Multisite spin hopping analysis of multilevel dissipative quantum tunneling and coherence at finite temperatures
Dekker, H.

Published in:
Physica A : Statistical Mechanics and its Applications

DOI:
10.1016/0378-4371(94)90097-3

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Erratum

Multisite spin hopping analysis of multilevel dissipative quantum tunneling and coherence at finite temperatures

[Physica A 175 (1991) 485]

H. Dekker

TNO Physics & Electronics Laboratory, P.O. Box 96864, 2509 JG Den Haag, The Netherlands
Institute for Theoretical Physics, University of Amsterdam, Amsterdam, The Netherlands

Received 18 June 1994

The theory presented in this article [1] has recently been generalized to describe dissipative rotational tunneling systems [2]. During this work the authors of Ref. [2] have noticed a number of annoying misprints in Section 3.4 (Vibrational relaxation: fluctuations) of Ref. [1]. I am indebted, in particular, to Daniel Braun for bringing these errors to my attention. The corrected formulae are listed below:

\[\rho_{zn,zn}^{(2,1)} = -\frac{i}{2\hbar} \langle \pm n \mid [\xi, [F(t), \rho]] \pm m \rangle, \] \hspace{1cm} (3.19)

\[\rho_{zn,zn}^{(2,2)} = 0, \] \hspace{1cm} (3.20)

\[\rho_{zn,zn}^{(2,1)} = -\frac{i}{2\hbar} \langle \pm n \mid [\xi, [F(t), \rho]] \pm m \rangle. \] \hspace{1cm} (3.21)

The above formulae now correctly account for the symmetrization implied in the noise term in the quantum Liouville equation (2.19) of Ref. [1]. As a consequence, one further has

\[\frac{1}{2}i\hbar \langle [\xi, [F(t), \rho]] \rangle = D_{\rho \rho}(t) [\xi, [\xi, \rho]] - 2D_{\rho \rho}(t) [p, [\xi, \rho]]. \] \hspace{1cm} (3.24)

Finally:

\[\dot{\rho}_{nn,nn} - \frac{i}{2} \Delta_n (\rho_{nn,nn} - \rho_{nn,nn}) + \sum_m W_{nm} \rho_{mm,mm}. \] \hspace{1cm} (3.27)

Apart from the fact that Eq. (3.27) is repeated in Part III [3] (as Eq. (2.3)) and in Part IV [4] (as Eq. (2.6)), the above corrections have no further consequences for the subsequent formulae in this series of four articles.
References