Density Functional Study of Ground and Excited States of MnC2(CO)C10

Rosa, A.; Ricciardi, G.; Baerends, E.J.; Stufkens, D.J.

Published in:
Inorganic Chemistry

DOI:
10.1021/ic00117a009

Citation for published version (APA):
Hydroformylation with a Rhodium/Bulky Phosphite Modified Catalyst. Catalyst Comparison for Oct-1-ene, Cyclohexene, and Styrene

Annemiek van Rooy, Edwin N. Orij, Paul C. J. Kamer, and Piet W. N. M. van Leeuwen*

Van’t Hoff Research Institute, Department of Inorganic Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Received March 17, 1994*

The rhodium-catalyzed hydroformylation of oct-1-ene, cyclohexene, and styrene has been studied using Rh(CO)2Acac as the catalyst precursor and tris(2-tert-butyl-4-methylphenyl) phosphite as the ligand (T = 40–100 °C, PCO = 2.5–44 bar, P H2 = 2.5–50 bar, toluene as a solvent). For oct-1-ene, very high hydroformylation rates are obtained (39.8 × 10^3 mol [mol Rh]^{-1} h^{-1}) under mild conditions (PCO = 10 bar, PH2 = 10 bar, T = 80 °C). The concentration dependencies of the reaction rate show that the rate-determining step is the reaction of H2 with the acylrhodium complex. A negative order in the CO concentration is observed. For cyclohexene, the reaction rate is lower under the same conditions (512 mol [mol Rh]^{-1} h^{-1}, [cyclohexene] = 0.91 M), the addition of cyclohexene to the starting rhodium hydride complex now being rate-limiting. In the hydroformylation of styrene, the rate is 3 times lower than that of oct-1-ene. For the formation of the linear 3-phenylpropanal, the rate-determining step is the reaction of H2 with the rhodium acyl species. CO inhibits the reaction. In contrast with the formation of the secondary 2-octyl species from oct-1-ene, the formation of the secondary (1-phenylethyl)rhodium species is reversible. For the formation of the branched aldehyde, the kinetics depend strongly on the CO partial pressure. At low CO pressures, addition of CO to the proposed (η^3-1-phenylethyl)rhodium intermediate is slow. At higher CO pressures, hydrogenolysis of the rhodium acyl intermediate is the rate-determining step and the rate decreases with increasing CO.

Introduction

Much research has been conducted to elucidate the mechanism and the kinetics of the rhodium-catalyzed hydroformylation reaction. It is commonly recognized that the reaction mechanism for the cobalt-catalyzed hydroformylation as pointed out by Heck and Breslow is suitable for the rhodium analogue as well. Markó and co-workers and more recently Garland studied the unmodified rhodium carbonyl catalyst system very extensively. The active species is generally assumed to be HRh(CO)3, which is formed by dissociation of a CO ligand from the HRh(CO)4 complex as Vidal and Walker have evidenced. Very recently Garland identified RC(O)Rh(CO)4 as the only observable reaction intermediate, using high-pressure infrared spectroscopy during the rhodium-catalyzed hydroformylation of 3,3-dimethylbut-1-ene starting with Rh(CO)12.

Markó found different kinetic equations for different types of alkenes. Using hept-1-ene, under the typical reaction conditions of PH2 = 33–126 bar, PCO = 40–170 bar, T = 75 °C, the kinetic expression is the following:

$$\frac{d[\text{aldehyde}]}{dt} = k[Rh][H_2][CO]$$ (1)

Scheme 1. Generally Accepted Mechanism for the Hydroformylation Reaction Catalyzed by the Unmodified Rhodium Carbonyl Complex

$$\text{HRh(CO)}_4 \xrightarrow{k_1} \text{HRh(CO)}_3 + \text{CO}$$ (1)
$$\text{HRh(CO)}_3 + \text{olefin} \xrightarrow{k_2} \text{RC(O)Rh(CO)}_3$$ (2)
$$\text{HRh(CO)}_3(\text{olefin}) \xrightarrow{k_3} \text{RC(O)Rh(CO)}_3$$ (3)
$$\text{PPH}_3 + \text{CO} \xrightarrow{k_4} \text{RC(O)Rh(CO)}_2$$ (4)
$$\text{RC(O)Rh(CO)}_2 + \text{H}_2 \xrightarrow{k_5} \text{HRh(CO)}_3 + \text{CO}$$ (5)

This corresponds with the reaction of H2 and the rhodium acyl intermediate (Scheme 1, step 6) as rate-determining. Thus as these high pressures, the reaction is inhibited by CO. At lower CO pressures (PCO ≤ 20 bar), the reaction is first order in [CO], the coordination of CO to the rhodium–alkyl complex (Scheme 1, step 4) now appearing as rate-limiting. This proposal is contradicted by the observation of RC(O)Rh(CO)4 as the only species present in the reaction mixture at 20 bars of pressure. However, the substrate used, 3,3-dimethyl-1-ene, is a highly substituted alkene and the conditions are not quite the same. This can influence the reaction kinetics rigorously as has been shown recently. For an internal olefin like cyclohexene and Rh(CO)12 as the catalyst precursor, the rate expression

$$k = k_0 \left[\frac{p_{\text{CO}}}{p_{\text{H}2}}\right] \left[\frac{p_{\text{H}2}}{p_{\text{CO}}}\right]$$ (6)

reported by Markó is

$$\frac{[\text{aldehyde}]}{d[t]} = k\text{[cyclohexene]}\text{[Rh]}^{0.25}\text{[H}_2]^{0.5}$$ (2)

From the kinetic equation and infrared data, it was concluded that the addition of cyclohexene to the hydrido rhodium carbonyl complex is rate-determining with rhodium predominantly in the tetranuclear cluster.

The phosphine- or phosphite-modified catalyst system behaves differently. Several active species may be present in this catalytic system, and the complex that shows the highest linearity is generally accepted to be HRh(CO)$_3$L$_2$, in which L represents an arlyphosphine or a small phosphite. Much research on the kinetics has been conducted, but only Cavallieri d’Oro and his co-workers have studied the catalysis under actual process conditions ($P = 10-50$ bar, $T = 80-120$ °C). Their results (using propene as substrate and triphenylphosphine as ligand) showed that the reaction was zeroth order in both CO and H$_2$ concentrations, which excludes the hydrogenolysis (Scheme 1, step 6) as being rate-determining. Despite these data, many authors still consider the hydrogenolysis as the turnover-limiting step.

Several reports have appeared using phosphites as auxiliary ligands. These ligands are considered too sensitive toward oxidation than phosphines and they show, besides lower a-donor capabilities, better π-acceptor properties. The latter feature should make them interesting as modifying ligands covering a wide range of electronic variation. Since the early 1980s, the use of bulky phosphites in the rhodium-catalyzed hydroformylation has been a field of interest.

Asymmetric synthesis (linear aldehyde:branched aldehyde = 2:1) and a low isomerization rate. A preliminary mechanistic study of this catalytic system was carried out by Jongsmaj using less reactive cycloalkenes as the substrates. Under 20 bar H$_2$/CO, the main rhodium species is HRh(CO)$_3$P (P = tris(2-tert-butylphenyl) phosphite) as was evidenced by NMR and IR spectroscopy, meaning that only one CO ligand is replaced by the bulky phosphite instead of two, which is the case with triphenylphosphine. Under hydroformylation conditions (after adding alkene), in situ IR showed that the same species was most abundant. Thus, his results indicate that the bulky phosphite modified system behaves differently from the triphenylphosphine-modified system.

In this article, we report on the kinetics of the bulky phosphite, tris(2-tert-butyl-4-methylphenyl) phosphite, combined with an average regioselectivity (linear aldehyde:branched aldehyde = 2:1) as being rate-determining (linear aldehyde:branched aldehyde = 2:1) and a low isomerization rate. A preliminary mechanistic study of this catalytic system was carried out by Jongsmaj using less reactive cycloalkenes as the substrates. Under 20 bar H$_2$/CO, the main rhodium species is HRh(CO)$_3$P (P = tris(2-tert-butylphenyl) phosphite) as was evidenced by NMR and IR spectroscopy, meaning that only one CO ligand is replaced by the bulky phosphite instead of two, which is the case with triphenylphosphine. Under hydroformylation conditions (after adding alkene), in situ IR showed that the same species was most abundant. Thus, his results indicate that the bulky phosphite modified system behaves differently from the triphenylphosphine-modified system.

Table 1. Influence of the Phosphite/Rhodium Ratio on the Different Reaction Parameters (Conditions: $T = 80$ °C, $P_{CO} = P_{Rh} = 10$ bar, [Rh(CO)$_3$Acac] = 0.1 mmol dm$^{-3}$, [oct-1-ene] = 0.86 mol dm$^{-3}$ in 20 mL of toluene)

<table>
<thead>
<tr>
<th>P/Rh</th>
<th>conv (%)</th>
<th>$k_{aldehyde}$ ($\times 10^3$ mol dm$^{-3}$ h$^{-1}$)</th>
<th>n/iso</th>
<th>iso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>39.7</td>
<td>2.0</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>38.4</td>
<td>1.9</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>32.5</td>
<td>1.9</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>38.5</td>
<td>1.9</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>43.2</td>
<td>1.9</td>
<td>12</td>
</tr>
</tbody>
</table>

For all substrates a 100% conversion could eventually be reached. To compare the results properly, we decided to present in the tables data obtained at similar substrate conversions.

Oct-1-ene
First, it was determined which tris(2-tert-butyl-4-methylphenyl) phosphite/rhodium ratio was sufficient to be certain that all rhodium particles are converted in situ into the active complexes and all the effects measured could be ascribed to the other varied conditions. Jongsmaj found an enhancement in reaction rate at increasing phosphite/rhodium ratio and proved that at low phosphite concentrations Rh(CO)$_3$Acac is not converted completely to a hydride. Table 1 summarizes the results of varying the P/Rh ratio. All results remained equal as the P/Rh ratio increased, and it was decided to use a minimum ratio of 50 in the kinetic experiments at a total rhodium concentration of 0.1 mmol dm$^{-3}$.

An increase of the reaction temperature causes an enhancement of both the rate of hydroformylation and that of isomerization, as can be seen in Table 2. Also a slight increase of the n/iso (n/l) ratio is observable. The zeroth-order reaction rate constant for the formation of aldehyde changes from 1.7×10^5 [mol] [mol Rh]$^{-1}$ h$^{-1}$ at 50 °C to 67.3×10^5 [mol] [mol Rh]$^{-1}$ h$^{-1}$ at 90 °C.
and the amount of isomerization products is enlarged from 3% to 24%.

As can be concluded from Table 3 and Figure 1, in our dilute solution, the reaction rate is independent of the octene concentration up to at least 30% conversion. This concentration corresponds to a conversion of 95% if the reaction were carried out in pure octene. In Figure 1, the course of a typical reaction, performed at standard conditions, is drawn and it shows that the octene concentration decreases linearly with the reaction time up to even 60% conversion in this dilute solution. The ratio of the products that are formed (both of the aldehydes and internal octenes) is constant during that time. When the reaction of oct-1-ene begins to slow down, the internal octenes, formed via isomerization of oct-1-ene, are hydroformylated as well, resulting in several branched aldehydes and hence causing a disturbance in the initial normal to branched ratios.

We repeated these reactions under pseudo-zeroth-order conditions in CO and H₂, i.e., 80 bar CO/H₂ (runs 13–15), and these results confirmed what we stated before: in the higher concentration region, no substrate dependency was observed. From ≈50% conversion of our standard oct-1-ene concentration (=0.86 M), the octene appears in the reaction equation as we found indeed for the low concentration experiment a lower initial rate in agreement with Figure 1. The order we determined for that region was around 0.3.

We also studied the effects of the rhodium precursor concentration on the rate of the hydroformylation reaction. To avoid exothermic temperature effects at high catalyst concentrations and 80 °C, we did the measurements at 60 °C and we varied the rhodium concentration from 0.2 to 8 times our standard concentration. From Figure 2 it is clear that the rate of formation of the product aldehydes is linearly proportional to the rhodium precursor concentration. So it can be concluded that the reaction rate has in this low concentration region a first-order dependency on the rhodium concentration. From this figure, it can also be concluded that diffusion of the gases into the solution is not rate-limiting. Otherwise, at enhanced rhodium concentrations, i.e., at higher overall gas consumptions, this diffusion limitation would have shown up in decreased reaction rates, higher amounts of isomerized alkene, and a higher normal (n) to iso ratio. None of these phenomena were observed (see also Experimental Section).

Variation of the total pressure (P_Co/P_H2 = 1) causes a slight increase in the hydroformylation reaction rate, and the normal to iso ratio decreases from 2.1 to 1.8 (Table 4). However, the formation of internal octenes, caused by isomerization of oct-1-ene, decreases significantly at higher overall pressures. The table shows that the rate of formation of both the normal and the branched aldehydes as well as the rate of the isomerization reaction is first order in H₂ concentration. No significant change in the n/iso ratio is observable. The hydroformylation reaction rate, however, shows an inverse dependency on the CO partial pressure. At very low CO pressures, the reaction even has a runaway
The pressure dependencies are clear; the H₂ concentration has a slightly positive effect on the reaction rate (see Table 6), the order in pH₂ being approximately 0.2. The CO pressure affects the reaction rate very significantly. The k₀ is decreased by a factor of 3, going from 5 to 40 bar of CO, which corresponds with a negative order in CO (≈ -0.65).

Styrene. From Table 7 it is clear that a P/Rh ratio of 5 is too small to transform all rhodium into an active catalyst but that a ratio of 20 is sufficient.

Variation of the initial styrene concentration hardly influenced the reaction rate and the normal to branched ratio (Table 8). We found an average overall reaction rate of 10.2 × 10³ [mol] [mol Rh]⁻¹ h⁻¹ (T = 70 °C, [styrene] = 0.89 M, rate averaged over about 30% conversion of styrene) which is a factor of 3 lower than the rate found for oct-1-ene.

As in the hydroformylation of other substrates, an increase in temperature leads to an enlarged overall reaction rate but, more noteworthy, to a considerable decrease of the selectivity toward the branched aldehyde...
regioselectivity is also dependent on the H2 pressure; the reaction of the isoaldehyde being slightly less affected (Table 9). At temperatures above 80 °C, the observed rate for isoaldehydes is larger than 1 and the order in H2 for the formation of linear aldehydes is lower than 1 and the order in H2 for the formation of isoaldehydes is larger than 1. This means that the regioselectivity is also dependent on the H2 pressure; at increasing H2 pressure the formation of branched aldehyde is more favored. At an increasing CO/H2 ratio, the hydroformylation reaction is suppressed, the formation of the isoaldehyde being slightly less affected (Table 10). As a result the plot of the rate of formation of branched aldehydes vs CO pressure shows a maximum (Figure 4).
from any significant importance because the reaction rate is found to be independent of the oct-1-ene concentration (provided that \(k_{-1}[CO] \gg k_2[oct-1-ene] \)). The second step where the presence of a CO molecule can inhibit the reaction is in step 6, after the rhodium acyl complex has been formed. After step 5, two onward reactions are possible. First, reaction with \(H_2 \) can take place, which finally results in the starting catalyst complex and product aldehyde. Second, a molecule of CO can occupy the vacant site and a saturated inactive complex is formed, thus inhibiting the completion of the cycle. The order in CO is explained by the equilibrium represented by step 6 in Scheme 2. The resulting negative order in CO suggests that the acyl species rather than the alkyl species is the most abundant species under the reaction conditions; Garland observed RC(O)Rh(CO)\(_x\) in the system without modifying ligands, and although he used a different substrate, neohexene, he found approximately the same rate equation (zeroth order in substrate concentration). The fact that we found an order in CO that is somewhat larger than \(-1\) (about \(-0.5\) to \(-1\)) suggests that certain reaction steps have rates of similar magnitude, which results in a less clear-cut rate equation. It was nearly impossible to derive a useful rate equation comprising all seven steps which can be applied for all substrates, and we are forced to treat the different substrates separately. We start from the experimentally determined concentration dependencies and choose only that part of the scheme that is likely to fit the data (see also cyclohexene discussion).

\(k_{-1} [CO] \gg k_2[oct-1-ene] \) results in the following rate equation:

\[
 r = \frac{k_1[RhP(CO)_2C(0)R][H_2]}{K_0[CO] + 1}
\]

This equation describes the observed first order in \(H_2 \) and inverse first order in CO and is indeed similar to that of the unmodified system, eq 1, described by Markó. A regularly recurring subject is the selectivity to hydroformylation \(uS \) isomerization and the normal to branched ratio. The relation between the observed isomerization and the normal to branched ratio has been clearly explained by Lazzaroni. Isomerization is a result of \(\beta \)-hydride elimination of the isoalkyl bonded to the rhodium. The elimination can occur from two different sides of the secondary bonded alkyl forming either \(1\)-alkene or \(2\)-alkene. Because this reaction has a higher free energy of activation than the hydroformylation reaction and because \(\beta \)-hydride elimination requires a vacant site, the proportion of isomerization is expected to increase with higher temperatures and lower pressures. Lazzaroni showed by means of deuteroformylation of hex-1-ene that indeed the degree of isomerization depended on the reaction conditions. No isomerization occurred at low temperatures, and the amount of deuterated rearrangement products was higher for the branched than for the linear alkyl. At a reaction temperature of 100 °C, for linear alkyls, the hydroformylation predominates \(\beta \)-hydride elimination, but for the branched alkyl, elimination predominates hydroformylation. This was also observed for the bulky phosphate system (see Table 2). In the present system the degree of isomerization increases with temperature. Although isomerization of the linear alkyl is not productive, we exclude \(\beta \)-hydride elimination. Otherwise, our kinetic data would be distributed and not give such a clear picture as is shown here; \(\beta \)-hydride elimination of the linear alkyl species would cause a decrease in the overall rate of formation of aldehydes.

\[
 r = \frac{k_1[RhP(CO)_2C(0)R][H_2]}{K_0[CO] + 1}
\]

For oct-1-ene, the hydrogenolysis is rate-determining (step 7, Scheme 2):

\[
 r = \frac{k_1[RhP(CO)_2C(0)R][H_2]}{K_0[CO] + 1}
\]

This equation describes the observed first order in \(H_2 \) and inverse first order in CO and is indeed similar to that of the unmodified system, eq 1, described by Markó. A regularly recurring subject is the selectivity to hydroformylation \(uS \) isomerization and the normal to branched ratio. The relation between the observed isomerization and the normal to branched ratio has been clearly explained by Lazzaroni. Isomerization is a result of \(\beta \)-hydride elimination of the isoalkyl bonded to the rhodium. The elimination can occur from two different sides of the secondary bonded alkyl forming either \(1\)-alkene or \(2\)-alkene. Because this reaction has a higher free energy of activation than the hydroformylation reaction and because \(\beta \)-hydride elimination requires a vacant site, the proportion of isomerization is expected to increase with higher temperatures and lower pressures. Lazzaroni showed by means of deuteroformylation of hex-1-ene that indeed the degree of isomerization depended on the reaction conditions. No isomerization occurred at low temperatures, and the amount of deuterated rearrangement products was higher for the branched than for the linear alkyl. At a reaction temperature of 100 °C, for linear alkyls, the hydroformylation predominates \(\beta \)-hydride elimination, but for the branched alkyl, elimination predominates hydroformylation. This was also observed for the bulky phosphate system (see Table 2). In the present system the degree of isomerization increases with temperature. Although isomerization of the linear alkyl is not productive, we exclude \(\beta \)-hydride elimination. Otherwise, our kinetic data would be distributed and not give such a clear picture as is shown here; \(\beta \)-hydride elimination of the linear alkyl species would cause a decrease in the overall rate of formation of aldehydes.

\[
 r = \frac{k_1[RhP(CO)_2C(0)R][H_2]}{K_0[CO] + 1}
\]
As only the isoalkylrhodium will form internal alkenes (Scheme 3), the relative amount of branched aldehyde diminishes and the apparent initial normal to branched ratio will be higher, and is indeed the case (see tables). Since 1-alkenes are much more reactive than internal alkenes, significant hydroformylation of the latter will take place only after most of the alk-1-ene has been consumed.

When no β-hydride elimination takes place ($k_2 \gg k_3$), the irreversible step 3 (Scheme 2) determines the regioselectivity and yet the hydrogenolysis step 7 (Scheme 2) is rate-determining. When the substrate conversion is high and the conditions are chosen such that step 3 (Scheme 2) is only reversible for 2-alkyl intermediates, the isomerization products are hydroformylated and the regioselectivity depends on the degree of conversion. The kinetics of the internal alkenes are different, as the coordination of alkene to rhodium (step 2) is rate-determining.

Cyclohexene. A first-order dependency in cyclohexene concentration, a negative order in CO, and a very slightly positive order in H₂ leads to the conclusion that the rate-determining step is no longer the hydrogenolysis reaction (Scheme 2, step 7) as was found for oct-1-ene. The data clearly indicate that one of the steps preceding step 7 is now rate-determining. Most likely, the exchange of one CO ligand for cyclohexene (Scheme 2, step 2) is the slowest step. Due to its internal double bond cyclohexene approaches the rhodium center less easily, i.e.

$$r = k_2[RhH][cyclohexene]$$

(6)

From the assumption that RhP(CO)₃H and RhP(CO)₂H + CO occur in preequilibrium and [Rh₂] = [RhP(CO)₃H] + [RhP(CO)₂H], it follows that

$$r = \frac{K_1 k_2 [RhH][cyclohexene]}{K_1 + [CO]}$$

(7)

This relation describes both the observed orders in the rhodium precursor and cyclohexene and the negative order in CO. The kinetic expression would also be in accordance with step 3 being the rate-determining step following a fast preequilibrium of steps 1 and 2. However, this seems unlikely since upon migration (Scheme 2, step 3) the steric repulsion is released.

Our results are not completely in agreement with the kinetic results that Markó obtained with the rhodium carbonyl system. He observed an equal dependence in the cyclohexene concentration but he did not notice any influence of the CO partial pressure, for which we found an order between -0.6 and -0.7. This can be due to the different nature of the active complexes HRh(CO)₄ and HRhP(CO)₃ (P = tris(2-tert-butyl-4-methylphenyl)phosphite). Furthermore, HRh(CO)₄ is in equilibrium with a tetrameric rhodium cluster. The complexes may have a different aptitude for CO dissociation resulting in a different overall kinetic equation. Little mechanistic research has been done on the triphenylphosphine-modified rhodium-catalyzed hydroformylation of cyclic alkenes because of their poor reactivity, but it would seem that also for these catalysts the association of metal and alkene is rate-determining.

Styrene. The hydroformylation of styrene with the bulky phosphite modified catalyst is somewhat slower than that of oct-1-ene. This is in contrast with results obtained with Rh₄(CO)₁₂ and RhH(CO)(PPh₃)₃ as catalyst. With Rh₄(CO)₁₂ as the catalyst, styrene reacted more than twice as fast (124 × 10⁻⁶ [mol] [min]⁻¹ for styrene vs 50.1 × 10⁻⁵ [mol] [min]⁻¹ for oct-1-ene, 5.3 × 10⁻² mM Rh₄(CO)₁₂, 75 °C, P = 130 bar). With the triphenylphosphine-modified catalyst, styrene reacted somewhat faster than the unsubstituted 1-alkenes as hex-1-ene, hept-1-ene, and dodec-1-ene (styrene: 2.8 cycles/h vs hex-1-ene and hept-1-ene 2.3 and dodec-1-ene 2.0 cycles/h, 2.5 mM catalyst concentration, 1.0 M substrate in benzene, 25 °C, 0.7 bar, CO/H₂ = 1) although comparison were is difficult because of the different kinetic expression found for this catalyst system. The lower rate of the bulky phosphite catalyst for styrene vs 1-octene cannot be assigned to the larger phenyl substituent at the alkene, since the addition of alkene to rhodium does not show up in the rate equation; also in the report of Lazzaroni the rate of styrene conversion is independent of the styrene concentration in the range of 0.4 to 2.4 mol dm⁻³ (180 bar, 90 °C, Rh₄(CO)₁₂ catalyst). It is also unlikely that the hydrogenolysis reaction would strongly depend on the nature of the organic fragment of the rhodium acyl group (respectively 1-nonanoyl, 2-methyloctanoyl, 2-phenylpropionyl, 3-phenylpropanoyl), although a slightly different rate (k_7 and k_8) for the 2-phenylpropionyl might be expected. In the extreme situation, with reaction 7 (Scheme 2) being rate-determining, the iso/normal product distribution reflects the concentrations of the iso and normal acyl species, which are on their turn are determined by the rates of the insertion reactions (step 3, Scheme 2) leading to the iso and normal alky species, provided that these reactions are irreversible. Since the overall reaction rate is independent of styrene concentration but lower than that of oct-1-ene, and since the hydrogenolysis rate and K_a are expected to be of similar magnitude, we conclude that the concentrations of the acylrhodium species with styrene are lower than those with oct-1-ene in the concentration regime studied here. In other words, rhodium does not reside completely in the acyl stage (as it does with oct-1-ene), but it does not reside in the hydride stage either (as it does with cyclohexene or cyclooctene). The product distribution and its dependency on the CO pressure hint as to the explanation of these phenomena.

Deuterioformylation of styrene at 60 °C has been shown to involve an irreversible alkene insertion step. The iso to normal ratio reported was 15 (180 bar). At higher temperatures the iso/normal ratio decreases ($ln = 5$ at 90 °C, total pressure = 180 bar). The present rhodium catalyst modified with a bulky phosphite gives a lower iso/normal ratio (10.6 at 51 °C, 2.1 at 90 °C, total pressure = 22 bar). We presume that also in this instance the styrene insertion is irreversible. The isomer ratio reflects the preference of the styrene insertion reaction, modified by small differences in the structure of the substrates.

The ratio branched alkyl species (1-phenylethyl, Scheme 3, must be related to the resonance-stabilized species (Scheme 3, 5) suggested before in 1974 by Tanaka et al. and in 1983 by Tolman and Faller. These kinds of benzyl complexes are known for rhodium and platinum. After the migratory insertion, a coordinatively and electronically unsaturated metal complex is formed. For 1-phenylethyl, however, this unsaturation is released by coordination in a η^2-fashion (5). The relative stability of this species is crucial in styrene carboxylation and hydroformylation, e.g. insertion of styrene into a palladium acetyl bond gives an η^3-bonded 1-phenylethyl group. Depending upon the conditions of the rhodium-catalyzed hydroformylation of styrene, a substantial amount of the rhodium complex may reside in this η^3-1-phenylethyl state. When migratory insertion of an alkene into rhodium hydride leads to an η^2-alkylrhodium species (1-octyl, 2-methylheptyl, 2-phenylethyl, Scheme 3, 2), the vacant site will be occupied by carbon monoxide or phosphate ligand with a high rate; under these reaction conditions the insertion is now irreversible and the regioselectivity of the reaction has been determined. The η^3-1-phenylethyl species (Scheme 3, 5) remains in a state that may easily undergo deinsertion.

Ojima presented a different explanation for the higher selectivity toward the branched aldehyde. When electron-withdrawing substituents are involved, the C$_\text{p}$-metal bond of a π-olefin complex should be stronger than the C$_\text{b}$-metal bond, resulting in a preferred migration of the hydride to the C$_\text{p}$ forming an isoalkyl metal species. According to the author, the normal to branched aldehyde ratio reflects the ratio of the isoacyl and n-acyl metal species provided that the hydrogenolysis is not rate-determining. If hydrogenolysis is the rate-determining step, isomerization of the acyl metal complexes can occur, giving rise to an increased iso/n aldehyde ratio. Although an (η^3-1-phenylethyl)rhodium species was never observed during a catalytic reaction, the recent results of Lazzaroni about the extreme susceptibility of the 1-phenylethyl intermediate toward β-hydride elimination support the occurrence of the η^3-phenylethyl compound.

From the reaction data it becomes immediately clear that more so than for oct-1-ene, the β-hydride elimination is a crucial step in determining the product distribution. For styrene, however, the progress of this reaction cannot be established by the presence of isomerization products. As for oct-1-ene, β-hydride elimination has a higher free energy of activation than the hydrogenolysis reaction at the end of the hydroformylation cycle. As a result, the proportion of β-hydride elimination increases with temperature. The branched alkyl species, in this instance 1-phenylethyl, is more sensitive to elimination than the linear alkyl species and hence the observed linearity of the product increases, as was clearly pointed out by Lazzaroni. The results with bulky phosphite rhodium catalysts fit perfectly well with those obtained with rhodium carbonyl catalysts, although the latter are slower.

The importance of intermediate 5 is also expressed in the ratio of the formation of branched and linear products as a function of H$_2$ and CO pressures (Figure 4, Table 10). The first-order dependency of the rate of formation of linear aldehyde (3-phenylpropanal) on H$_2$ pressure indicates that the hydrogenolysis of the acyl complex (Scheme 2, step 7) is rate-determining. The turnover frequency (TOF) to the branched aldehyde (2-phenylpropanal) shows an observed reaction order in H$_2$ slightly higher than 1. The reaction rates do not exceed those of oct-1-ene. We explain this as follows. The rate-determining step is again the hydrogenolysis reaction (Scheme 2, step 7) but upon depletion of the acyl species the branched one can be replenished at a higher rate because of the reservoir of 5 and the fast reaction 3 (Scheme 2) leading to 5. In other words the ratio of the concentrations of the rhodium acyl and η^3-1-phenylethyl species changes with the syngas pressure, and a rigid treatment with reaction 7 (Scheme 2) as being rate-determining is no longer valid. The dependency on CO pressure is more instructive. The rate of formation of 3-phenylpropanal decreases proportionally with the inverse of the CO pressure. Again this is the same as found for the kinetics of the reaction of oct-1-ene to nonanal. Interestingly, the rate of formation of 2-phenylpropanal increases when the CO pressure is raised from 5 to 16 bar (pH$_2$ = 11 bar, 80 °C) and decreases again when the pressure is raised from 16 to 33 bar (Figure 4). The initial increase is caused by the conversion of 5 to the corresponding acyl species; a higher concentration of the acyl species gives a higher overall rate of reaction. When most of the rhodium rests in the acyl state, a further increase of the CO pressure...
cannot lead to further acceleration, instead the “normal” inhibition via equilibrium 6 becomes dominating.

The influence of the CO pressure on the rate of the formation of the branched product clearly explains why the product ratios in literature data of styrene hydroformylation depend so strongly on the pressure. If both modes of styrene insertion are irreversible (low temperature, high CO pressure, high ligand concentration), the iso/1 ratio is very high (10–25) (case 1). Conditions can be set such that only the formation of the linear (2-phenylethyl)rhodium complex is irreversible. Now, kinetically, a highly linear product can be produced (case 2). A third possibility arises when all reactions 1–6 are reversible and yet reaction 7 (Scheme 2) is rate-determining. In this instance (case 3) the normal to branched ratio is determined by the ratio of the concentrations of the equilibrated acyl species.

Looking at these mechanistic considerations, it is clear that neither the kinetic expression for oct-1-ene nor the expression for cyclohexene is suitable for the styrene substrate. An analytic expression taking into account all reactions describing these features would be rather complicated.18

Conclusions

In general, the tris(2-tert-butyl-4-methylphenyl)phosphite modified rhodium hydroformylation catalyst is an excellent catalyst, particularly for unsubstituted alk-1-enes, yielding high rates under mild conditions.

The catalyst system exhibits simple kinetics for oct-1-ene and cyclohexene while those for styrene are more complicated. The kinetics of oct-1-ene and cyclohexene resemble those of the Rh2(CO)12 system as studied by Markó and are clearly different from the triphenylphosphine-modified rhodium catalyst. The kinetics of oct-1-ene are reduced to a simple equation by virtue of the relative inertness of the isomerization product. Reaction 3 of Scheme 2 is irreversible under the conditions studied, while reaction 7 is rate-determining. As a result the regioselectivity is determined in step 3, and beyond this step no normal to iso equilibration takes place.

For cyclohexene, the rate-limiting step lies at the beginning of the cycle; the initial reaction of the alkene with the rhodium hydride species is the slowest step.

For styrene, in contrast to oct-1-ene, β-hydride elimination has an important influence on the regioselectivity; the selectivity for the branched product increases at lower temperatures and higher pressures.

Experimental Section

General Information. All preparations were carried out under an atmosphere of nitrogen or argon by using standard Schlenk techniques. Solvents were distilled from sodium/benzophenone prior to use. Oct-1-ene was distilled from sodium; cyclohexene and styrene were percolated over neutral alumina. Rh(CO)Acac was purchased from Johnson Matthey and trimethylphosphite from Aldrich and both were used as received. Gas-liquid chromatography analyses were done using a DB 5 column and a Carlo Erba GC 6000Vega series 2 chromatograph. NMR measurements were performed on a Bruker AC 100 or AMX 300 spectrometer. Chemical shifts are given in ppm using TMS or H2PO4 as standard.

Hydroformylation studies were performed in a stainless steel autoclave (181 mL) containing a glass beaker. The autoclave is magnetically stirred and equipped with a reservoir, a pressure transducer, a thermocouple, and a sampling device. The beaker was charged with the rhodium precursor (Rh(CO)Acac), the tris(2-tert-butyl-4-methylphenyl)phosphite, and an internal standard (decane) and filled with toluene up to 20 mL. The autoclave with the beaker was closed and flushed several times with CO/H2 and was brought under pressure. After the catalyst solution was heated, the substrate was charged to the reservoir and added to the reaction mixture by overpressure. Upon this addition, the reaction started immediately as was evidenced by a pressure drop and an increase of the temperature. Attention was paid to the gas consumption at 30% conversion; at the given alkene concentration and gas volume, less than 10% of the gases was consumed. During the reaction, a number of samples were taken and immediately quenched (by P(OMe)3) so that a catalytically inactive rhodium complex was formed. These samples were analyzed by GC. The reaction rates for oct-1-ene and styrene are represented by the turnover frequencies (TOF), i.e. the total amount of formed aldehydes recalculated to moles of aldehydes per mole of rhodium per hour. The zeroth-order dependence of the reaction rate of the substrate concentration allowed us to average the TOFs over the reaction time.

Figure 5. Dependency of the turnover frequency (TOF) of isomerization and regioselectivity on the stirring rate. ✦ = TOF/1000 mol [mol Rh]−1 h−1, x = % isomerization products, □ = n/i ratio. Conditions: T = 80 °C, P(N2) = P(CO) = 10 bar, [Rh(CO)Acac] = 0.1 mmol dm−3, [(2-tBu-4-MeC6H4O2)3P] = 5 mmol dm−3, P/Rh = 50, [oct-1-ene] = 0.86 mol dm−3 in 20 mL of toluene.

The reaction rate eventually remains constant. Up to 100 rpm, the turnover frequency deviates during the reaction, so average values are presented here. Furthermore at low stirring rates the isomerization rate is somewhat lower; at 100 rpm 10.8% isomerized oct-1-ene is formed and from 900 rpm the amount of isomerized oct-1-ene stays around 2%. Consequently the percentage of linear aldehydes is somewhat lower at high stirring rates (a very slight change was obtained; the n/i decreased from 2.10 to 1.91). We worked at a stirring rate of 1100 rpm, situated in the adequate region. At the extremely low rhodium concentrations applied and our standard reaction conditions it is not likely that the reaction rate is limited by
mass transfer. As we work with 2 µmol of rhodium precursor, the overall gas consumption will be low in spite of the high TOF’s.

Preparation of Tris(2-tert-butyl-4-methylphenyl) Phosphite. PCl₃ (10.1 g, 73.3 mmol) was added dropwise under stirring at 70 °C to 48.15 g (293.1 mmol) of 2-tert-butyl-4-methylphenol in 30 mL of toluene. When all PCl₃ was added, the mixture was heated slowly (in 30 min) to 150 °C and stirred at this temperature for 3 h. Meanwhile, the formed HCl was removed several times by evacuating the mixture. After being cooled to 70 °C, the mixture was again evacuated for 15 min. The product was precipitated by addition of 100 mL of CH₃CN. The precipitate was filtered off and washed with 100 mL of CH₃CN. The product was purified by recrystallization from toluene/CH₃CN. Yield: 23.26 g (61%) of white crystals. ³¹P NMR (CDCl₃): δ 131 ppm. ¹H NMR (CDCl₃): δ 1.4 ppm (s, 9H, tBu), 2.3 ppm (s, 3H, Me), 7.1 (m, 3 H, aromatic). Mp: 111 °C.

Supplementary Material Available: Total derivation of equations in ref 18 and the rate equations used (4 pages). Ordering information is given on any current masthead page.