Incommensurate antiferromagnetic phase in UNiGe


Published in:
Journal of Applied Physics

DOI:
10.1063/1.358286

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Incommensurate antiferromagnetic phase in UNiGe

V. Sechovský, L. Havela, and P. Svoboda
Department of Metal Physics, Charles University, CZ 121 16 Praha 2, Czech Republic

A. Purwanto, Allen C. Larson, and R. A. Robinson
LANSCE, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

K. Prokeš, H. Nakotte, and F. R. de Boer
Van der Waals–Zeeman Laboratory, University of Amsterdam, NL 1018XE Amsterdam, The Netherlands

H. Maletta
BENSC, Hahn-Meitner-Institut, D 14 109 Berlin, Germany

By specific-heat, magnetization, electrical resistivity, and neutron-diffraction measurements on a single crystal we have confirmed that UNiGe orders antiferromagnetically below 50.5 K into an incommensurate phase with \( q = (0,1/2,-1/2) \pm (0,\delta,\delta) \), \( \delta \approx 0.15 \). \( \delta \) decreases continuously with decreasing temperature to \( 0.123 \) at 41.5 K, where the incommensurate phase vanishes in a first-order phase transition and a commensurate antiferromagnetic structure with \( q = (0,1/2,1/2) \) sets in and remains stable down to the lowest temperatures. If a magnetic field sufficient to induce a metamagnetic transition (\( H \approx 5 \) T) is applied along the c axis, both antiferromagnetic phases are transformed to an uncompensated AF phase with \( q = (0,1/3,1/3) \) yielding a nonzero magnetization \( M \approx 1/3 \times M_s \). The latter structure is destroyed and a complete alignment of U moments is achieved in fields above 10 T. The strikingly different \( B-T \) diagrams observed for a magnetic field applied along different crystallographic directions reflect strongly anisotropic exchange interactions.

I. INTRODUCTION

UNiGe belongs to the isostructural group of the UTX compounds (\( T=\)transition metal, \( X=p \) metal), which crystallize in the orthorhombic \( '1\text{NiSi} \)-type structure. The nearest-neighbor uranium atoms in this structure form zigzag chains along the a axis. The coordination of U atoms is intimately connected with the anisotropy of bonding of 5f orbitals, which has serious consequences for the symmetry of the 5f-electron magnetism.\(^1\) Specifically, in UNiGe and other isostructural UTX compounds, the easy-plane magnetocrystalline anisotropy with the hard-magnetization direction along the a axis is observed as a rule.\(^2\) This is manifest in the low-temperature magnetization, which is small and linearly dependent on the magnetic field up to 35 T applied along the a axis. For the other two field directions (along b and c) almost saturated magnetization \( M_s \) due to aligned U moments of 1.45 \( \mu_B \) is attained above metamagnetic transitions.\(^2\) Note that the magnetization curves at 4.2 K display two metamagnetic transitions at \( 17 \) and \( 25 \) T in the field applied along b (and at \( 3 \) and \( 10 \) T in \( B \parallel c \)). In both field geometries, the magnetization observed above the first transition amounts to approximately \( 1/3 \times M_s^2 \).

For some time, UNiGe was believed to order magnetically around 42 K\(^5\)–\(^7\) although some indications of another transition around 50 K could be seen in the specific-heat data of Kawamata et al.\(^7\) Moreover, controversial conclusions about the magnetic structure at low temperatures could be found in the literature.\(^6,8\) This unsatisfactory situation motivated us to perform an extensive study of a well-defined single crystal of UNiGe, which was governed by a Czochralski technique in a tri-arc furnace at the University of Amsterdam. Besides measurements of bulk properties (magnetization, electrical resistivity, and specific heat) over wide temperature and external magnetic-field intervals, we have performed extensive neutron-diffraction experiments. Results and experimental details of bulk measurements were published elsewhere,\(^2,9\) along with preliminary neutron data indicating the existence of the incommensurate antiferromagnetic phase (IAFP) below 50 K\(^11\). In this paper we concentrate on both the temperature and magnetic-field stability of the IAFP in the complex magnetic phase diagram of UNiGe.

II. RESULTS AND DISCUSSION

The specific heat of UNiGe exhibits a sharp peak at 41.5 K and a weaker maximum around 50 K (see Fig. 1). The first-order magnetic phase transition at 41.5 K is also clearly reflected in the magnetization and resistivity.\(^2,9\) Closer inspection of magnetization and electrical resistivity results, however, also reveals around 50 K slight (but well noticeable

![FIG. 1. Temperature dependence of the specific heat of UNiGe.](image-url)
in $\partial M/\partial T$ and $\partial \rho/\partial T$ anomalies, which corroborate the conclusion about the magnetic origin of this phase transition.

In order to obtain better knowledge of magnetic phases and transitions in UNiGe we performed neutron-diffraction experiments on the same single crystal at BENSC (on E2 and E4) and LANSCE (on SCD). The obtained magnetic phase diagram shown in Fig. 2 contains essential information from studies in magnetic fields applied along the $c$ axis.

A. Zero magnetic field, $T \leqslant 41.5$ K

All observed magnetic reflections can be indexed as $h,k/l$, suggesting the AF structure with $q=(0,1/2,1/2)$ in agreement with Ref. 6. The U moments are locked in the $b$-$c$ plane. The temperature dependence of the intensities of the magnetic reflections indicates that the U moment decreases slowly with increasing temperature. At 40 K, the ordered U moments retain about 90% of the low-temperature value. The magnetic intensities then decrease abruptly at the 41.5 K first-order phase transition, where the low-temperature phase vanishes.

B. Zero magnetic field, $T > 41.5$ K

A crucial point of our research has been to indicate an IAFP, which propagates within the $b$-$c$ plane. For this purpose experiments on the flat cone diffractometer E2 in Berlin and the single-crystal diffractometer SCD with an area detector at Los Alamos were indispensable. Both types of experiments provided compatible results confirming the existence of an IAFP with $q=(0,1/2,1/2)$. For illustration, we display in Fig. 3 typical patterns recorded on SCD in Los Alamos at 20 and 46 K, in which the difference between the respective magnetic states is manifest. Whereas at 20 K the $0,3/2,-1/2$ reflection is characteristic for the commensurate AF phase stable below 41.5 K, this reflection is absent at 46 K and instead two satellites shifted by $(0,0.141,0.141)$ indicate the presence of the IAFP. After identifying this phase, its stability and temperature evolution of $\delta$ were studied on E4 in Berlin. The results are displayed in Fig. 4. The IAFP emerges just above 41.5 K. The characteristic reflections $0,k/2,1/2 \pm \delta$, $-1/2 \pm \delta$ reach a maximum intensity already around 43 K and then diminish continuously with increasing temperature. The reflections are at the limit of detectability at 50 K, but some residual intensity can be seen in the background up to approximately 53 K. The parameter $\delta$ varies from $-0.123$ to 0.15 at 50 K. The transition at 41.5 K is apparently of the first-order type in contrast to the second-order transition around 50.5 K.

C. $B \leqslant 6$ T, $B \parallel c$, $T \leqslant 41.5$ K

The first metamagnetic transition exhibits a large hysteresis. The critical fields and the hysteresis (marked by the hatched region in Fig. 2) decrease with increasing temperature. When sweeping the field upwards, the $0,k/2,1/2$ reflections disappear rapidly around the transition. On the other hand, the $0,3/2,-1/2$ reflection shows a more gradual decrease with increasing temperature. This behavior is characteristic of a second-order transition.

FIG. 1. Magnetic phase diagram of UNiGe in $B$ parallel to the $c$ axis, as determined from magnetization and neutron-diffraction measurements. (I) incommensurate antiferromagnetic phase, $q=(0,1/2,-1/2) \pm (0,\delta,\delta)$, (II) commensurate antiferromagnetic phase, $q=(0,1/2,1/2)$, (III) uncompensated antiferromagnetic phase, $q=(0,1/3,1/3)$, (IV) phase with "ferromagnetically" aligned U moments, and (V) paramagnetic phase.

FIG. 2. Magnetic reflections in the vicinity of the $0,3/2,-1/2$ at (a) 20 K and (b) 46 K.

FIG. 3. Temperature dependence the integral intensity and the parameter $\delta$ of the $(0,1/2,-3/2)+-(0,6,4)$ reflection.

FIG. 4. Temperature dependence the integral intensity and the parameter $\delta$ of the $(0,1/2,-3/2)+-(0,\delta,\delta)$ reflection.
other hand, $h, k/3, 1/3$-type reflections and magnetic contribution to nuclear reflections emerge (following the magnetization dependence closely). The metal magnetic state connected with the uncompensated Al structure therefore has $q=(0,1/3,1/3)$. This leads to the collinear arrangement of the U magnetic moments oriented along the $c$ axis with the $++-$ stacking simultaneously along the $b$ and $c$ axis, which gives rise to the magnetization $M=1/3 \times M_s$ in agreement with the above-mentioned result from magnetization measurements.

D. $B \leq 6$ T, $B \parallel c$, $T=41.5$ K

The IAFP is stable in magnetic fields up to about 1 T, where it starts to transform gradually to phase III. This field correlates well with that of the metal magnetic transition shown in Fig. 5(a). The 0, $k/3, 1/3$ reflections representing the phase III persist up to ~51 K, where a first-order transition (in contrast to the second-order transition in zero field) to the high-temperature paramagnetic phase takes place as shown in Fig. 5(b).

When the magnetic field is applied along the $b$ axis a two-step metal magnetic process appears. However, the critical fields of the metal magnetic transitions are considerably higher, indicating pronounced anisotropy of the exchange interactions.

To analyze magnetic phases in U intermetallics, models considering the relation of U coordination and the type of anisotropy can be employed. The experimental findings in UNiGe corroborate the empirical rules$^1$ relating the symmetry of the bonding of the $5f$ orbitals in a particular structure to the type of magnetocrystalline anisotropy. The strong bonding axis ($a$ axis in UNiGe and structure-related UTX compounds) determines the hard-magnetization direction whereas the magnetic moments are locked perpendicular to the hard direction (in the $b$-$c$ plane in UNiGe). The exchange interaction along the strong bonding axis (plane) is usually strong and ferromagnetic, whereas the considerably weaker interaction(s) in the perpendicular direction(s) mediate the coupling between the ferromagnetic chains (planes). These interactions are frequently frustrated and a sequence of incommensurate and commensurate phases can be observed$^{12}$ when temperature is decreased.

ACKNOWLEDGMENTS

The work was sponsored by the U.S.–Czechoslovak Science and Technology Joint Fund (Project No. 93039), by the Czech Grant Agency (Project No. 93/202/0184) and the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM). The experiments at HMI were supported by the CEC HCM programs “Go West” (V.S.) and Large Facilities (K.P.). Work at Los Alamos was funded in part by the division of Basic Energy Sciences of the U.S. Department of Energy.