Which data types have omega-complete initial algebra specifications?

Bergstra, J.A.; Heering, J.

Published in:
Theoretical Computer Science

DOI:
10.1016/0304-3975(94)90057-4

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Which data types have \( \omega \)-complete initial algebra specifications?*

J.A. Bergstra

Programming Research Group, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands, and Department of Philosophy, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

J. Heering

Department of Software Technology, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Communicated by S. Abramsky
Received April 1990
Revised August 1991

Abstract


An algebraic specification is called \( \omega \)-complete or inductively complete if all (open as well as closed) equations valid in its initial model are equationally derivable from it, i.e., if the equational theory of the initial model is identical to the equational theory of the specification. As the latter is recursively enumerable, the initial model of an \( \omega \)-complete algebraic specification is a data type with a recursively enumerable equational theory. We show that if hidden sorts and functions are allowed in the specification, the converse is also true: every data type with a recursively enumerable equational theory has an \( \omega \)-complete initial algebra specification with hidden sorts and functions. We also show that in the case of finite data types the hidden sorts can be dispensed with.

*Partial support received from the European Communities under ESPRIT projects 432 (An Integrated Formal Approach to Industrial Software Development – METEOR) and 2177 (Generation of Interactive Programming Environments II – GIPE II).
1. Introduction

1.1. Initial algebra specification of data types

Algebraic specifications of data types are often interpreted in terms of initial algebra semantics [21]. The data type specified is taken to be the initial algebra of the specification. The latter is characterized by the following two properties:

(i) each of its elements corresponds to at least one closed term (term without variables) over the visible signature of the specification ("no junk"),

(ii) two of its elements are never equal unless the corresponding closed terms can be proved equal by means of equational reasoning from the equations given in the specification ("no confusion").

Every algebraic specification whose hidden functions do not generate any "new" elements of visible sorts has an initial algebra satisfying (i) and (ii). It is determined uniquely up to isomorphism.

In view of property (ii) we can write

$$\text{ClEqTh}(S) = \text{ClEqTh}(I(S)),$$

where $S$ is the specification, $I(S)$ its initial algebra, $\text{ClEqTh}(S)$ the set of closed equations (equations without variables) over the visible signature of $S$ that are provable from $S$ by means of equational reasoning, and $\text{ClEqTh}(I(S))$ the set of closed equations valid in $I(S)$. Since we consider only finite specifications, $\text{ClEqTh}(S)$ is a recursively enumerable set. Hence, $\text{ClEqTh}(I(S))$ is recursively enumerable as well, and this is equivalent to saying that $I(S)$ is a semicomputable algebra. So initial algebra specifications give rise to semicomputable data types. Conversely, if hidden sorts and functions are allowed in the specification, every semicomputable data type has an initial algebra specification. This result, which was proved for the single-sorted case in [1], will play a crucial role in the proof of our main theorem in Section 4.

1.2. Equational logic, the equational theory of the initial algebra, and $\omega$-completeness

The identity

$$\text{ClEqTh}(S) = \text{ClEqTh}(I(S))$$

expresses the fact that equational reasoning is complete with respect to the set of closed equations valid in the initial algebra. If the restriction to closed equations is dropped, however, and open equations (i.e., equations containing variables) are taken into account as well, completeness is lost. Let $\text{EqTh}(S)$ be the set of open as well as closed equations over the visible signature of $S$ that are equationally provable from $S$, and let $\text{EqTh}(I(S))$ be the set of open as well as closed equations valid in the initial algebra $I(S)$. Due to the "no junk" property of the initial algebra, an open equation is valid in $I(S)$ if all closed equations that can be obtained from it by substituting closed terms over the visible signature of $S$ for its variables, are valid in $I(S)$. Clearly, such an
Which data types have \( \omega \)-complete initial algebra specifications?

Equation need not be valid in models of \( S \) containing "junk". As a consequence, equational reasoning need not be complete with respect to \( \text{EqTh}(I(S)) \) and

\[
\text{EqTh}(S) \subseteq \text{EqTh}(I(S))
\]

is the only thing that can be stated with certainty in the general case. It may occasionally happen, however, that

\[
\text{EqTh}(S) = \text{EqTh}(I(S))
\]

and in that case \( S \) is called inductively complete [25, 13] or \( \omega \)-complete [11]. All equations valid in the initial algebra of an \( \omega \)-complete specification \( S \) can be proved by purely equational means from the equations given in \( S \).

Consider, for example, the following simple initial algebra specification of the natural numbers with addition and multiplication:

\[
\text{module } N \\
\text{begin} \\
\text{sort } \text{Num} \\
\text{functions } 0: \text{Num} \\
\quad S: \text{Num} \rightarrow \text{Num} \\
\quad +,: \text{Num} \times \text{Num} \rightarrow \text{Num} \\
\text{variables } x, y: \text{Num} \\
\text{equations } x + 0 = x \\
\quad x + S(y) = S(x + y) \\
\quad x . 0 = 0 \\
\quad x . S(y) = x + (x . y) \\
\text{end } N.
\]

\( N \) is not \( \omega \)-complete. The commutative, associative and distributive laws for addition and multiplication, for instance, are not equationally derivable from \( N \), but by adding them an \( \omega \)-complete specification \( \bar{N} \) is obtained [12]:

\[
\text{module } \bar{N} \\
\text{begin} \\
\text{import } N \\
\text{variables } x, y, z: \text{Num} \\
\text{equations } x + y = y + x \\
\quad x + (y + z) = (x + y) + z \\
\quad x . y = y . x \\
\quad x . (y . z) = (x . y) . z \\
\quad x . (y + z) = (x . y) + (x . z) \\
\text{end } \bar{N}.
\]

The \( \omega \)-completeness of \( \bar{N} \) follows from the fact that, using the equations of \( \bar{N} \), every \((0, S, +, .)\)-term can be brought in canonical polynomial form. Two such
canonical forms represent the same function on the natural numbers only if they are syntactically equal modulo associativity and commutativity of addition and multiplication.

1.3. Which data types have \( \omega \)-complete initial algebra specifications?

First of all, it should be noted that if a specification \( S \) is \( \omega \)-complete, the corresponding theory \( EqTh(I(S)) \) is recursively enumerable since it is equal to \( EqTh(S) \) and the latter is recursively enumerable (whether \( S \) is \( \omega \)-complete or not). As we explained in Section 1.1, the set of closed equations \( ClEqTh(I(S)) \) is always recursively enumerable, but this is not true for the full set of equations \( EqTh(I(S)) \). Even in seemingly very simple cases the latter is not recursively enumerable. Consider, for instance, the following initial algebra specification of the natural numbers with addition, multiplication and cut-off subtraction:

```haskell
module N'
begin
  import N
  function \( \div' : Num \times Num \rightarrow Num \)
  variables \( x, y : Num \)
  equations \( x \div' 0 = x \)
    \( 0 \div' x = 0 \)
    \( S(x) \div' S(y) = x \div' y \)
end N'.
```

The corresponding set of equations \( EqTh(I(N')) \) is not recursively enumerable [3, Section 8]. Hence, \( N' \) cannot be extended to an \( \omega \)-complete specification, not even if hidden sorts and functions are allowed [25, 11]. The same example was used in [24] to show that equational logic plus structural induction is not necessarily complete with respect to \( EqTh(I(S)) \). Cf. also [17].

The extension of \( N \) to \( \bar{N} \) did not require the introduction of hidden signature elements. Obviously, \( \omega \)-complete initial algebra specifications without hidden signature elements give rise to algebras whose equational theory is finitely axiomatizable in terms of equations over the original signature. Such algebras are called finitely based. The \( \omega \)-completeness of \( \bar{N} \) shows that the set of natural numbers with addition and multiplication is finitely based. Conversely, the \( \omega \)-complete specification of nonfinitely based algebras, if possible, requires hidden signature elements.

1.3.1. Finite data types

One of the simplest nonfinitely based algebras is a three-element groupoid constructed by Murskii [23]. We give an \( \omega \)-complete specification for it using addition and multiplication modulo three as hidden functions. (In [11] the same was done for
a somewhat larger nonfinitely based groupoid due to Lyndon.) A straightforward initial algebra specification of Murskii’s groupoid is

\begin{verbatim}
module M
begin
  sort Num
  functions 0, 1, 2 : Num
  \mu : Num \times Num \to Num
  variable x : Num
  equations \mu(0, x) = \mu(x, 0) = \mu(1, 1) = 0
  \mu(1, 2) = 1
  \mu(2, 1) = \mu(2, 2) = 2
end M.
\end{verbatim}

It is shown in [23] that for each \( n \geq 3 \) the equation

\[ \mu(x_1, \mu(x_2, \ldots, \mu(x_{n-1}, \mu(x_n, x_1)) \ldots)) = \mu(\mu(x_1, x_2), \mu(x_3, \mu(x_4, \mu(x_5, x_2)) \ldots)) \]

is valid in \( I(M) \) but not provable from equations with less than \( n \) different variables. Hence, \( I(M) \) is not finitely based.

It so happens that the finite field \( \mathbb{Z}_3 \) of integers modulo three with addition and multiplication is \textit{functionally complete}, i.e., every \( k \)-ary total function on \( \mathbb{Z}_3 \) can be represented by a closed or open \((0, 1, 2, +, \cdot)\)-term. Furthermore, \( \mathbb{Z}_3 \) has an \( \omega \)-complete specification, which can be obtained in an economical way by taking \( \bar{N} \) and adding a few equations to it (cf. [25]):

\begin{verbatim}
module \bar{Z}_3
begin
  import \bar{N}
  functions 1, 2 : Num
  variable x : Num
  equations 1 = S(0)
  2 = S(1)
  S(S(x)) = x \cdot x = x
end \bar{Z}_3.
\end{verbatim}

The polynomials \( P_{m,n} (m, n = 0, 1, 2) \) defined by

\[ P_{m,n}(x, y) = \prod_{i=0}^{2} (x + i) \cdot \prod_{j=0}^{2} (y + j) \]

have the property

\[ P_{m,n}(m, n) = 1 \]

\[ P_{m,n}(x, y) = 0 \quad \text{if} \quad x \neq m \quad \text{or} \quad y \neq n, \]
so $\mu$ can be defined in terms of addition and multiplication modulo three as follows:

$$\mu(x, y) = P_{1, 2}(x, y) + 2P_{2, 1}(x, y) + 2P_{2, 2}(x, y) = 2x^3y^2 + 2x^2y + 2xy.$$ 

By adding this definition of $\mu$ to $\mathbb{Z}_3$ and hiding the operators $S$, $+$ and $\cdot$, an $\omega$-complete specification of $I(M)$ is obtained:

```plaintext
module $\bar{M}$
begin
  import $\bar{Z}_3$
  hidden functions $S$, $+$, $\cdot$
  function $\mu: \text{Num} \times \text{Num} \rightarrow \text{Num}$
  variables $x, y: \text{Num}$
  equation $\mu(x, y) = 2x^3y^2 + 2x^2y + 2xy$
end $\bar{M}$.
```

More generally, $\mathbb{Z}_p$ is functionally complete for every prime $p$ and has an $\omega$-complete specification $\mathbb{Z}_p$ similar to $\mathbb{Z}_3$. Hence, the above method of obtaining an $\omega$-complete specification with hidden functions applies to all single-sorted algebras with $p$ elements. If $n$ is not prime, the method breaks down due to the presence of zero divisors in the ring $\mathbb{Z}_n$, but by using the functionally complete Post algebras $P_n$ rather than $\mathbb{Z}_n$ we will show in Section 3 that all finite data types have an $\omega$-complete initial algebra specification with hidden functions.

### 1.3.2. Infinite data types

The above method does not seem to work for infinite data types with a recursively enumerable equational theory. The $\omega$-complete specification $\bar{M}'$ of Murskii's groupoid $I(M)$ shown in Fig. 1 is considerably less elegant than the specification $\bar{M}$ given in the previous section, but it illustrates an approach that, apart from equations (6)-(10) which work only in the finite case, does lend itself to generalization. It requires both hidden sorts and hidden functions. It should be emphasized that, in adding hidden elements, we need not bother about equational derivability of open equations containing hidden functions, but only about open equations containing the functions present in $I(M)$.

$\bar{M}'$ is an enrichment of the specification $\bar{M}$ given in the previous section. The hidden machinery of $\bar{M}'$ works as follows. Closed terms of hidden sort $\text{SimOpenTerm}$ correspond to open terms of sort $\text{Num}$ of $\bar{M}$. The role of variables is played by $j(\xi), j(S(\xi)), \ldots$, and the counterparts of the constants 0, 1 and 2 of sort $\text{Num}$ are $j(0)$, $j(1)$ and $j(2)$. These act as values. Equation (5) of Fig. 1 establishes $m$ on $\text{SimOpenTerm}$ as the counterpart of $\mu$ on $\text{Num}$. The substitution function $\sigma$ defined by equations (6)-(9) allows substitution of "values" for "variables". It is used in equation (10) to define an equality on closed $\text{SimOpenTerm}$-terms corresponding to equality of open $\text{Num}$-terms in $I(M)$. This equality is transferred to $\text{Num}$ by means of the $\text{apply}$-function.
Which data types have ω-complete initial algebra specifications?

module $M'$
begin
  import $M$ (Section 1.3.1)
  hidden sort $Bool$
  hidden functions
  $true, false : Bool$
  hidden sort $Sim Var$
  hidden functions
  $\xi : Sim Var$
  $S : Sim Var \rightarrow Sim Var$
  $eq : Sim Var \times Sim Var \rightarrow Bool$
  variables $u, v : Sim Var$
  equations
  (1) $eq(u, u) = true$
  (2) $eq(\xi, S(u)) = false$
  (3) $eq(S(u), \xi) = false$
  (4) $eq(S(u), S(v)) = eq(u, v)$
  hidden sort $SimOpenTerm$
  hidden functions
  $i : Num \rightarrow SimOpenTerm$
  $j : Sim Var \rightarrow SimOpenTerm$
  $m : SimVar \times SimOpenTerm \rightarrow SimOpenTerm$ (counterpart of $\mu$)
  $\sigma : Num \times SimVar \times SimOpenTerm \rightarrow SimOpenTerm$ (substitution)
  variables $x, y : Num$
  $u, v : SimVar$
  $t_1, t_2 : SimOpenTerm$
  equations
  (5) $m(i(x), i(y)) = i(\mu(x, y))$
  (6) $\sigma(x, u, i(y)) = i(y)$
  (7) $\sigma(x, u, i(u)) = i(x)$
  (8) $eq(u, v) = false \Rightarrow \sigma(x, u, j(v)) = j(v)$
  (9) $\sigma(x, u, m(t_1, t_2)) = m(\sigma(x, u, t_1), \sigma(x, u, t_2))$
  (10) $\sigma(0, u, t_1) = \sigma(0, u, t_2) \& \sigma(1, u, t_1) = \sigma(1, u, t_2) \& \sigma(2, u, t_1) = \sigma(2, u, t_2) \Rightarrow t_1 = t_2$
  hidden sort $NumList$
  hidden functions
  $nil : NumList$
  $list : Num \times NumList \rightarrow NumList$
  $first : NumList \rightarrow Num$
  $tail : NumList \rightarrow NumList$
  variables $x : Num$
  $l : NumList$
  equations
  (11) $first(nil) = 0$
  (12) $first(list(x, l)) = x$
  (13) $tail(nil) = nil$
  (14) $tail(list(x, l)) = l$
  hidden function
  $apply : SimOpenTerm \times NumList \rightarrow Num$
  variables $x : Num$
  $u : SimVar$
  $l : NumList$
  $t_1, t_2 : SimOpenTerm$
  equations
  (15) $apply(i(x), l) = x$
  (16) $apply(j(\xi, l)) = first(l)$
  (17) $apply(j(S(u), l)) = apply(j(u), tail(l))$
  (18) $apply(m(t_1, t_2), l) = \mu(apply(t_1, l), apply(t_2, l))$
end $M'$

Fig. 1
defined in equations (15)–(18). For example, the equation

$$\mu(x, 2) = x,$$

which is valid in $I(M)$ but not an equational consequence of $M$, now obtains the following equational proof: first note that the corresponding closed equation of sort SimOpenTerm

$$m(j(\xi), i(2)) = j(\xi)$$

follows from equation (10) with $u = \xi$ and equation (5). Next, using $apply$ and equations (15)–(18) the left- and right-hand sides can be transformed into the original open terms

$$apply(m(j(\xi), i(2)), list(x, nil)) = \mu(x, 2)$$
$$apply(j(\xi), list(x, nil)) = x.$$

Similarly, the equational proof of

$$\mu(x, \mu(y, x)) = \mu(x, y)$$

is

$$\mu(x, \mu(y, x)) = apply(m(j(\xi), m(j(S(\xi)), j(\xi))), list(x, list(y, nil)))^{(10)}$$
$$apply(m(j(\xi), j(S(\xi))), list(x, list((y, nil)))) = \mu(x, y).$$

For reasons of readability we put equations (8) and (10) in positive conditional form, but this is not strictly necessary. The value 0 assigned to $\text{first}(\text{nil})$ by equation (11) is arbitrary; 1 and 2 would have done equally well.

An $\omega$-complete specification similar to $M'$ can be given for all data types with a recursively enumerable equational theory. The introduction of hidden signature elements such that the corresponding closed terms mimic the open terms over the original signature as well as the use of $apply$ to transform closed identities into open identities are generally applicable. For infinite data types equations (6)–(10) have to be replaced by other ones, however, so as to obtain a proper definition of the equational theory of the data type in question (possibly by means of additional hidden sorts and functions). We will prove the corresponding general theorem, which is our main result, in Section 4.

1.4. Related work

Plotkin has shown that the $\lambda K\beta\eta$-calculus is $\omega$-incomplete [26]. Paul [25] introduced the notion of inductive completeness while analyzing possible failure modes of the inductive completion (also called inductionless induction or proof by consistency) algorithm [13]. The equivalent notion of $\omega$-completeness was used in [11] in an attempt to understand what “making maximal use of incomplete information” might
Which data types have $\omega$-complete initial algebra specifications? 157

mean in the context of partial evaluation or mixed computation [6]. The problem of the $\omega$-completeness of initial algebra specifications addressed in the current paper arose in that context [11, Open Question 2.6].

After we finished this paper, we learned that Gagliardi and Tulipani had independently solved the $\omega$-completeness problem for initial algebra specifications of finite data types [7]. We discuss their proof, which is rather different from ours, in Section 3. In the same paper they have given a sufficient condition for an infinite data type to have a nonrecursively enumerable equational theory. Recall that such a data type cannot have a finite $\omega$-complete initial algebra specification. Their condition, which involves the definability of a discriminator function of the data type in terms of its fundamental operations, applies, for instance, to the natural numbers with addition, multiplication, and cut-off subtraction discussed in Section 1.3.

The standard reference on initial algebra semantics is the survey by Meseguer and Goguen [21]. A systematic treatment of the power of initial algebra specification can be found in [1]. One of its main results, which plays a crucial role in the proof of our main theorem in Section 4, says that every semicomputable data type has an initial algebra specification with hidden sorts and functions. For relevant work on (non)finitely based algebras the surveys by Taylor [30] and McNulty [20] may be consulted. A survey of results on functional completeness and related matters has been given by Rosenberg [29].

Moller has studied some of the axiom systems for process algebra from the viewpoint of $\omega$-completeness [22]. Strategies for proving $\omega$-completeness of initial algebra specifications are discussed by Lazrek et al. [15] and Groote [8].

2. Preliminaries

We consider only finite specifications. Provable always means equationally provable. We do not allow algebras with empty carriers or partial functions as models of a specification, so the usual rules of equational logic apply without reservation (see [21, Section 4.3] for a discussion of the effects of allowing models with empty carriers on the rules of equational logic). In the context of a signature function always means $n$-adic function ($n \geq 0$). Zero-adic functions are sometimes called constants. Signatures never have void (empty) sorts.

As specifications may contain hidden sorts and functions, it is necessary to define the meaning of hiding at the semantic level of equational theories and initial algebras. Let $S$ be a specification with visible signature $\Sigma$ and total signature $\Sigma_T$. $\Sigma_T - \Sigma$ consists of the hidden sorts and functions of $S$. Since hidden functions may be defined on visible sorts, $\Sigma_T - \Sigma$ need not be (and virtually never is) a self-contained signature. Let $S_T$ be the specification obtained from $S$ by making the entire signature $\Sigma_T$ visible. In keeping with [1] and the informal discussion in the previous sections we adopt the following conventions:
(1) The set of equations provable from $S$ consists of the $\Sigma$-equations provable from $S_T$, i.e.,

$$EqTh(S) = Eq(\Sigma) \cap EqTh(S_T),$$

where $Eq(\Sigma)$ is the set of all $\Sigma$-equations. Similarly, the set of closed equations (equations without variables) provable from $S$ consists of the closed $\Sigma$-equations provable from $S_T$, i.e.,

$$ClEqTh(S) = Eq(\Sigma) \cap ClEqTh(S_T).$$

(2) The initial algebra of $S$ is the $\Sigma$-reduct of the initial algebra of $S_T$, i.e.,

$$I(S) = \Sigma \sqcap I(S_T).$$

The reduct $\Sigma \sqcap I(S_T)$ can be interpreted in two ways (cf. [1, Section 2]), namely

(a) as the algebra $I(S_T)|_\Sigma$ consisting of the carriers and functions of $I(S_T)$ named in $\Sigma$ (the usual interpretation), or

(b) as the subalgebra of $I(S_T)|_\Sigma$ generated by the functions named in $\Sigma$ (the subalgebra interpretation).

To avoid any possibility of confusion between the two interpretations, we consider only specifications for which they coincide. This is the case if $I(S_T)|_\Sigma$ is $\Sigma$-minimal ("no junk"), i.e., if every closed $\Sigma_i$ term of a sort in $\Sigma$ is equal to a closed $\Sigma$ term. The hidden functions of such specifications do not generate any "new" elements of visible sorts.

(3) The set $EqTh(I(S))$ consists of the $\Sigma$-equations valid in $I(S)$. According to (2) we assume $I(S)$ to be $\Sigma$-minimal, so an open equation is valid in $I(S)$ if and only if all closed equations that can be obtained from it by substituting closed $\Sigma$-terms for its variables, are valid in $I(S)$. A closed equation is valid in $I(S)$ if and only if it is provable from $S$ in the sense of (1), i.e., $ClEqTh(I(S)) = ClEqTh(S_T)$ ("no confusion").

Keeping these conventions in mind, we can now give a precise definition of $\omega$-completeness.

**Definition 2.1.** An algebraic specification $S$ with hidden sorts and functions is $\omega$-complete if $EqTh(S) = EqTh(I(S))$.

The $\omega$-completeness of a specification $S$ does not imply the $\omega$-completeness of the specification $S_T$ obtained from $S$ by making the entire signature of $S$ visible. Open equations that are valid in $I(S_T)$ need not be equationally derivable if they contain functions that were hidden in $S$.

3. Finite data types

**Theorem 3.1.** Every finite minimal algebra $A$ has an $\omega$-complete initial algebra specification with hidden functions. If $A$ is single-sorted, the number of hidden functions required
Which data types have o-complete initial algebra specifications? 159

Fig. 2.

Proof. (a) Let $A$ be a minimal algebra with $n$ elements, signature $\Sigma$, and single sort $E$. If $n = 1$ an o-complete specification $S$ of $A$ is obtained by adding the equation $x = y$ to $S$ with $x, y$ variables of sort $E$. If $n \geq 2$ consider the specification $P_n$ given in Fig. 2. Apart from a few insignificant differences, $P_n$ is the equational axiomatization of $n$-valued Post algebras given by Epstein [5]. Post algebras bear the same relationship to many-valued propositional calculi as do Boolean algebras to ordinary propositional calculus. In fact, two-valued Post algebras are Boolean algebras. In that case $C_0$ is negation, $C_1$ is the identity function, and $\vee$ and $\wedge$ are ordinary disjunction and conjunction. We only consider the initial algebra of $P_n$, which is the $n$-valued
Post algebra with \( n \) elements \( P_n \). It is already fully determined by equations (1)–(4). The other equations are valid in \( P_n \) as is easily verified by substituting constants \( e_0, \ldots, e_{n-1} \) for the variables occurring in them.

\( P_n \) is a distributive lattice by equations (5)–(13). \( P_n \) has the following two properties:

(i) Its initial algebra \( P_n \) is functionally complete. Indeed, every \( k \)-ary function \( f \) on \( P_n \) can be represented by a term in disjunctive normal form:

\[
f(x_1, \ldots, x_k) = \bigvee_{0 \leq i_1 < \cdots < i_k \leq n-1} \left[ f(e_{i_1}, \ldots, e_{i_k}) \land C_{i_1}(x_1) \land \cdots \land C_{i_k}(x_k) \right].
\]

This is easily verified by noting that \( C_{i_1}(e_{i_1}) \land \cdots \land C_{i_k}(e_{i_k}) = e_{n-1} \) and \( C_{i_1}(x_1) \land \cdots \land C_{i_k}(x_k) = e_0 \) otherwise, and by applying (15), (14) and the equation \( x \land e_0 = e_0 \), which is valid in \( P_n \).

(ii) \( P_n \) is \( \omega \)-complete. By virtue of \cite[Theorem 13]{4}, equations (1)–(20) are sufficient to bring any term \( t[x_1, \ldots, x_k] \) \((k \geq 1)\) in disjunctive normal form

\[
\bigvee_{0 \leq i_1 \leq n-1} \left[ e_{i_1} \land C_{i_1}(x_1) \land \cdots \land C_{i_1}(x_k) \right].
\]

Next, all nonessential variables, i.e., all variables whose value does not affect the value of \( t \) if viewed as a function on \( P_n \), can be removed by means of equation (17). This yields the reduced normal form

\[
\bigvee_{0 \leq i_1 \leq n-1} \left[ e_{i_1} \land C_{i_1}(y_1) \land \cdots \land C_{i_1}(y_l) \right], \quad (1 \leq l \leq k),
\]

where \( \{ y_1, \ldots, y_l \} \) is the subset of \( \{x_1, \ldots, x_k\} \) consisting only of the essential variables of \( t \), or the reduced normal form \( e_i \) if all variables of \( t \) are nonessential \((l=0)\). Two such reduced normal forms are equal in \( P_n \) if and only if they are syntactically identical modulo associativity and commutativity of \( \lor \) and \( \land \) (equations (7), (8) and (5), (6)). Hence, \( P_n \) is \( \omega \)-complete.

An \( \omega \)-complete specification of \( A \) can now be obtained by taking \( P_n \), hiding all its functions, adding \( \Sigma \), and adding for each function \( f \) of \( \Sigma \) its representation as an \((e_0, \ldots, e_{n-1}, C_0, \ldots, C_{n-1}, \lor, \land)\) term \( t_f \). (We assume that the functions of \( P_n \) are not in \( \Sigma \). Otherwise, they have to be renamed first.) This yields the following specification \( \tilde{S} \):

\begin{verbatim}
module \tilde{S}
begin
  import \tilde{P}_n
  hidden functions e_0, \ldots, e_{n-1}, C_0, \ldots, C_{n-1}, \lor, \land
  import \Sigma
\end{verbatim}
variables $x_1, \ldots, x_m : E$ \quad (m = \text{maxarity}(\Sigma))

equations
\begin{align*}
f(x_1, \ldots, x_k) &= \ell_f[e_0, \ldots, e_{n-1}, C_0, \ldots, C_{n-1}, \lor, \land, x_1, \ldots, x_k] \\
& \quad (f \in \Sigma, k = \text{arity}(f) \geq 0)
\end{align*}
end 3.

To obtain an $\omega$-complete specification with only a single hidden function, we replace all functions of $\bar{P}_n$ except $e_0$ with the generalized Sheffer function [32]

\[ x \lor y = \neg (x \land y), \]

where

\[ \neg x = \bigvee_{i=0}^{n-2} [e_{i+1} \land C_i(x)] \]

is a single step rotation, using the identities

\[ C_i(x) = \neg (\neg^{n-1-i} x \lor e_{n-2}) \lor e_{n-2} \]
\[ x \land y = \neg (x \lor \neg y) \]
\[ -x = \bigvee_{j=0}^{n-2} \neg (\neg^{n-1-j} x \lor e_{n-2}) \lor e_{n-2-j} \quad (\neg e_i = e_{n-1-i}) \]
\[ e_1 = \neg^1 e_0 \quad (i \neq 0) \]
\[ x \lor y = \neg^{n-1} (x \lor y) \]
\[ \neg x = x \land x. \]

Apart from its smaller signature, the resulting specification $\bar{P}_n'$ has the same properties as $\bar{P}_n$. Since $A$ is minimal, each of its elements corresponds to a closed $\Sigma$-term, so $\Sigma$ contains at least one constant. Without loss of generality we may assume this constant to be $e_0$. Using $\bar{P}_n'$, the desired specification of $A$ becomes:

module $S'$
begin
import $\bar{P}_n'$
hidden function | import $\Sigma$
variables $x_1, \ldots, x_m : E$ \quad (m = \text{maxarity}(\Sigma))
equations $f(x_1, \ldots, x_k) = \ell_f[e_0, i, x_1, \ldots, x_k]$ \quad (f \in \Sigma, f \neq e_0, k = \text{arity}(f) \geq 0)
end $S'$.

This proves the theorem for the single-sorted case.

(b) Let $A$ be a finite many-sorted minimal algebra with signature $\Sigma$ such that $N_{\text{sorts}} \geq 2$. Let $S$ be an initial algebra specification of $A$ without hidden sorts or
functions. Such a specification can be obtained simply by giving an appropriate table of values for each fundamental operation of $A$. Since $A$ is minimal, each of its elements corresponds to a closed $\Sigma$-term, so this does not require the introduction of hidden items. Let $E$ be a sort in $\Sigma$ such that the number of elements $n$ of the corresponding carrier of $A$ is at least as large as the number of elements of any of the other carriers and consider the specification given in Fig. 3.

```
module $S'$
begin
import $S$
functions $i_s: s \rightarrow E$ (s $\in \Sigma$)
   $j_s: E \rightarrow s$ (s $\in \Sigma$
   $\tau_f: E \times \cdots \times E \rightarrow E$ (f $\in \Sigma$, arity($\tau_f$) = arity($f$) $\geq 0$
variables $x_s: s$ (s $\in \Sigma$
   $x_1, \ldots, x_m: E$ (m = maxarity($\Sigma$))
equations ... (equations defining injections $i_s$ for all sorts $s \neq E$
   ... (equations defining surjections $j_s$ for all sorts $s \neq E$
(1) $i_s(x_s) = x_s$
(2) $j_s(i_s(x_s)) = x_s$
(3) $\tau_f(x_1, \ldots, x_k) = i_{s_0}(f(j_{s_1}(x_1), \ldots, j_{s_k}(x_k)))$ (type($f$) = $s_1 \times \cdots \times s_k \rightarrow s_0$
end $S'$.
```

Fig. 3.

$S'$ takes the original specification $S$ of $A$ as its point of departure and adds a pair of functions $i_s: s \rightarrow E$ and $j_s: E \rightarrow s$ for each sort $s \in \Sigma$ in such a way that equations (1) and (2) (of Fig. 3) hold and $A$ is equal to $\Sigma \cap I(S')$, the $\Sigma$-reduct of $I(S')$ (cf. Section 2). Furthermore, for each $f \in \Sigma$ $S'$ adds a function $\tau_f$ of the same arity as $f$ but operating entirely within the confines of $E$ and defined by equation (3). Let $\Sigma_E$ consist of $E$ and the functions $\tau_f$. To each $\Sigma$-term $u$ corresponds a $\Sigma_E$-term $\tau_u$ which is obtained by replacing each function symbol $f$ in $u$ by $\tau_f$ and each variable $x$ of sort $s$ by a variable $\tau_x$ of sort $E$. Repeated application of equations (3) and (2) immediately yields

$$\tau_u[x_1, \ldots, x_k] = i_{s_0}(u[j_{s_1}(x_1), \ldots, j_{s_k}(x_k)])$$

(3')

for suitable sorts $s_0, \ldots, s_k$. A $\Sigma$-equation $u = v$ and its associated $\Sigma_E$-equation $\tau_u = \tau_v$ hold simultaneously. Indeed, if $u = v$ holds, then $i_u(u) = i_v(v)$ and by substituting $j_x(\tau_x)$ for each $s$-sorted variable $x$ throughout $u$ and $v$ and applying (3') $\tau_u = \tau_v$ follows. Conversely, if $\tau_u = \tau_v$ holds for some equation $u = v$, then $u = v$ itself holds as well by (3'), (2) and substitution of $i_x(x)$ for $\tau_x$ throughout $u$ and $v$. As a consequence, an $\omega$-complete specification of $I(S')$ can be obtained from an $\omega$-complete specification of $\Sigma_E \cap I(S')$. The latter is a single-sorted minimal algebra so part (a) of the proof applies. With $A = \Sigma \cap I(S')$ this yields the following $\omega$-complete specification of $A$ given in Fig. 4.
module \( \bar{S} \)
begin
import \( S' \)
hidden functions \( i, j, \tau_f \)
import \( P_n^* \) (with \( n \) the cardinality of carrier \( E \) of \( A \))
hidden functions \( e_0, l \)
variables \( x_1, \ldots, x_m : E \) (\( m = \maxarity(\Sigma) \))
equations
(4) \( \bar{\tau}_f(x_1, \ldots, x_k) = t_f([e_0, l], x_1, \ldots, x_k] \)
end \( \bar{S} \).

Fig. 4

The number of hidden functions of \( \bar{S} \) is \( 2N_{\text{sorts}} + N_{\text{functions}} + 2 \), but the identity functions \( i_E \) and \( j_E \) were introduced only for reasons of convenience and can be omitted. This proves the theorem for the many-sorted case. \( \square \)

Remarks. (i) The functional completeness of \( P_n \) (with fundamental operations \( \sim_n = \sim^{n-1} \) and \( \forall_n = \forall \)) was first pointed out by Post [27, Section 11].

(ii) A somewhat different equational axiomatization of Post algebras was given by Traczyk [31]. It is based on the fundamental operations \( C \) and \( D_i \) (\( 1 \leq i \leq n-1 \)) with
\[
D_i(x) = \bigvee_{j=i}^{n-1} C_j(x).
\]
The latter are used as auxiliary functions in [4]. They obey the simple laws
\[
D_i(x \lor y) = D_i(x) \lor D_i(y)
\]
\[
D_i(x \land y) = D_i(x) \land D_i(y).
\]

(iii) In the terminology of [1] Theorem 3.1 says that every finite data type has an \( \omega \)-complete \((FIN, EQ, HE)\) specification. Owing to the existence of finite algebras that are not finitely based the hidden functions cannot in general be dispensed with (Section 1.3.1), so \((FIN, EQ, HE)\) cannot be improved to \((FIN, EQ)\).

(iv) Gagliardi and Tulipani [7] prove Theorem 3.1 in the single-sorted case by adding the ternary discriminator as a hidden function. This yields a short proof using well-known properties of the discriminator. They also show that a single equation is sufficient. Our proof is somewhat more concrete and requires only a single binary function, namely, the generalized Sheffer stroke. We have not attempted to minimize the number of equations.

4. The main theorem

**Theorem 4.1.** Every minimal algebra \( A \) whose equational theory is recursively enumerable has an \( \omega \)-complete initial algebra specification with hidden sorts and functions.
Proof. (a) Let \( A \) be a minimal algebra with signature \( \Sigma \) and single sort \( E \) such that \( \text{EqTh}(A) \) is recursively enumerable. We first define an algebra \( A' \) such that \( \text{ClEqTh}(A') \) is similar to \( \text{EqTh}(A) \). Consider the following specification without equations:

\[
\text{module } S_0 \text{ begin }
\text{sort } \text{SimVar}
\text{functions } \xi : \text{SimVar}
\quad S : \text{SimVar} \rightarrow \text{SimVar}
\text{sort } \text{SimOpenTerm}
\text{functions } j : \text{SimVar} \rightarrow \text{SimOpenTerm}
\quad \phi_f : \text{SimOpenTerm} \times \cdots \times \text{SimOpenTerm} \rightarrow \text{SimOpenTerm}
\quad \text{(counterpart of } f, f \in \Sigma, \text{arity}(\phi_f) = \text{arity}(f) \geq 0)\text{end } S_0.
\]

Let the variables of sort \( E \) be \( x_1, x_2, \ldots \) and let the signature of \( S_0 \) be \( \Sigma_0 \). With every \( \Sigma \)-term \( t \) we associate a closed \( \Sigma_0 \)-term \( \phi_t \) of sort \( \text{SimOpenTerm} \) which is obtained by replacing each function symbol \( f \) in \( t \) by \( \phi_f \) and each variable \( x_k \) by \( j(S^{k-1}(\xi)) \). Using \( \phi_t \), we define a congruence \( \equiv \) on the free term algebra \( I(S_0) \):

(i) \( (u, v \text{ closed terms of sort } \text{SimOpenTerm}) u \equiv v \text{ if and only if there is an equation } s = t \in \text{EqTh}(A) \text{ such that } \phi_s = u \text{ and } \phi_t = v; \)

(ii) \( (u, v \text{ closed terms of sort } \text{SimVar}) u \equiv v \text{ if and only if } u \text{ and } v \text{ are syntactically identical.} \)

Let \( A' = I(S_0)/_\equiv \). Obviously,

\[
s = t \in \text{EqTh}(A) \text{ if and only if } \phi_s = \phi_t \in \text{ClEqTh}(A').
\]

Since \( \text{EqTh}(A) \) is recursively enumerable, \( \text{ClEqTh}(A') \) is recursively enumerable as well, so \( A' \) is a semicomputable minimal algebra. Hence, according to Theorem 5.3 of [1] there is a specification \( S' \) with hidden sorts\(^1\) and functions such that

\[
I(S') = A'
\]

and \( I(S') \) is \( \Sigma_0 \)-minimal if \( I \) is interpreted in the usual way (cf. point (2) of Section 2). Hence, with \( \text{ClEqTh}(A') = \text{ClEqTh}(I(S')) = \text{ClEqTh}(S') \), we have

\[
s - t \in \text{EqTh}(A) \text{ if and only if } \phi_s - \phi_t \in \text{ClEqTh}(S').
\]

To obtain an \( \omega \)-complete specification \( \tilde{S} \) of \( A \) we use \( S' \) as hidden component and add some further hidden machinery linking \( \text{SimOpenTerm} \) to \( E \) (see Fig. 5).

\(^1\)If \( A \) has a recursive equational theory, \( A' \) is computable. In that case, \( S' \) can do without hidden sorts according to Theorem 5.1 of [1].
module $\tilde{S}$
begin
import $\Sigma$
import $S'$
hidden sorts $SimVar$, $SimOpenTerm$
hidden functions $\xi, S, j, \phi_f$
hidden sort $EList$
hidden functions
nil: $EList$
list: $E \times EList \rightarrow EList$
first: $EList \rightarrow E$
tail: $EList \rightarrow EList$
variables $x$: $E$
l: $EList$
equations
(1) first(nil) = e_0 \quad (e_0 \text{ is an arbitrary constant of sort } E)$
(2) first(list(x, l)) = x
(3) tail(nil) = nil
(4) tail(list(x, l)) = l
hidden function
apply: $SimOpenTerm \times EList \rightarrow E$
variables $u$: $SimVar$
l: $EList$
t_1, \ldots, t_m$: $E \quad (m = \text{maxarity}(\Sigma))$
equations
(5) apply(j(\xi), l) = first(l)
(6) apply(j(S(u)), l) = apply(j(u), tail(l))
(7) apply(\phi_f(t_1, \ldots, t_k), l) = f(apply(t_1, l), \ldots, apply(t_k, l)) \quad (f \in \Sigma, k = \text{arity}(f) \geq 0)$
end $\tilde{S}$.

Fig. 5.

Without loss of generality we assume that the hidden names of $\tilde{S}$ do not occur in $\Sigma$. $\tilde{S}$ has the following two properties:

(i) Its initial algebra $I(\tilde{S})$ is $\Sigma$-minimal if $I$ is interpreted in the usual way. Indeed, $I(S')$ is $\Sigma_0$-minimal if $I$ is interpreted in the usual way, so we need not bother about the hidden functions of $S'$, but may concentrate on the hidden functions introduced in $\tilde{S}$. Let $t$ be a closed term of sort $E$ not containing any of the hidden functions of $S'$. If $t$ does not contain first or apply it is syntactically a $\Sigma$-term. If $t$ is of the form first(l) with $l$ not containing first or apply it is equal to a closed $\Sigma$-term by (1)–(4). (Without equation (1) this would not be true. The presence of a constant $e_0$ in $\Sigma$ is guaranteed by the minimality of $A$.) Finally, if $t$ is of the form apply(t', l) with $l$ not containing apply, then it is equal to a closed $\Sigma$-term by (5)–(7) and (1)–(4).

(ii) $EqTh(S) = EqTh(A)$.
For any $\Sigma$-term $t$ we have by virtue of the definition of $\phi$ and equations (1)–(7)

$$apply(\phi_r, list(x_1, list(x_2, \cdots list(x_m, l) \cdots))) = t$$
with $M$ the largest index of any variable $x_k$ occurring in $t$ ($0$ if $t$ is a closed term) and arbitrary $l$. Now, if $s = t \in \text{EqTh}(A)$, then $\phi_s = \phi_t \in \text{ClEqTh}(S')$ and therefore
\[
s = \text{apply}(\phi_s, \text{list}(x_1, \text{list}(x_2, \ldots \text{list}(x_M, l) \ldots )))^{(S')}
\]
\[
\text{apply}(\phi_t, \text{list}(x_1, \text{list}(x_2, \ldots \text{list}(x_M, l) \ldots ))) = t
\]
with $M$ the largest index of any variable occurring in $s$ or $t$. Hence, $s = t \in \text{EqTh}(A)$ and $\text{EqTh}(S) \simeq \text{EqTh}(A)$.

Conversely, to show that $\text{EqTh}(S) \simeq \text{EqTh}(A)$ it is sufficient to show that $\text{ClEqTh}(S) \subseteq \text{EqTh}(A)$. If $s = t \in \text{ClEqTh}(S)$, then $M = 0$ and
\[
\text{apply}(\phi_s, l) = \text{apply}(\phi_t, l)
\]
with $l$ a variable of sort $EList$. But this implies $\phi_s = \phi_t \in \text{ClEqTh}(S')$ as application of equations (4) or (7) is useless and the other ones do not apply. Hence, $s = t \in \text{EqTh}(A)$.

We conclude from (i) and (ii) that $S$ is an $\omega$-complete initial algebra specification with hidden sorts and functions of $A$. This proves the single-sorted case.

(b) We omit the proof of the many-sorted case. It is a straightforward generalization of (a). □

Remarks. (i) The proof of Theorem 4.1 is a generalization of the construction of $M'$ in Section 1.3.2.

(ii) In the terminology of [1] Theorem 4.1 says that every data type with a recursively enumerable equational theory has an $\omega$-complete $(FIN, EQ, HES)$ specification.

(iii) Gurvich has recently shown that the algebra $N$ of positive natural numbers with signature $\{1, +, \ldots, \uparrow\}$ (where $n \uparrow m = n^m$) is not finitely based [9]. This surprising result provides the definitive answer to Tarski's High School Algebra Problem. As a consequence, $N$ does not have an $\omega$-complete initial algebra specification without hidden signature elements (cf. Section 1.3). On the other hand, $N$ has a recursive equational theory [28, 16], so Theorem 4.1 applies and we may conclude that it does have an $\omega$-complete initial algebra specification with hidden sorts and functions.

(iv) Kleene has shown that each recursively enumerable deductively closed first-order theory without identity is finitely axiomatizable using additional (i.e., hidden) predicates [14, 2]. A somewhat similar result for equational theories is an immediate consequence of Theorem 4.1. Every recursively enumerable equational theory which is the theory of some minimal algebra has a finite equational axiomatization with hidden sorts and functions. Not every recursively enumerable deductively closed equational theory is the theory of a minimal algebra, however, so this is a limited equational analogue of Kleene's result.
5. Open problems

(1) Whereas hidden functions are in general indispensable, we do not know whether hidden sorts are ever really necessary. The results obtained by Marongiu and Tulipani [18, 19] for ordinary (not necessarily \(\omega\)-complete) initial algebra specification of semicomputable data types may have consequences for the \(\omega\)-complete case as well, but these remain to be investigated.

(2) Let \(S_T\) be the specification obtained from \(S\) by making all its hidden sorts and functions visible (cf. Section 2) Does every minimal algebra \(A\) with a recursively enumerable equational theory have an \(\omega\)-complete specification \(\tilde{S}\) such that \(\tilde{S}_T\) is \(\omega\)-complete as well? For this to be true, each \(A\) whose equational theory is recursively enumerable should at least have an \(\omega\)-complete specification \(\tilde{S}\) such that \(EqTh(I(S_T))\) is recursively enumerable as well. This is a question we have not yet addressed.

(3) As was pointed out in Section 4 of [11], perhaps the main problem is \textit{automatic \(\omega\)-enrichment} of algebraic specifications, i.e., the mechanical addition of identities that are valid in the initial model. Even rudimentary automatic \(\omega\)-enrichment will have applications in inductive completion (see Section 1.4), unification in equational theories, and the automatic derivation of partial evaluators from standard evaluators (cf. [10]). Our proof of the existence of an \(\omega\)-complete enrichment for initial algebra specifications of data types with a recursively enumerable equational theory does not contribute much to a solution of the automatic \(\omega\)-enrichment problem except in the finite case, in which the proof is constructive and yields an \(\omega\)-enrichment in terms of Post algebras.

References


