Catalytic enantioselective addition of methyltriisopropoxititanium to aldehydes

Veguillas, M.; Solà, R.; Fernández-Ibañez, M.A.; Maciá, B.

DOI
10.1016/j.tetasy.2016.06.001

Publication date
2016

Document Version
Final published version

Published in
Tetrahedron-Asymmetry

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Catalytic enantioselective addition of methyltriisopropoxititanium to aldehydes

Marcos Veguillas a, Ricard Solà a, M. Ángeles Fernández-Ibañez b,⁎, Beatriz Maciá a,⁎

a Division of Chemistry & Environmental Science, Manchester Metropolitan University, Oxford Road, M1 5GD, Manchester, UK
b Van ’t Hoff Institute for Molecular Sciences, Science Park 904, 1090 GS, Amsterdam, The Netherlands

A R T I C L E I N F O

Article info
Received 30 April 2016
Accepted 1 June 2016
Available online 14 June 2016

A B S T R A C T

An efficient catalyst for the enantioselective synthesis of chiral methyl carbinols from aldehydes is presented. The system uses methyltriisopropoxititanium as a nucleophile and a readily available binaphthyl ligand. The enantioselective methylation of both aromatic and aliphatic aldehydes proceeds with good yields and high enantioselectivities under mild conditions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The enantioselective synthesis of the chiral methyl carbinol moiety, present in a large number of natural products and biologically active compounds, is of great importance to both academia and industry. The asymmetric addition of a nucleophilic methyl group to an aldehyde is one of the most efficient and direct approaches to this structural fragment. Enantioselective catalyzed versions of this key transformation have been studied extensively with dimethylzinc, trimethylaluminium and, more recently, with the more reactive methyl lithium and methyl Grignard reagents. Many of these methodologies involve the use of Ti(OR)4 normally in excess, which generates a titanium-based active species bearing a chiral ligand which is ultimately responsible for the stereocontrol in the addition process. It has also been suggested that these reactions involve the addition of organotitanium species, which are generated in situ by transmetallation of the organometallic reagent with Ti(OR)4. The direct asymmetric addition of organotitanium reagents to carbonyls has also been described under catalytic conditions using TADDOL. H BINOL derivatives as chiral ligands, in the presence of Ti(OiPr)4. In the particular case of MeTi(OiPr)3 as the model substrate. Our first tests provided very promising results (Table 1). Using 20 mol % of L1, the addition of 1.5 equiv of MeTi(OiPr)3 to 1a in toluene at –40 °C (optimal solvent and temperature for the addition of Grignard reagents to aldehydes) provided 78% conversion and 94% ee after 1 h (entry 1). In the search for alternative reaction conditions that involve more practical temperatures, we found that the use of Et2O as the solvent allowed full conversion and increased enantioselectivity (97%, entry 2) at 0 °C. Under these conditions, the catalyst loading could be reduced to 10 mol % without any significant loss of conversion or enantioselectivity (entry 3). Lower catalyst loadings (5 mol %, entry 4) provided full conversion but lower ee (78%). In the presence of 10 mol % of L1, the reaction could be carried out at room temperature (entry 5).

2. Results and discussion

The optimization process was carried out using benzaldehyde 1a as the model substrate. Our first tests provided very promising results (Table 1). Using 20 mol % of L1, the addition of 1.5 equiv of MeTi(OiPr)3 to 1a in toluene at –40 °C (optimal solvent and temperature for the addition of Grignard reagents to aldehydes) provided 78% conversion and 94% ee after 1 h (entry 1). In the search for alternative reaction conditions that involve more practical temperatures, we found that the use of Et2O as the solvent allowed full conversion and increased enantioselectivity (97%, entry 2) at 0 °C. Under these conditions, the catalyst loading could be reduced to 10 mol % without any significant loss of conversion or enantioselectivity (entry 3). Lower catalyst loadings (5 mol %, entry 4) provided full conversion but lower ee (78%). In the presence of 10 mol % of L1, the reaction could be carried out at room temperature (entry 5).
and only a small decrease in enantioselectivity was observed (compare entries 3 and 5). As a means of comparison, we performed the addition of MeTi(OPr)\(_3\) to benzaldehyde 1\(a\) in \(\text{Et}_2\text{O}\) at 0 °C using (R)-BINOL as a chiral ligand (entry 6); very low conversion (11%) and enantioselectivity (24%) were obtained.

Under the optimized conditions, the scope of the addition of MeTi(OPr)\(_3\) was examined with different aldehydes (Table 2), which indicated that the system was remarkably efficient. Thus, methyl carbinol units were prepared in good yields (84–96%) and enantioselectivities (56 to >99%, entries 1–13) from a variety of (hetero)aromatic substrates containing both electron-donating and withdrawing substituents. In some cases, the charge of MeTi(OPr)\(_3\) was increased up to 1.7 equiv (entries 2, 4, 5 and 9) or 2.0 equiv (entries 10 and 12), to allow the reaction to reach full conversion. A small increase in enantioselectivity was also observed with an increased amount of MeTi(OPr)\(_3\) (compare entries 1–2, 9–10 and 11–12). The lower enantioselectivity obtained for \(o\)-methoxybenzaldehyde (56%, entry 2) might be ascribed to the higher steric hindrance around the reactive site. The tolerance of this methodology toward functionalized substrates, such as 1\(c\) and 1\(g\), should be emphasized (entries 6 and 8). Remarkably, all reactions were complete in less than 1.5 h without any by-product formation. Moreover, the unreacted starting material and ligand could be recovered, and the latter, recycled and reused without any loss of activity. The robustness of this method was tested by performing a larger scale reaction with benzaldehyde 1\(a\) (47 mmol, 0.5 g, entry 13); no erosion of conversion or enantioselectivity was observed compared to the small scale reaction (compare entry 3, Table 1 with entry 13, Table 2).

Next, we examined the substrate generality for aliphatic and \(\alpha,\beta\)-unsaturated aldehydes (Table 3). Ligand 1\(I\) provided moderate conversion and enantioselectivity in the addition of MeTi(OPr)\(_3\) to cinnamic aldehyde 1\(j\), even when 1.7 equiv of nucleophile were employed (entry 1). The use of 1\(L\), which had shown higher efficiency in the addition of organolithium reagents to aliphatic and \(\alpha,\beta\)-unsaturated aldehydes,\(^2\) led to a slight improvement in the results (entry 2). Ligand 2\(L\) also proved to be more effective than 1\(I\) when the aliphatic phenylacetaldehyde 1\(k\) was

Table 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>(T) (°C)</th>
<th>(L) (mol %)</th>
<th>Conv. (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toluene</td>
<td>–40</td>
<td>10</td>
<td>78</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>Et(_2)O</td>
<td>0</td>
<td>20</td>
<td>>99</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>Et(_2)O</td>
<td>0</td>
<td>10</td>
<td>99</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>Et(_2)O</td>
<td>0</td>
<td>5</td>
<td>99</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>Et(_2)O</td>
<td>RT</td>
<td>10</td>
<td>>99</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>Et(_2)O</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>24</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1\(a\) (1 equiv, 0.07 M), MeTi(OPr)\(_3\) (1 M in THF, 1.5 equiv), (R,S)-L\(_1\), 1.5 h.\(^b\) Determined by chiral GC.\(^c\) (R)-BINOL was used as ligand.
Table 3
Enantioselective addition of MeTi(OiPr)₃ to aliphatic and α,β-unsaturated aldehydes: scope of the reaction

<table>
<thead>
<tr>
<th>Entry</th>
<th>ArCHO</th>
<th>L</th>
<th>Conv. (%)</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d</td>
<td></td>
<td>L₁</td>
<td>65</td>
<td>90</td>
<td>n.d.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>L₁</td>
<td>90</td>
<td>n.d.</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>L₁</td>
<td>99</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>L₁</td>
<td>99</td>
<td>93</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>L₂</td>
<td>99</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>L₂</td>
<td>99</td>
<td>93</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>L₂</td>
<td>77</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>8d</td>
<td></td>
<td>L₂</td>
<td>20</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>9h</td>
<td></td>
<td>L₁</td>
<td>78</td>
<td>94</td>
<td>93</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1 (1 equiv, 0.07 M), MeTi(OiPr)₃ (1 M in THF, 1.5 equiv), (R,S)-L (10 mol %), 1 h.
b Determined by chiral GC or HPLC.
c Isolated yield after flash chromatography.
d Reaction performed with 1.7 equiv of MeTi(OiPr)₃.
e Determined by chiral GC on the acetate derivative.
f Volatile compound. Not isolated.
g 7% of (CH₃)₂CHCH₂CH₂OH was detected.
h Reaction performed with 2.0 equiv of MeTi(OiPr)₃.

employed as the substrate (compare entries 3, 4). In general, the addition of MeTi(OiPr)₃ to linear-I and α-branched 1m proceeded with high enantioselectivities (90 and 94% ee, respectively, entries 5–6) and full conversion in the presence of 10 mol % of L₂ as the chiral ligand. Only the β-branched substrate 1n provided high enantioselectivity, but moderate conversion (entry 7). For the bulkier pivaldehyde 1o, high enantioselectivity and very low conversion (94% ee, 20% conv, entry 8), were obtained. The lack of reactivity of pivaldehyde (1o) could be rectified by using L₁ as a ligand and 2 equiv of MeTi(OiPr)₃ (entry 9).

3. Conclusion

In conclusion, we have developed an efficient catalytic system for the enantioselective addition of methyltrisopropoxititanium to aldehydes. This methodology allows the fast and operationally-simple one-pot preparation of highly valuable, optically active methyl carbinols using readily available reagents. In comparison to the existing TADDOL-based procedures, a number of benefits are realized, such as higher, more industrially relevant temperatures, shorter reaction times and no requirement for Ti (OiPr)₃ in the reaction media.

4. Experimental

4.1. General

The GC chromatograms (for both conversion and enantioselectivity determination) were recorded using an Agilent Technologies® 7890A GC System and a Hewlett Packard® 5890 Series II GC System, with a CycloSil-β (Agilent Technologies, 30 m × 0.25 mm) and a CP-ChiralSIL-DEX CB (Varian, 25 m × 0.25 mm) column, respectively; injector and detector temperatures: 250 °C. HPLC analysis (for enantioselectivity determination) was carried out on a Agilent 1100 Series HPLC equipped with a G1315B diode array detector and a Quat Pump G1311A, using the columns Lux 5u Cellulose-1 and Lux 5u Cellulose-3 (Phenomenex®, 250 mm × 4.60 mm). Optical rotations were measured on a Bellingham + Stanley® ADP 440 + Polarimeter with a 0.5 cm cell (c given in g/100 mL). All reactions were monitored by thin-layer chromatography using precoated sheets of silica gel 60, 0.25 mm thick (E254 Merck KGA®). The components were visualized by UV light (254 nm) and phosphomolybdic acid or KMnO₄ staining. Flash column chromatography was done using Geduran® silica gel 60, 40–63 microns RE. The eluent used is mentioned in each particular case. All glassware employed during inert atmosphere experiments was flame-dried under a stream of dry argon. All liquid aldehydes were freshly distilled before use. MeTi(OiPr)₃ was purchased from Acros Organics (1 M THF) and used without further purification. Anhydrous DCM, toluene and Et₂O were obtained from a Pure Solv® Solvent Purification Systems. Ligands (R,S)-L₁ and (R,S)-L₂ were prepared according to literature procedures7a from (R)-BINOL, purchased from Manchester Organics.

4.2. General procedure for the addition of methyltrisopropoxititanium to aldehydes—general procedure A

To a stirred solution of L₁ or L₂ (0.2 equiv) in Et₂O (3.0 mL, 0.067 M) at 0 °C, MeTi(OiPr)₃ (0.3 mL, 1.5 equiv, 1 M in THF, unless stated otherwise) was added. The solution was stirred for 1 min and then the aldehyde (0.1 mmol) was added. The reaction was stirred for 90 min and then quenched with water. The layers were separated and the aqueous layer was extracted three times with Et₂O. The combined organic layers were dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The reaction crude was purified by flash silica gel chromatography.

4.2.1. (R)-1-Phenylethanol 2a

Following general procedure A, the reaction of benzaldehyde (20 µL, 0.2 mmol) with methyltrisopropoxititanium (0.3 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L₁ (7.5 mg, 0.1 equiv) in Et₂O (3.0 mL) provided (R)-1-phenylethanol (23.4 mg) as a colorless oil after column chromatography (Hex/ EtOAc 6:1). Yield: 96%. Ec: 96%. [x]D²₄ = +47 (c 0.7, CHCl₃) [Lit.][x]D²₄ = +37 (c 0.3, CHCl₃) for 95% ee. Ec determination by chiral GC analysis, Cyclosil β column, T = 100 °C, P = 15.9 psi, retention times: t₁(R) = 30.9 min (major enantiomer), t₁(S) = 34.8 min.

4.2.2. (R)-1-(2-Methoxophenyl)ethanol 2b

Following general procedure A, the reaction of 2-methoxybenzaldehyde (27 mg, 0.2 mmol) with methyltrisopropoxititanium (0.34 mL, 1.7 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L₁ (7.5 mg, 0.1 equiv) in Et₂O (3.0 mL) provided (R)-1-(2-methoxophenyl)ethanol (29 mg) as a colorless oil after column chromatography (Hex/EtOAc 7:1). Yield: 95%. Ec: 56%. [x]D²₄ = +24 (c 1.0, CHCl₃) for 99% ee. Ec determination by chiral GC analysis, Cyclosil β column, T = 150 °C, P = 15.9 psi, retention times: t₁(R) = 9.1 min, t₁(S) = 10.4 min (major enantiomer).
4.2.3. (R)-1-(3-Methoxyphenyl)ethanol 2c

Following general procedure A, the reaction of 3-methoxybenzaldehyde (24 µL, 0.2 mmol) with methyltrisopropoxytitanium (0.3 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L1 (7.5 mg, 0.1 equiv) in Et2O (3.0 mL) provided (R)-1-(3-methoxyphenyl)ethanol (28 mg) as a colorless oil after column chromatography (eluent Hex/EtOAc 9:1). Yield: 96%.

4.2.4. (R)-1-(4-Methylphenyl)ethanol 2d

Following general procedure A, the reaction of 4-tolu aldehyde (12.0 µL, 0.1 mmol) with methyltrisopropoxytitanium (0.15 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L1 (3.8 mg, 0.1 equiv) in Et2O (1.5 mL) provided (R)-1-(4-methylphenyl)ethanol (13 mg) as a colorless oil after column chromatography (eluent Hex/EtOAc 7:1). Yield: 96%.

4.2.5. (R)-1-(4-Bromophenyl)ethanol 2e

Following general procedure A, the reaction of 4-bromobenzaldehyde (37 mg, 0.2 mmol) with methyltrisopropoxytitanium (0.3 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L1 (7.5 mg, 0.1 equiv) in Et2O (3.0 mL) provided (R)-1-(4-bromophenyl)ethanol (18 mg) as a white solid after column chromatography (Hex/EtOAc 6:1). Yield: 90%.

4.2.6. (R)-1-(4-Trifluoromethyl)phenyl)ethanol 2f

Following the general procedure A, the reaction of 4-(trifluoromethyl)benzaldehyde (14 µL, 0.1 mmol) with methyltrisopropoxytitanium (0.15 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L1 (3.8 mg, 0.1 equiv) in Et2O (1.5 mL) provided (R)-1-(4-(trifluoromethyl)phenyl)ethanol (17 mg) as a yellow oil after column chromatography (Hex/EtOAc 9:1). Yield: 89%.

4.2.7. (R)-4-(1-Hydroxyethyl)benzonitrile 2g

Following general procedure A, the reaction of 4-formylbenzonitrile (13 mg, 0.1 mmol) with methyltrisopropoxytitanium (0.15 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L1 (3.8 mg, 0.1 equiv) in Et2O (1.5 mL) provided (R)-4-(1-hydroxyethyl)benzonitrile (17 mg) as a yellow oil after column chromatography (Hex/EtOAc 8:2). Yield: 94%.

4.2.8. (R)-1-(Naphthalen-2-yl)ethanol 2h

Following general procedure A, the reaction of naphthaldehyde (31.2 mg, 0.2 mmol) with methyltrisopropoxytitanium (0.4 mL, 2.0 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L1 (7.5 mg, 0.1 equiv) in Et2O (3.0 mL) provided (R)-1-(naphthalen-2-yl)ethanol (29.1 mg) as a white solid after column chromatography (eluent Hex/EtOAc 8:1). Yield: 92%.

4.2.9. (R)-1-(Thiophen-2-yl)ethanol 2i

Following general procedure A, the reaction of thiophene-2-carboxaldehyde (9.4 µL, 0.1 mmol) with methyltrisopropoxytitanium (0.4 mL, 2.0 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-BINMOL L1 (7.5 mg, 0.1 equiv) in Et2O (3.0 mL) provided (R)-1-(thiophen-2-yl)ethanol (24.3 mg) as a volatile colorless oil after column chromatography (Hex/EtOAc 6:1). Yield: 95%.

4.2.10. (R,E)-4-Phenylbut-3-en-2-ol 2j

Following general procedure A, the reaction of trans-cinnamaldehyde (25.2 µL, 0.2 mmol) with methyltrisopropoxytitanium (0.3 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-Py-BINMOL L2 (7.5 mg, 0.1 equiv) in Et2O (3.0 mL) provided (R,E)-4-phenylbut-3-en-2-ol (26 mg) as a white solid after column chromatography (Hex/EtOAc 5:1). Yield: 88%.

4.2.11. (R)-1-Phenylpropan-2-ol 2k

Following general procedure A, the reaction of phenylacetaldelyde (12 µL, 0.1 mmol) with methyltrisopropoxytitanium (0.15 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-Py-BINMOL L2 (3.8 mg, 0.1 equiv) in Et2O (1.5 mL) provided (R)-1-phenylpropan-2-ol (13 mg) as a colorless oil after column chromatography (Hex/EtOAc 9:1). Yield: 93%.

4.2.12. (R)-2-Nonanal 2l

Following general procedure A, the reaction of octanal (16.0 µL, 0.1 mmol) with methyltrisopropoxytitanium (0.15 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-Py-BINMOL L2 (3.8 mg, 0.1 equiv) in Et2O (1.5 mL) provided (R)-2-nonanal (0.6 mg) as a colorless oil. Conversion: 99%.

4.2.13. (R)-1-Cyclohexylethanol-1-ol 2m

Following general procedure A, the reaction of cyclohexanecarboxaldehyde (24 µL, 0.2 mmol) with methyltrisopropoxytitanium (0.3 mL, 1.5 equiv, 1.0 M in THF) in the presence of (R,S)-Ph-Py-BINMOL L2 (7.5 mg, 0.1 equiv) in Et2O (1.6 mL) provided (R)-1-cyclohexylethanol-1-ol. This product was volatile and could not be isolated. Conversion: 99%.

4.2.14. (R)-4-Methylpentan-2-ol 2n

Following general procedure A, the reaction of 3-methylbutanal (22 µL, 0.2 mmol) with methyltrisopropoxytitanium (0.3 mL,
For some examples of natural product syntheses with a chiral methyl carbinol (f) Kobayashi, Y.; Fukuda, A.; Kimachi, T.; Juichi, M.; Takemoto, Y. (b) Sokeirik, Y. S.; Mori, H.; Omote, M.; Sato, K.; Tarui, A.; Kumadaki, I.; (0.1 mmol) with Et3N (35 organic layers were dried over MgSO4 and concentrated under vac-

tation times: $t(R) = 27.7$ min, $t(S) = 96.3$ min (major enantiomer), $t(R) = 97.0$ min.

4.3. General procedure for the synthesis of the chiral acetate derivatives—General procedure B

In a flame dried Schlenk tube, the corresponding aliphatic alco-

hol 21, 2m, or 2n (0.2 mmol) was dissolved in anhydrous DCM (2 ml, 0.1 M) at 0 °C after which Et3N (56 μl, 0.4 mmol, 2 equiv), DMAP (2.6 mg, 0.02 mmol, 0.1 equiv) and acetic anhydride (44 μl, 0.4 mmol, 2 equiv) were added sequentially. The reaction mixture was stirred at RT for 12 h. The reaction was quenched with water (2 ml), extracted with EtOAc (3 x 5 ml) and the combined organic layers were dried over MgSO4 and concentrated under vacuum. The crude product was purified by chromatographic column to provide the desired products 3–5.

4.3.1. (R)-Nonan-2-yl acetate

Following the general procedure B, the reaction of product 21 (0.1 mmol) with Et3N (35 μl, 0.25 mmol, 2.5 equiv), DMAP (1.2 mg, 0.01 mmol, 1 equiv) and acetic anhydride (24 μl, 0.25 mmol, 2.5 equiv), Compound 7 was obtained after purification by column chromatography (eluent Hex/EtOAc 97:3) as colorless oil. Yield: 95%. Ee: 90%. $|x|^{25} = −5.6$ (c 0.9, CHCl3). Lit.

$x = 3.8$ (c 5.3, CHCl3) for 91% ee. Ee determination by chiral GC analysis, CP-ChiralDEX CB column, $T = 125 ^{\circ} C, P = 6$ psi, retention times: $t(S) = 10.6 min, t(R) = 11.9 min (major enantiomer).

4.3.2. (R)-1-Cyclohexylacetic acid

Following the general procedure B, the reaction of product 2m (0.2 mmol) with Et3N (56 μl, 0.4 mmol, 2 equiv), DMAP (2.6 mg, 0.02 mmol, 0.1 equiv) and acetic anhydride (44 μl, 0.4 mmol, 2 equiv). Compound 9 could not be isolated due to the high volatility. Ee: 94%. Ee determination by chiral GC analysis, CP-ChiralSIL-

DEX CB column, $T = 100 ^{\circ} C, P = 6$ psi, retention time: $t(S) = 27.7 min, t(R) = 34.3 min (major enantiomer).

4.3.3. (R)-4-Methylpentan-2-yl acetate

Following the general procedure B, the reaction of product 2n (0.2 mmol) with Et3N (56 μl, 0.4 mmol, 2 equiv), DMAP (2.6 mg, 0.02 mmol, 0.1 equiv) and acetic anhydride (44 μl, 0.4 mmol, 2 equiv). Compound 5 could not be isolated due to the high volatility. Ee: 90%. Ee determination by chiral GC analysis, CP-ChiralSIL-D EX CB column, $T = 100 ^{\circ} C, P = 6$ psi, retention time: $t(S) = 4.9 min, t(R) = 5.3 min (major enantiomer).

Acknowledgements

B.M. thanks the European Commission for a Marie Curie Career Integration Grant and the EPSRC for a First Grant. B.M. and M.A.F.I. thank the R.S. for a travel grant. G. P. Howell is thanked for helpful comments on the manuscript.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetasy.2016.06.001.

References

For some general reviews on the online version, at http://dx.doi.org/10.1016/j.tetasy.2016.06.001.

For some general reviews on the online version, at http://dx.doi.org/10.1016/j.tetasy.2016.06.001.

Total Synthesis of Natural Products: The Chiron Approach

Asymmetry 27 (2016) 643–648

12. This methodology is also applicable to ketones when aryl Grignard reagents are used as nucleophiles. See reference.7

14. A lower excess of chlorotitanium trisopropoxide can be used instead for the addition of organolithium reagents to aldehydes.

