u, v) \) such that the quadrature
formula
\[\int L(t) \, d\mu(t) = \sum_{k=1}^{n} \xi_k^{(n)}(u, v) L(\zeta_k^{(n)}(u, v)) \] (4.1)
is valid for \(L \in \mathcal{L}_{n-1} + \mathcal{L}_{(n-1)_a} \).

We shall in the rest of this section again consider only the cyclic case with \(p \) points, and use the same notation as in Section 3 and Theorem 4.1.

Theorem 4.2. Let \(|u| = |v|\), and assume \(n > p \). Then \(R_n(z, u, v) \) has the partial fraction decomposition
\[R_n(z, u, v) = -\sum_{m=1}^{n} \xi_m^{(n)}(u, v) D(\zeta_m^{(n)}(u, v), z). \] (4.2)

Proof. Consider the function \(f(t) \) defined by
\[f(t) = \frac{B_p(z)}{B_p(t)} \frac{\varphi_n(t, u, v) - \varphi_n(z, u, v)}{D(t, z)} \] (4.3)
The function \(\varphi_n(z, u, v) \) can be written as
\[\varphi_n(z, u, v) = \frac{p_n(z, u, v)}{\pi_n(z)} \] (4.4)
where \(p_n(z, u, v) \in \Pi_n \). It follows that
\[f(t) = \frac{(t + z)[\omega_p(z) \pi_p(t) p_n(t, u, v) \pi_n(z) - \omega_p(t) \pi_p(z) \pi_n(t) p_n(z, u, v)]}{(t - z) \omega_p(t) \pi_p(z) \pi_n(t)}, \] (4.5)
hence since \(t - z \) is a factor in the numerator:
\[f(t) = \frac{P_{p+n-1}(z, t)(1 - \bar{\omega}_n t)}{\omega_p(t) \pi_n(t)}, \] (4.6)
where \(P_{p+n-1} \) belongs to \(\Pi_{p+n-1} \) as a function of \(t \). (Note that \(1 - \bar{\omega}_n t \) is a factor both in \(\pi_p(t) \) and in \(\pi_n(t) \), and also in the numerator.)
It follows that we may write
\[f(t) = \frac{P_{p+n-1}(z, t)}{\omega_p(t) \pi_{n-1}(t)}, \] (4.7)
hence \(f(t) \in \mathcal{L}_{n-1} + \mathcal{L}_{p_a} \subset \mathcal{L}_{n-1} + \mathcal{L}_{(n-1)_a} \), by partial fraction decomposition. (Note that \(\omega_p(t) \) and \(\pi_{n-1}(t) \) have no common factors.) Since \(f(\xi_m^{(n)}(u, v)) = -D(\xi_m^{(n)}(u, v), z) \varphi_n(z, u, v), \) as
\[\phi_n(\xi_m^{(n)}(u, v), u, v) \text{ equals zero, application of Theorem 4.1 and formula (2.11) yields} \]
\[\psi_n(z, u, v) = - \phi_n(z, u, v) \sum_{m=1}^{n} \lambda_m^{(n)}(u, v) D(\xi_m^{(n)}(u, v), z), \]
\[(4.8) \]

which is equivalent to (4.2). \[\square \]

Since (4.1) is valid for \(L = 1 \), the following equality holds:
\[\sum_{m=1}^{n} \lambda_m^{(n)}(u, v) = \mu_0. \]
\[(4.9) \]

Theorem 4.3. Let \(|u_n| = |v_n|\) for \(n = 1, 2, \ldots \). Then the sequence \(\{R_n(z, u_n, v_n)\} \) converges locally uniformly on \(D \) to \(- \Omega_\mu(z) \).

Proof. It easily follows by (4.2) and (4.9) that the functions \(R_n(z, u, v), |u| = |v| \), are uniformly bounded on every compact subset of \(D \), and thus form a normal family. So there exist subsequences of \(\{R_n(z, u_n, v_n)\} \) converging locally uniformly on \(D \). Let \(v_n(t, u_n, v_n) \) be the measure on \(T \) having masses \(\lambda_m^{(n)}(u_n, v_n) \) at the points \(\xi_m^{(n)}(u_n, v_n) \). By Theorem 4.2 we may then write
\[R_n(z, u_n, v_n) = - \int_T D(t, z) \, dv_n(t, u_n, v_n). \]
\[(4.10) \]

A standard argument shows that a subsequence of \(\{R_n(z, u_n, v_n)\} \) converges locally uniformly on \(D \) to a function \(F(z) \) if and only if the corresponding subsequence of \(\{v_n(t, u_n, v_n)\} \) converges to a measure \(\nu \) such that \(F(z) = - \Omega_\nu(z) \).

Furthermore \(\int_T dv_n(u_n, v_n, t)/\omega_m(t) \) converges to \(\int_T d\nu(t)/\omega_m(t) \) for \(m = 0, 1, 2, \ldots \). On the other hand Theorem 3.2 shows that \(R_n(z, u_n, v_n) + \Omega_\mu(z) = g_n(z)z\omega_{n-1}(z) \), where \(g_n(z) \) is analytic in \(D \). It follows from this and (4.10) that \(\int_T dv_n(t, u_n, v_n)/\omega_m(t) = \int_T d\mu(t)/\omega_m(t) \) for \(m = 0, 1, \ldots, n-1 \).

Consequently \(\int_T d\nu(t)/\omega_m(t) = \int_T d\mu(t)/\omega_m(t) \) for \(m = 0, 1, 2, \ldots \) (cf. [7, 8] where related problems are treated). It is known that the measure giving rise to the moments \(\mu_m = \int_T d\mu(t)/\omega_m(t) \) is unique when \(\sum_{m=1}^{\infty} (1 - |\gamma_m|) = \infty \) (this follows e.g. from the convergence result in [3, Section 21]). This is the case in the cyclic situation. Thus \(\nu = \mu \) and the whole sequence \(\{R_n(z, u_n, v_n)\} \) converges to \(- \Omega_\mu(z) \). \[\square \]

For convergence properties of the rational approximants \(R_n(z, 0, 1) \) and \(R_n(z, 1, 0) \) see [3]. For a more detailed study of convergence of multipoint Padé approximants, see especially [15].

References

