Heats of formation of mono-halogen-substituted carbenes. Stability and reactivity of CH-* (X=F, Cl, Br, and J) radical anions.

Born, M.; Ingemann Jorgensen, S.; Nibbering, N.M.M.

DOI
10.1021/ja00095a025

Publication date
1994

Published in
Journal of the American Chemical Society

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Heats of Formation of Mono-Halogen-Substituted Carbenes. Stability and Reactivity of CHX\(^+\) (X = F, Cl, Br, and I) Radical Anions

Monique Born, Steen Ingemann, and Nico M. M. Nibbering

Contribution from the Institute of Mass Spectrometry, University of Amsterdam. Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

Received October 26, 1993. Revised Manuscript Received May 16, 1994.

Abstract: The heats of formation of mono-halogen-substituted singlet carbenes have been determined to be 157 ± 18 kJ mol\(^{-1}\) (\(\text{X}\text{A}'\text{CHF}\)), 317 ± 20 kJ mol\(^{-1}\) (\(\text{X}\text{A}'\text{CHCl}\)), 373 ± 18 kJ mol\(^{-1}\) (\(\text{X}\text{A}'\text{CHBr}\)), and 428 ± 21 kJ mol\(^{-1}\) (\(\text{X}\text{A}'\text{CHI}\)). These \(\Delta H^0\text{f}\) values are based upon the following gas-phase acidities, \(\Delta H^0\text{acid}\) of the \(\text{XCH}\text{X}\) radicals: 1668 ± 6 kJ mol\(^{-1}\) (\(\text{CHF}\)), 1610 ± 10 kJ mol\(^{-1}\) (\(\text{CHCl}\)), 1593 ± 8 kJ mol\(^{-1}\) (\(\text{CHBr}\)), and 1566 ± 11 kJ mol\(^{-1}\) (\(\text{CHI}\)). The acidities were determined by observing the occurrence/nonoccurrence of proton transfer in the reactions of the \(\text{XCH}\text{X}\) carbone radical anions with selected acids in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The \(\Delta H^0\text{acid}\) values reveal that (i) the acidity increases in the series \(\text{CHF}, \text{CHCl}, \text{CHBr}, \text{CHI}\), i.e., the acidity increases as the halogen atom becomes heavier as observed also for the corresponding halogen-substituted methanes, and (ii) a given \(\text{CHX}\text{X}\) radical is \(\approx 50\text{ kJ mol}^{-1}\) more acidic in the gas phase than the related \(\text{CHX}\) molecule. The reaction of a given CHX\(^+\) ion with the parent compound yields X\(^-\) ions in part by a direct \text{S_N}2 substitution and in part by initial proton transfer leading to a \([\text{CHX}_2 + \text{CHX}]^+\) complex, which then reacts to form X\(^-\). In addition to overall proton transfer, the reaction of the carbone radical anions with aliphatic alcohols yields X\(^-\) ions by a process which involves initial proton transfer followed by nucleophilic attack of the RO\(^-\) ion on the generated \(\text{CHX}\) radical.

Introduction

The structure and reactivity of carbenes represent an important area of chemistry from both an experimental and theoretical point of view.\(^1\)-\(^9\) The extensive research into the properties of carbenes reflects their diverse reactivity and their capability of undergoing insertion reactions into carbon–hydrogen bonds as well as addition reactions to carbon–carbon double bonds with formation of cyclopropanes.\(^1\)-\(^3\)\(^11\)-\(^12\) The reactivity of carbenes is known to depend on their spin multiplicity (see Figure 1), i.e., triplet carbenes react preferentially by two-step radical processes, whereas singlet carbenes can react by radical–coupling reactions, whereas singlet carbenes can react by single-step processes such as stereospecific cis-additions to alkenes.\(^1\)-\(^3\)\(^10\)-\(^12\) The introduction of an electronegative atom or group reverses this order\(^1\)-\(^14\),\(^10\)\(^12\) whereas the spin multiplicity of the \(\text{CHX}\) carbenes and their associated reactivity, consistent thermochemical data have not been published for the complete series of the mono-halogen-substituted carbenes: CHF, CHCl, CHBr, and CHI.

The heat of formation of CHF has been reported to be 105 ± 12 kJ mol\(^{-1}\) on the basis of an experimental determination of the proton affinity of CHF,\(^16\) while a study of the kinetics of the gas-phase reactions of the \(\text{CHF}_2\) radical yielded a value of \(\approx 163\) kJ mol\(^{-1}\) as determined from the photoelectron spectrum of the CHF\(^-\) radical anion.\(^11\)-\(^12\) The CHCl and CHBr carbenes are reported also to have a singlet ground state,\(^11\)-\(^14\) whereas the spin multiplicity of the ground state of CHI has not been determined definitively. Upon the basis of photoelectron spectroscopy experiments with the CHI\(^-\) radical anion, the ground state was assigned as a triplet located \(8-40\) kJ mol\(^{-1}\) lower in energy than the singlet state.\(^10\)-\(^15\) Irrespective of the intense research into the spin multiplicity of the CHX carbenes and their associated reactivity, consistent thermochemical data have not been published for the complete series of the mono-halogen-substituted carbenes: CHF, CHCl, CHBr, and CHI.

Figure 1. Valence orbitals of the mono-halogen-substitued CHX carbenes. The singlet ground state is designated as \(\text{X}\text{A}'\text{CHF}\), whereas the triplet state is represented by \(\text{X}\text{A}'\text{CHF}\) (see also text and ref 4, 5, and 10-12).
The gas-phase acidities of radicals and molecules provide also an experimental basis for obtaining insight into the molecular properties which determine the reactivity and stability of radical anions and radicals, respectively, in the absence of solvent molecules or other indirect reactants such as counterions. Furthermore, the acidities in combination with other data can be used to derive homolytic bond dissociation energies or electron affinities of species not easily examined by other means. In this context, it should be mentioned that the gas-phase acidity of a CH₂X radical is defined as the enthalpy change of the reaction

\[\Delta H^\circ_{\text{acid}}(\text{CH}_2X) = \text{BDE}(\text{H}^-\text{CHX}) - \text{EA(CHX)} + \text{IE(H)} \]

(1)

previous studies from our group and also by others indicate that radicals often are more acidic than the related molecules as exemplified by the phenyl radical, which is much more acidic than benzene in the gas phase. This difference in acidity is mainly a result of a ~130 kJ mol⁻¹ lower dissociation energy of the C–H bonds adjacent to the radical center in C₆H₅· than of the C–H bonds in C₆H₆. The decrease in C–H BDE going from the molecule to the radical is only partly compensated for by the larger EA of C₆H₅· (~99 kJ mol⁻¹) than of 1,2-dehydrobenzene (EA = 54 kJ mol⁻¹) and as a result, the phenyl radical is ~85 kJ mol⁻¹ more acidic than benzene. The same relative order of gas-phase acidities of a radical and the related molecule has been observed for other systems, for example, CH₃/C₃H₅.

Experimental Section

The experiments were performed with an FT-ICR mass spectrometer constructed and designed at the University of Amsterdam. In a typical experiment, the primary negative ion, O⁻, was generated by dissociative attachment of electrons with an energy of 1.2–1.5 eV to N₂O. At these electron energies, the O⁻ ions are formed with a average kinetic energy of 1.7 kJ mol⁻¹. Proton affinity measurements have been used also to place the heat of formation of the CHCl carbenes at 297 ± 20 kJ mol⁻¹ whereas no values have been reported previously for CHBr and CHI. In order to provide a consistent set of data based on a single experimental approach, we decided to determine the gas-phase acidities of the CH₂X radicals and with the use of known thermochemical relationships derive the heats of formation of the CHX carbenes.

Direct introduction of free organic radicals into a mass spectrometer is not easily achieved, and necessarily, we decided to determine the acidities of the CH₂X radicals by studying the proton-transfer reactions between the related CHX⁻ carbone radical anions and selected molecules with a known gas-phase acidity. This approach was chosen as an entry to the heats of formation of the carbenes since the CHX⁻ ions can be generated relatively easily by reacting the atomic oxygen radical anion, O²⁻, with mono-halogen-substituted methanes in the gas phase. Several methods, such as flowing afterglow (FA), selected ion flow tube (SIFT), and high-pressure mass spectrometry (HPMS) have been developed for the study of ion/molecule reactions in the gas phase and have been applied extensively for the determination of thermochemical data. These methods utilize pressure conditions which ensure thermalization of the ions and molecules and are suited for studies of the temperature dependence of equilibrium or rate constants of gas-phase ion/molecule reactions. In the present study, we have applied the low-pressure Fourier transform ion cyclotron resonance (FT-ICR) method, which allows for a selective study of the gas-phase ion/molecule chemistry of the CHX⁻ radical anions. Even though the pressure is too low in an FT-ICR instrument for the chemical system to be in thermal equilibrium with the surroundings, the reactions occurring under normal operating conditions are mostly exerogenic or near-thermoneutral. Moreover, thermochemical quantities, such as gas-phase acidities and proton and electron affinities, determined with the FT-ICR method are usually in agreement with the results obtained with the FA, SIFT, and HPMS methods.

The gas-phase acidities of radicals and molecules provide also an experimental basis for obtaining insight into the molecular properties which determine the reactivity and stability of radical anions and radicals, respectively, in the absence of solvent molecules or other indirect reactants such as counterions. Furthermore, the acidities in combination with other data can be used to derive homolytic bond dissociation energies or electron affinities of species not easily examined by other means. In this context, it should be mentioned that the gas-phase acidity of a CH₂X radical is defined as the enthalpy change of the reaction

\[\Delta H^\circ_{\text{acid}}(\text{CH}_2X) = \text{BDE}(\text{H}^-\text{CHX}) - \text{EA(CHX)} + \text{IE(H)} \]

(2)
energy of about 0.38 eV \(^{49}\) and no precautions were taken to decrease the kinetic energy of these ions to thermal values. The duration of the electron beam pulse was normally 150 ms, and trapping of the ions was achieved by applying a voltage of \(-1\) V to the trapping plates of the 1-in. \(^2\) cell located in a magnetic field of 1.23 T. Subsequently and during the electron beam pulse, the \(O^-\) ions reacted with one of the halogen-substituted molecules to generate the \(CHX^-\) radical anions. The \(CHX^-\) ions were isolated by ejecting all other ions from the cell by radio frequency (rf) pulses chosen such that off-resonance excitation of the remaining ions was minimized.\(^{48}\) The reactions of the carbene radical anions with the selected substrates were then followed as a function of time by varying the delay between the selection of the ions of interest and the start of the excitation pulse, which increases the radius of the cyclotron motion of the ions prior to their detection. The alkoxide ions formed by proton transfer to the carbene radical anions were collected continuously from this cell in some of the experiments, which were performed with the purpose of determining the relative abundances of the isotopic chloride or bromide ions generated in the reactions with aliphatic alcohols in the presence of a halogen-substituted methane. The continuous ejection of the alkoxide ions was achieved by applying a low-amplitude rf pulse to the excitation plates of the cell during the entire reaction period. The relative abundances of the isotopic chloride and bromide ions were determined with an accuracy better than 2\% by following procedures described previously.\(^{5,6,9}\) Abundant \(I^-\) ions were generated by dissociative attachment of low-energy electrons to \(CHI\). The formation of \(I^-\) ions by this process during the period in which the \(CHI^-\) ion reacted with a given substrate was prevented by ejecting the low-energy electrons from the FT-ICR cell as described previously.\(^3\)

The total pressure in the instrument was in most experiments (8–10) \(\times 10^{-10}\) Torr as measured with an uncalibrated ionization gauge placed in a side arm of the main vacuum system. The ratio of the partial pressures of \(N_2O\), the halogen-substituted methane, and the reference acid was mostly 1:1:1. The temperature of the trapping plate situated opposite to the filament side was measured to be \(\approx 330\) K, whereas the inlet systems, the leak values, and the vacuum vessel of the instrument were at room temperature. Most of the chemicals used in the present study were commercially available and used without further purification. The \(SCD_3\) was \(99\%\) \(\Delta\) and purified by preparative gas chromatography prior to use (column SE 30, temperature \(150\) °C).

Results

Formation of the \(CHX^-\) Ions. The atomic oxygen radical anion, \(O^-=\), is known to be able to undergo a number of competing reactions with organic molecules, for example, hydrogen atom abstraction with formation of \(HO^-\) and formal \(H_2O^+=\) abstraction leading to a new radical anion and a water molecule.\(^1,8,11,19\) The latter process provides a unique method for the generation of \(CHX^-\) radical anions by dissociative attachment of low-energy electrons to \(CHI\). The formation of \(O^-\) ions by this process during the period in which the \(CHI^-\) ion reacted with a given substrate was prevented by ejecting the low-energy electrons from the FT-ICR cell as described previously.\(^8\)

The initial relative yields of the different product ions are given in Table 1 together with the estimated reaction enthalpies.

\[
\begin{align*}
OH^- & + CH_2X \rightarrow HO^- + CH_2X^- \\
CHCl^- & + CH_2X \rightarrow CHCl^- + CH_2X + H_2O \\
CHBr^- & + CH_2X \rightarrow CHBr^- + CH_2X + H_2O \\
CHI^- & + CH_2X \rightarrow CHI^- + CH_2X + 2H_2O
\end{align*}
\]

Table 1. Normalized Initial Abundances of the Product Ions Formed in the Reactions of \(O^-\) with Mono-Halogen-Substituted Methanes and the Estimated Reaction Enthalpies (kJ mol\(^{-1}\)).\(^{46}\)

<table>
<thead>
<tr>
<th>(CHX^-)</th>
<th>(CH_2F^-)</th>
<th>(CH_2Cl^-)</th>
<th>(CH_2Br^-)</th>
<th>(CH_2I^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% (\Delta H^\circ)</td>
<td>% (\Delta H^\circ)</td>
<td>% (\Delta H^\circ)</td>
<td>% (\Delta H^\circ)</td>
<td></td>
</tr>
<tr>
<td>(HO^-)</td>
<td>70</td>
<td>10</td>
<td>-31</td>
<td>25</td>
</tr>
<tr>
<td>(CHCl^-)</td>
<td>30</td>
<td>2</td>
<td>-35</td>
<td>45</td>
</tr>
<tr>
<td>(CHBr^-)</td>
<td>-95</td>
<td>30</td>
<td>-238</td>
<td>35</td>
</tr>
<tr>
<td>(CHI^-)</td>
<td>-95</td>
<td>30</td>
<td>-238</td>
<td>35</td>
</tr>
</tbody>
</table>

\(^{46}\) Determined by following the product ion distributions as a function of time and extrapolating to zero time. This yields the product ion distributions undisturbed by the formation of \(X^-\) in the reactions of the \(HO^-\) and \(CHX^-\) ions with the \(CHX_2\) molecules. The reactant \(O^-\) ions have a kinetic energy somewhat above thermal (see the Experimental Section). \(^{*}\) The reaction enthalpies are based on data given in refs 28 and 66 together with the \(\Delta H^\circ\) values obtained from the presently defined heats of formation of the carbene radicals in combination with the published electron affinities of these species, see text and Table 5. * The given reaction enthalpies refer to a \(S_02\) substitution reaction. The formation of \(X^-\) ions by an \(e^-\)-elimination yielding \(HO^-\) and \(CH_2\) as the neutral products is estimated to be highly endothermic.

This process is observed for all four substrates and is more important than \(H_2^+\) abstraction in the reaction with \(CH_2F\) (Table 1). The \(H_2^+\) abstraction is essentially thermoneutral for \(CH_2F\), whereas it is estimated to become increasingly exothermic as the halogen atom becomes heavier. The \(H_2^+\) abstraction leading to the radical anions of interest is the main reaction for \(CH_3Cl, CH_3Br,\) and \(CH_3I\) and dominates over \(S_02\) substitution even in the reaction with \(CHI\). In addition to the product ions listed in Table 1, the reaction with \(CH_3I\) yields minor amounts of \(IO^-\) ions, revealing the occurrence of initial attack on the iodine atom by the \(O^-\) ion concomitant with or followed by methyl radical loss from the collision complex.\(^{5}\)

Proton Transfer to the \(CHX^-\) Ions. The main concern here is an accurate determination of the acidities of the \(CHX^-\) radicals by observing the occurrence/nonoccurrence of proton transfer in the reactions of the \(CHX^-\) radical anions with selected reference acids. The results obtained for the four \(CHX^-\) radical anions are collected in Table 2 together with the results of a series of experiments with the \(CF_2^-\) ion performed with the purpose of comparing the heat of formation of \(CF_2\) derived from these measurements with recent literature values (see the Discussion).

The chosen method for determination of the acidities of the radicals leads to the free energy change for deprotonation, i.e. the free energy change of the reaction in eq 1 or \(\Delta G^\circ\) (\(CHX\)).

The approach rests upon the assumption that exothermic processes will be observed whereas endoergic proton-transfer reactions will not occur under the experimental conditions. Several problems may be associated with the chosen method: (i) the reactant ions may contain excess internal and/or translational energy causing the occurrence of endoergic proton-transfer reactions, (ii) the occurrence of an endoergic or thermoneutral proton transfer may be hampered by a kinetic barrier for this process, and (iii) other processes can compete effectively with proton transfer and may prevent the observation of a near-thermoneutral or exoergic acid/base reaction.

In the present series of experiments, the radical anions are generated by an exothermic process (Table 1), indicating that the ions may contain initially some excess internal energy. Furthermore, the kinetic energy of the ions may be above thermal since the rf pulses applied to eject the unwanted ions can influence the motion of the radical anions in the FT-ICR cell even though care is taken to avoid off-resonance excitation (see the Experimental Section). In order to ascertain that the occurrence of proton abstraction from the reference acids is a result of an

\(^{51}\) Attack of the \(O^-\) ion on a halogen atom has been reported to occur also with other halogen-substituted methanes, see ref 19 and the following: (a) Mayew, C. A.; Perera, R.; Wets, P. Int. J. Mass Spectrom. Ion Processes 1993, 125, 81–93. (b) Gilles, M. K.; Polak, M. L.; Lineberger, W. C. J. Chem. Phys. 1992, 96, 8012–8020.
whose AG_{acid} value is -42kJ mol^{-1} lower than the value for

Chapter

anions have form AG_{acid}, so that $AG_{\text{acid}} = (CH_2F)$

For the CHP- radical

thermoneutral or slightly exoergic. For the CHP- radical

part of the ion population which contains excess internal

kinetic energy is not depleted either by reactive collisions with the reference

acid or by nonreactive collisions with the various neutral species

present in the cell. In addition, vibrationally excited radical

ions can undergo radiative decay to the ground state during the first

reaction period of $0.5-1\text{s}$.53,54$

The presence of a kinetic barrier toward an exoergic

to thermoneutral proton-transfer reaction is expected in particular

for the reactions between charge-delocalized carbonines and

carbon acids.55,56$ By contrast, proton-transfer reactions involving

charge-localized ions and nitrogen or oxygen acids are normally

relatively efficient processes in the gas phase even when near-

thermoneutral or slightly exoergic.57,58$ For the CHF$^+$

radical anion, proton transfer is not observed with ethylamine, whereas

this process occurs readily with dimethylamine, thus placing the

 acidity of the CH_2F radical in between the values for these species, that is, $AG_{\text{add}}(\text{CH}_2\text{F}) = 1634 \pm 6 \text{kJ mol}^{-1}$ (see Table 2). In the experiments with CHCl$^-$, proton transfer is not observed with water as the reference acid but occurs readily with methanol, whose AG_{add} value is $\approx 42 \text{kJ mol}^{-1}$ lower than the value for

water. Unfortunately, ideal reference compounds with a well-

established AG_{add} value in between those for water and methanol

are not known, and in order to determine the acidity of the

CH_2Cl radical more accurately, we reacted the CHCl$^-$ ion with

methyl phenyl thioether and fluorobenzene even though proton

abstraction from these carbon acids may be kinetically controlled.

The methyl group in $\text{C}_6\text{H}_5\text{SC}_2\text{H}_5$ is known to be more acidic

than the remaining part of the molecule,59 and in an attempt

to determine the site of deprotonation, the CHCl$^-$ ion was allowed to react with $\text{C}_6\text{H}_5\text{SC}_2\text{D}_3$. However, no reaction occurs between

CHCl$^-$ and this deuterium labeled thioether, whereas a slow

proton transfer is observed with the unlabeled compound. This

may imply that the introduction of deuterium atoms at the methyl

group decreases the acidity of this part of the molecule with the

result that deuterion abstraction by CHCl$^-$ becomes endoergic

and/or proton abstraction from the methyl group is associated

with such a large kinetic isotope effect that the reaction with

the deuterium labeled species becomes too slow to be observed under

the present experimental conditions. Nevertheless, the absence

of a reaction with the deuteration-labeled compound indicates that

proton transfer in the reaction between CHCl$^-$ and $\text{C}_6\text{H}_5\text{SC}_2\text{H}_5$

originates from the methyl group. This places AG_{add} of the

CH_2Cl radical above the value for the methyl group of the reference acid. The absence of proton abstraction from fluorobenzene by the CHCl$^-$ ion (Table 2) could mean that this process is hindered by a kinetic barrier in line with results of a previous study from our group in which we observed that proton abstraction from fluorobenzene by the α-thio carbaniion, $\text{CH}_5\text{SCH}_2^-$, is a slow process although exoergic by $\approx 29 \text{kJ mol}^{-1}$.60$ However, the reaction of the $\text{C}_6\text{H}_5\text{SC}_2\text{H}_5^-$ ion with fluorobenzene yields readily detectable amounts of $\text{C}_6\text{H}_5\text{F}^-$ ions within a reaction time of 1s. It may be expected, therefore, that the complete absence of proton abstraction from fluorobenzene by the CHCl$^-$ ion reflects that this process is endoergic or near-thermoneutral. In conclusion, we place $AG_{\text{add}}(\text{CH}_2\text{Cl})$ at $1576 \pm 10 \text{kJ mol}^{-1}$, that is, in between the values for fluorobenzene and the CH$_3$ group in methyl phenyl thioether.

The occurrence of proton transfer between the CHCl$^-$ ion and methyl phenyl thioether suggests that this reaction should also be observed for the other carbene radical anions if energetically feasible. Hence, the absence of proton transfer between the CHBr$^-$ ion and the thioether is taken to mean that this process is endoergic. In combination with the occurrence of proton transfer in the reaction with ethanol (Table 2), this places $AG_{\text{add}}(\text{CH}_2\text{Br})$ at $1559 \pm 9 \text{kJ mol}^{-1}$. In the experiments with the CHI^- ion, proton transfer occurs readily with 2-fluoroethanol, whereas only traces of the deprotonated 2-propanol is formed with this compound as the reference acid. The AG_{add} value for the CHI^- radical, therefore, is expected to be between the values for these reference acids, that is, $1532 \pm 11 \text{kJ mol}^{-1}$.

The assignments of $AG_{\text{add}}(\text{CH}_2X)$ values rest also upon the assumption that the observation of a near-thermoneutral or slightly exoergic proton transfer is not restrained by the occurrence of competing reactions either with the reference acid and/or the other neutral species present in the FT-ICR cell. Competing reactions proved to be relatively insignificant for the CHF$^-$ ion, which displays no reactivity toward N_2O under the present experimental conditions and reacts only very slowly with the parent compound to form F$^-$ ions. The other mono-halogen-substituted carbene radical anions appear also unreactive toward N_2O, whereas they react with the parent compounds to afford X$^-$ ions (eq 6).

The X$^-$ ions formed in the reaction with the parent compounds originate to some extent from the reactant radical anions as revealed by a selective study of the reactions of the CH$I^2\text{Cl}^-$ and $\text{C}_6\text{H}_5\text{SCH}_2^-$ ions.
occurrence of this process is revealed by studying the reactions of, for example, the CH37Br+ ion with methanol in the presence of bromomethane. In addition to methoxide ions, the 79Br and 81Br ions are formed in an abundance ratio (84:16, see Table 4) which is significantly different from the ratio of 55:45 obtained if only CH\textsubscript{3}Br is present in the cell. The alkoxide ions generated by proton transfer react as expected further with the bromomethane molecules by an Sn2 substitution. This process proved to be of minor importance as indicated by the small effect on the abundance ratio between the 79Br- and 81Br- ions, but it is not possible to reach the abundance ratio of the 79Br- and 81Br- ions.

Similarly, the CH\textsubscript{3}Cl+ ion reacts relatively readily with aliphatic alcohols in the presence of chloromethane to generate 35Cl- ions in addition to alkoxide ions (Table 3). The preference for generation of X- ions originating from the reactant radical anions in the presence of an aliphatic alcohol indicates that the reaction with these substrates competes relatively effectively with the reaction between the radical anions and the parent compound also present in the FT-ICR cell.

The formation of X- ions in the reaction with the reference acids introduces some uncertainty as to whether proton transfer is energetically feasible for some of the systems studied. This relates in particular to the reaction of the CHBr+ ion with methanol and the reaction of the CH+ ion with 2-methyl-1-butanol (see Table 2). However, the overall process leading to the formation of X- in the reactions with the reference acids can be described as proton transfer followed by an Sn2 substitution as the final step (see the Discussion).61 Several studies have provided evidence that Sn2 substitutions are slow processes in the gas phase even if strongly exoergic.27,42-44 This suggests that the formation of X- in the reactions with the chosen reference acids does not hamper the observation of an energetically possible proton transfer. In conclusion, it is unlikely that the competing processes suppress completely the observation of an exoergic or near-thermonuclear proton abstraction from the selected reference acids.

Discussion

Acidity of the CH\textsubscript{2}X\textsubscript{3} Radicals. The occurrence/nonoccurrence of proton transfer in the reactions of the CHXn+ ions with various acids leads to the free energies of deprotonation of the CH\textsubscript{2}X\textsubscript{3} radicals given in Table 5. These \(\Delta G^0_{\text{acid}}\) values can be converted into the gas-phase acities (\(\Delta H^0_{\text{acid}}\)) of the radicals if the temperature is assumed to be 298 K and provided that the entropy change associated with deprotonation of the radicals (\(\Delta S^0_{\text{acid}}\)) can be obtained. An experimental determination of the \(\Delta S^0_{\text{acid}}\) is precluded since an equilibrium situation between the carbene radical anions and one of the reference acids is unattainable. The \(\Delta S^0_{\text{acid}}\) values of the radicals can be estimated, however, by following the published procedures,29,65 which assume this quantity to be determined largely by the entropy of the free proton and the internal and external symmetry numbers of the acid/base pair. For the present species, \(\Delta S^0_{\text{acid}}\) is estimated to be 14.6 J K-1 mol-1 or in other words the entropy of the reaction in eq 1 is determined mainly by the entropy of the free proton (108.8 J K-1 mol-1). This implies that a hypothetical equilibrium between one of the carbene radical anions and the selected reference acid

\[\text{CHX}^+ + \text{ROH} \rightarrow X^- + \text{ROCH}_2^+ \]

Table 3. Normalized Abundances (% of RO-, 37Br-, and 35Cl- Ions Formed in the Reactions of the CH\textsubscript{3}Cl- Ion with Chloromethane and Aliphatic Alcoholsa

<table>
<thead>
<tr>
<th>substrate</th>
<th>(\Delta H^0_{\text{acid}}) (kJ mol-1)</th>
<th>RO-</th>
<th>Cl-</th>
<th>Br-</th>
<th>ejection of RO- (\text{e}^{-})</th>
<th>reaction period (\text{min}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH\textsubscript{3}Cl</td>
<td>1643</td>
<td>55</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH\textsubscript{3}OH</td>
<td>1592</td>
<td>24</td>
<td>53 (81%)</td>
<td>13 (19%)</td>
<td>84</td>
<td>16</td>
</tr>
<tr>
<td>C\textsubscript{2}H\textsubscript{5}OH</td>
<td>1581</td>
<td>45</td>
<td>43 (82%)</td>
<td>10 (18%)</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>(CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}OH</td>
<td>1571</td>
<td>53</td>
<td>37 (78%)</td>
<td>10 (22%)</td>
<td>83</td>
<td>17</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{2}CHCH\textsubscript{2}OH</td>
<td>1568</td>
<td>62</td>
<td>61 (21%)</td>
<td>15 (19%)</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

\(\text{a} \) After a reaction time of 0.5-1 s. \(\text{b} \) Values taken from ref 28. The RO- ions were ejected continuously from the FT-ICR cell during the reaction period (see the Experimental Section). Chloromethane was also present in the cell. \(\text{c} \) Values in parentheses represent normalized relative abundances of the 35Cl- and 37Cl- ions.

Table 4. Normalized Abundances (% of RO-, 79Br-, and 81Br- Ions Formed in the Reaction of the CH\textsubscript{3}Br+ Ion with Bromomethane and Aliphatic Alcoholsa

<table>
<thead>
<tr>
<th>substrate</th>
<th>(\Delta H^0_{\text{acid}}) (kJ mol-1)</th>
<th>RO-</th>
<th>Br-</th>
<th>79Br-</th>
<th>81Br-</th>
<th>ejection of RO- (\text{e}^{-})</th>
<th>reaction period (\text{min}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH\textsubscript{3}Br</td>
<td>1643</td>
<td>55</td>
<td>45</td>
<td>79(45)%</td>
<td>81(55)%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH\textsubscript{3}OH</td>
<td>1592</td>
<td>5</td>
<td>80 (84%)</td>
<td>15 (16%)</td>
<td>98</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C\textsubscript{2}H\textsubscript{5}OH</td>
<td>1581</td>
<td>25</td>
<td>59 (79%)</td>
<td>16 (21%)</td>
<td>92</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>(CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}OH</td>
<td>1571</td>
<td>26</td>
<td>62 (83%)</td>
<td>13 (17%)</td>
<td>92</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{2}CHCH\textsubscript{2}OH</td>
<td>1568</td>
<td>69</td>
<td>69 (79%)</td>
<td>18 (21%)</td>
<td>80</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{a} \) After a reaction time of 0.5-1 s. \(\text{b} \) Values taken from ref 28. The RO- ions were ejected continuously from the FT-ICR cell during the reaction period (see the Experimental Section). Bromomethane was also present in the cell. \(\text{c} \) Values in parentheses represent normalized relative abundances of the 79Br and 81Br ions.

The bromine containing ions react likewise as exemplified by the reaction of the CH\textsubscript{3}Br+ ion with bromomethane. This reaction leads to 55\% 79Br and 45\% 81Br ions (Table 4), whereas the exclusive occurrence of a simple Sn2 reaction would generate the isomeric bromide ions in an abundance ratio of 50:50.

The reaction CHCl+ with CH\textsubscript{3}Cl with formation of Cl- is slow as indicated by the conversion into products, which is \(\approx 50\%\) after a reaction time of 1 s for either ion if the pressure of the parent compound is \(3 \times 10^{-3}\) Pa (see the Experimental Section). The reactions of the CHBr+ and CH\textsubscript{3}Cl+ ions with CH\textsubscript{3}Br and CH\textsubscript{2}Cl, respectively, are also relatively slow as indicated by the conversion into products, which is \(60-70\%\) after a reaction time of 1 s for either ion if the pressure of the parent compound is \(3 \times 10^{-3}\) Pa. The relatively low rates suggest that the occurrence of these processes does not obscure the observation of an exoergic proton transfer.

The X- ions are generated also in the reaction of the CHXn+ ions with the various reference acids. This process is particularly important in the reaction with the aliphatic alcohols (eq 8).

\[\text{CHX}^+ + \text{ROH} \rightarrow X^- + \text{ROCH}_2^+ \]
Electron Affinities (EA) (All Values in kJ mol\(^{-1}\))

<table>
<thead>
<tr>
<th>X</th>
<th>(\Delta H^0)(\text{acid}('\text{CH}_2\text{X}))</th>
<th>(\Delta H^0)(\text{add}('\text{CH}_2\text{X}))</th>
<th>BDE('CH(_3\text{X}))</th>
<th>EA('CH(_3\text{X}))</th>
<th>(\Delta H^0)(\text{acid}('\text{CHX}))</th>
<th>BDE('CH(_3\text{X}))</th>
<th>EA('CH(_3\text{X}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1634 ± 6</td>
<td>1668 ± 6</td>
<td>408</td>
<td>52</td>
<td>(-1716)</td>
<td>423</td>
<td>(-19)</td>
</tr>
<tr>
<td>Cl</td>
<td>1576 ± 10</td>
<td>1610 ± 10</td>
<td>415</td>
<td>117</td>
<td>(-1657)</td>
<td>422</td>
<td>(-77)</td>
</tr>
<tr>
<td>Br</td>
<td>1559 ± 8</td>
<td>1593 ± 8</td>
<td>421</td>
<td>140</td>
<td>(-1643)</td>
<td>427</td>
<td>(-96)</td>
</tr>
<tr>
<td>I</td>
<td>1532 ± 11</td>
<td>1566 ± 11</td>
<td>416</td>
<td>162</td>
<td>(-1617)</td>
<td>433</td>
<td>(-128)</td>
</tr>
</tbody>
</table>

*See also text. The \(\Delta H^0\)\(\text{acid} and \(\Delta H^0\)\(\text{add} values refer to 298 K. Values from ref 12. Values from ref 43a. Values from ref 28. Values based on data in ref 66.

Figure 2. Trend in the gas-phase acidities of the 'CH\(_2\text{X}\) radicals and CH\(_3\text{X}\) molecules (see text and Table 5).

is predicted to be associated with a very small change in entropy, indicating that the variation in free energy of such an equilibrium within limited temperature intervals is small. Notwithstanding that the pressure in an FT-ICR instrument is too low for the reaction to proceed, the estimated \(\Delta S^0\)\(\text{acid} value suggests that the possible errors in the \(\Delta H^0\)\(\text{acid} values arise mainly from the experimental limitations connected with the assignment of the thermochemical onset of proton transfer and not to any significant extent from the taut assumption that the temperature is 298 K (see also the Experimental Section).

The values in Table 5 reveal that the acidity increases in the series 'CH\(_2\text{F}\), 'CH\(_2\text{Cl}\), 'CH\(_2\text{Br}\), and 'CH\(_3\)I with the largest difference (58 kJ mol\(^{-1}\)) observed between the fluorine- and chlorine-containing species. According to eq 2, the acidity of a given radical is determined by the difference in the homolytic C-H bond dissociation energy of the 'CH\(_2\text{X}\) radical and the EA of the CHX species. The EA values of the singlet states of the CH\(_3\)X radicals or in other words in the stability of the radical anions can be used to compare the halogen-substituted carbenes and CHI. The increasing acidity of the radicals with increasing size of the halogen atom is determined, therefore, by the variation in the EA of the CHX species or in other words in the stability of the radical anions with respect to the carbenes. A similar conclusion can be reached for the CH\(_3\text{X}\) molecules,\(^{10}\) that is, the increase in acidity in the series CH\(_2\text{F}\), CH\(_2\text{Cl}\), CH\(_2\text{Br}\), and CH\(_3\text{I}\) reflects the trend in the EA of the CH\(_2\text{X}\) radicals since the C-H bond strengths of the methanes are almost independent of the nature of the halogen atom (Table 5).

The acidities of the radicals reveal that a given 'CH\(_2\text{X}\) species is \(-50\) kJ mol\(^{-1}\) more acidic than the parent molecule. Hence, the trend in the acidity of the radicals parallels the trend observed for the halogen-substituted methanes as illustrated in Figure 2. The increase in acidity on going from CH\(_3\text{X}\) to 'CH\(_2\text{X}\) is mainly a result of the larger EA of a given CHX carbene than of the related radical and to lesser extent determined by the change in C-H BDE when a CH\(_3\text{X}\) molecule is transformed into a radical.

For example, the C-H BDE of the 'CH\(_2\text{F}\) radical is \(-15\) kJ mol\(^{-1}\) lower than the C-H bond strength of CH\(_3\text{F}\),\(^{28}\) whereas the EA of CH\(_2\text{F}\) is \(-33\) kJ mol\(^{-1}\) larger than the EA of 'CH\(_2\text{F}\), and as a result the radical is \(-50\) kJ mol\(^{-1}\) more acidic than the corresponding molecule in the gas phase (see Table 5).

It is evident that a stabilization of the negative charge in the radical anions by the halogen atom will tend to increase the EA, whereas stabilizing effects in the neutral carbenes will oppose this and tend to decrease the EA. For example, the lower EA of the singlet ground state of CHF (52 kJ mol\(^{-1}\), Table 5)\(^{12}\) than of singlet CHF (100 kJ mol\(^{-1}\)) has been attributed to the stabilizing effect of the fluorine atom on the neutral carbene, which was considered to be more significant than the stabilization of the negative charge in the CHF\(_2^-\) radical anion.\(^{11}\) As discussed in the literature,\(^{4,5,10}\) the stabilization of the singlet state relative to the triplet state of a halogen-containing carbene can be ascribed to two effects, which may act synergistically. First, an electronegative halogen atom can withdraw electron density from the carbon atom by an inductive effect and increase the character of the \(\sigma^*\) orbital (see Figure 1). This lowers the energy of this orbital with the result that the singlet is stabilized with respect to the triplet state of the carbene. Second, the halogen atom can stabilize the singlet state by donating electron density to the unoccupied carbon \(\pi^*\) orbital of the carbene through the CX \(\sigma\)-bonds (Figure 1). Both of these effects can be held responsible for the lower energy of the singlet state than of the triplet state of CHF, CHCl, and CHBr (vide supra).\(^{10}\) Furthermore, the effects are particularly significant for fluorine since the electronegativity decreases in the series F, Cl, Br, and I and the carbon—halogen bond length increases as the halogen atom becomes larger, thus decreasing the importance of electron donation to the \(\pi^*\) orbital.

The stabilization of the negative charge in the carbene radical anions has been discussed as inductive electron withdrawal by the halogen atom.\(^{11}\) This effect will, of course, become less important as the halogen atom becomes less electronegative and will tend to decrease the EA in the series CHF, CHCl, CHBr, and CHI. The observed increase in the EA in this series has been taken to imply, therefore, that the stabilizing effects on the neutral singlet carbenes dominate over the stabilization of the charge in the radical anions by inductive electron withdrawal.\(^{11}\) In this respect, it should be mentioned that the trend in the EA of the CHX carbenes parallels the trend in the EA of the 'CH\(_2\text{X}\) radicals. For the 'CH\(_2\text{X}\) radicals, it is not anticipated that a fluorine atom exerts an influence on the radical center, which differs drastically from that of a iodine atom, suggesting that the EA of the radicals may be determined mainly by the stabilization of the charge in the CH\(_2\text{X}\) ions. In qualitative terms, the trend in the EA of the 'CH\(_2\text{X}\) radicals follows the polarizability of the halogen atoms instead of their electronegativity (see also ref 43a). A similar situation may apply to the carbene radical anions, indicating that the effects of the halogen atoms on the neutral carbenes and on the radical anions may both lead to an increase of the EA as the halogen atom becomes heavier.

Heats of Formation of the CHX Carbenes. The C-H bond dissociation energies of the 'CH\(_2\text{X}\) radicals (Table 5) can be used to derive the following heats of formation of the CHX carbenes: 157 ± 18 kJ mol\(^{-1}\) (\(\bar{X}\) 'A', CHF), 317 ± 20 kJ mol\(^{-1}\) (\(\bar{X}\) 'A', CHCl), 373 ± 18 kJ mol\(^{-1}\) (\(\bar{X}\) 'A', CHBr), and 428 ± 21 kJ mol\(^{-1}\) (\(\bar{X}\) 'A', CHI).
Table 6. Heats of Formation (ΔH°_f in kJ mol$^{-1}$ at 298 K) of the CH$_3$X, CH$_2$X, and CHX Species

<table>
<thead>
<tr>
<th>X</th>
<th>CH$_3$X*</th>
<th>CH$_2$X</th>
<th>CHX</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>-247</td>
<td>-33^a</td>
<td>157 ± 18^c</td>
</tr>
<tr>
<td>Cl</td>
<td>-82</td>
<td>120^b</td>
<td>317 ± 20^d</td>
</tr>
<tr>
<td>Br</td>
<td>-38</td>
<td>170^a</td>
<td>373 ± 18^f</td>
</tr>
<tr>
<td>I</td>
<td>15</td>
<td>230^d</td>
<td>428 ± 21^c</td>
</tr>
</tbody>
</table>

* From ref 28. ^ Value from ref 66; see also text. # This work, see text.

Figure 3. Graphical representation of the trend in the heats of formation of the CHX, CH$_2$X, and CH$_3$X species (see text and Table 6).

Figure 3. Graphical representation of the trend in the heats of formation of the CHX, CH$_2$X, and CH$_3$X species (see text and Table 6). These heats of formation refer— as indicated—to the singlet ground states of the CHF, CHCl, and CHBr carbenes as the EA values used in combination with the acidities to derive the C-H BDE values relate to this state of the carbenes. In the estimation of the heat of formation of CHI, we also used the EA value given for the singlet state even though it remains uncertain whether this is the ground state.10,12,15

The heats of formation of the carbenes are less accurate than the determined gas-phase acidities of the radicals, and the average error limit of ±20 kJ mol$^{-1}$ in Table 6 arises as the sum of the error limit of about 8 kJ mol$^{-1}$ on the reported ΔH°_f values of the CH$_3$X species and the uncertainties in the ΔH°_f values of (CH$_2$X) values. For example, the heat of formation of the CH$_2$Cl radical is quoted as 130 kJ mol$^{-1}$ in ref 28 whereas values in between 115 and 120 kJ mol$^{-1}$ are given in a recent paper by Holmes and Lossing.66 Furthermore, these authors place the heat of formation of the CH$_2$I radical at 230 kJ mol$^{-1}$ whereas a value of 210 kJ mol$^{-1}$ is given in ref 28. We have used the value of 120 kJ mol$^{-1}$ for the CH$_2$Cl radical and 230 kJ mol$^{-1}$ for CH$_2$I because these give rise to a consistent picture of the trend in the heats of formation of the CH$_3$X, CH$_2$X, and CHX species (Table 6). This is depicted in Figure 3, which clearly reveals that the trend in the heats of formation of the carbenes is essentially the same as the trend in the values for the radicals and the molecules. In other words, the enthalpy of dehydrogenation of a halogen-substituted methane to form a singlet carbone is independent of the nature of the halogen atom (eq 9).

$$\text{CH}_3\text{X} \rightarrow \text{CHX} + \text{H}_2 \quad \Delta H^\circ_f, \approx 400 \text{ kJ mol}^{-1} \quad (9)$$

The present value for the heat of formation of CHCl is within the error limit of the value (297 ± 20 kJ mol$^{-1}$) derived on the basis of the determination of the proton affinity of this carbone.14 For CHF, however, the result in Table 6 deviates significantly from the value of 105 kJ mol$^{-1}$ obtained by studying proton-transfer reactions of the CF$_3$F$^+$ ion16 but is in line with the value of ≈ 163 kJ mol$^{-1}$ based on a study of the reactivity of the CH$_3$F radical in the gas phase.17 At present, we have no explanation for the discrepancy between our value for the heat of formation of CHF and the one obtained by measuring the proton affinity of this carbone. It can be mentioned, however, that the occurrence/nonoccurrence of proton transfer in the reactions of the CF$_3$F$^+$ ion67 with series of aliphatic alcohols leads to a ΔG°_{aff} value of the ‘CHF$_2$ radical of 1546 ± 6 kJ mol$^{-1}$. This value results in a $\Delta H^\circ_f (\text{CHF}) = 1579 ± 6$ kJ mol$^{-1}$ on the basis of an estimated $\Delta H^\circ_f (\text{CHF})$ of 109 J K$^{-1}$ mol$^{-1}$ and with T assumed to be 298 K. The ΔH°_f value leads in combination with the reported EA of singlet difluorocarbene17 of 17 ± 1 kJ mol$^{-1}$ to a C-H BDE of the ‘CHF$_2$ radical of ≈ 284 kJ mol$^{-1}$. With $\Delta H^\circ_f (\text{CHF}) = 237$ kJ mol$^{-1}$, the heat of formation of CF$_3$ (X = A) becomes $-171 ± 10$ kJ mol$^{-1}$. This heat of formation of CF$_3$ is slightly lower than the upper limit of $-165 ± 14$ kJ mol$^{-1}$ derived on the basis of measurements of the threshold energy for collision-induced dissociation of CF$_3^-$ with formation of F$^-$ ions68 and somewhat larger than the value of $-184 ± 4$ kJ mol$^{-1}$ determined from the photoionization threshold for CF$_3$ loss from some fluorine-containing species.69

Reactions of the CHX$^-$ Ions. The reactions of the carbone radical anions with the parent compounds yield halide ions, which to some extent originate from the reactant ions as indicated in Tables 3 and 4. A possible scheme in agreement with this finding consists of direct Sn2 substitution competing with a process involving initial proton transfer between the radical anion and the halogen-containing methane molecule followed by a nucleophilic substitution.61 The acidity measurements reveal that proton abstraction from a CH$_3$X molecule by the related CHX$^-$ radical anion with formation of a free -CH$_3$X ion is ≈ 50 kJ mol$^{-1}$ endothermic (Table 5). However, the gain in excess internal energy upon approach of the reactants can be sufficiently large to allow for the occurrence of proton transfer within the initially formed complex55,57 as illustrated in Scheme 1 for the reaction of the CH$_3$Cl$^-$ ion with CH$_3$Cl. Proton transfer in complex a in Scheme 1 leads to b, which then reacts further by substitution to form a 35Cl$^-$ ion and a ‘CH$_2$CH$_2$Cl radical. The entire process is estimated to be 250 kJ mol$^{-1}$ exothermic and is thus only 14 kJ mol$^{-1}$ less exothermic than the direct Sn2 substitution, which leads to a CH$_3$CH$_3$Cl radical (see Scheme 1).58,66 The occurrence of an energetically unfavorable proton transfer in addition to a strongly exothermic Sn2 reaction is in line with a number of other studies which have shown that substitutions often are slow in the gas phase as a result of the existence of substantial local energy barriers.27,62,63

(67) This radical anion is readily formed in the reaction of the O$^-$ ion with CF$_3$H$_2$. The CF$_3$F$^+$ ion reacts slowly with N$_2$O to afford a CF$_3$F$^+$ ion: Born, M.; Ingemann, S.; Nibbering, N. M. M. Unpublished results.

Heats of Formation of Mono-Halogen-Substituted Carbenes

Scheme 2. Proposed Mechanism for the Reaction of the CH$_3$Cl$^\cdot$ Ion with Methanol

\[
\begin{align*}
\text{CH}_3^\cdot & + \text{CH}_3\text{OH} \\
\text{c} & \quad \xrightarrow{\text{H}^+\text{-transfer}} \\
\left[\text{CH}_3^\cdot + \text{CH}_3\text{OH}\right] & \\
\text{d} & \quad \xrightarrow{\text{sN}_2\text{reaction}} \\
\left[\text{CH}_3\text{Cl} + \text{CH}_3\text{O}^\cdot\right] & \\
\end{align*}
\]

\[
\Delta H^\circ \approx -238 \text{ kJ mol}^{-1} \
\Delta H^\circ \approx -18 \text{ kJ mol}^{-1}
\]

The formation of X$^-$ ions by initial proton transfer between a carbene radical anion and a CH$_3$X molecule implies the occurrence of a nucleophilic attack of a carbanion on a *CH$_2$X radical. A similar situation arises in the reactions of the radical anions with aliphatic alcohols (Tables 3 and 4). Here the initial proton transfer leads to a complex of a *CH$_2$X radical and a RO$^-$ ion as illustrated in Scheme 2 for the reaction of the CH$_3$Cl$^\cdot$ ion with CH$_3$OH. Complex d generated by proton transfer within complex c may then dissociate or react further by an sN$_2$ substitution to form CH$_3$O$^\cdot$.

In the present context, the occurrence of an sN$_2$ substitution succeeding the proton-transfer step in the first complex generated upon approach of the radical anion to the alcohol molecule could be thought to influence the observation of an overall exoergic proton-transfer reaction. The sN$_2$ pathway in Scheme 2 with formation of 35Cl$^-$ and CH$_3$OCH$_2^-$ is estimated to be exothermic by \approx238 kJ mol$^{-1}$, whereas proton transfer to form CH$_3$O$^-$ ions is estimated to be exothermic by \approx18 kJ mol$^{-1}$ on the basis of the acidity of the *CH$_3$Cl radical in Table 5. Overall proton transfer to free alkoxy ions involves simple dissociation of complex d in Scheme 2, and it is not expected that this is hindered by an energy barrier, whereas the sN$_2$ reaction is likely to involve a local energy barrier. In conclusion, the sN$_2$ substitution is unlikely to suppress the overall proton-transfer reaction unless this process is energetically unfeasible.

Conclusions

We have determined the gas-phase acidities of the *CH$_2$X (X = F, Cl, Br, and I) radicals by studying the ion/molecule chemistry of the CHX$^\cdot$ carbene radical anions. In combination with reported electron affinities of the singlet CHX carbenes, these acidities lead to the heats of formation of the CHX carbenes. The trend in the heats of formation of the CHX carbenes in the series CHF, CHCl, CHBr, and CHI is similar to the trend in the heats of formation of the halogen-substituted methanes, revealing that the energy required for dehydrogenation of a CH$_3$X molecules to give the related singlet carbene is essentially independent of the nature of the halogen atom. The acidity of the halogen-substituted radicals is observed to increase in the series *CH$_2$F, *CH$_2$Cl, *CH$_2$Br, and *CH$_2$I, that is, the acidity increases as the halogen atom becomes heavier as observed also for the corresponding methanes. The acidity increases by \approx51 kJ mol$^{-1}$ on going from a CH$_3$X molecule to the related *CH$_2$X radical. This change in acidity is mainly a result of a larger electron affinity of a given CHX carbene than of the related *CH$_2$X radical and only to a minor extent determined by the decrease in C–H bond dissociation energy in going from a CH$_3$X molecule to the corresponding radical.

Acknowledgment. The authors thank the Netherlands Organization for Scientific Research (SON/NWO) for financial support.