Uniaxial pressure dependence of the superconducting phase diagram of UPt3
van Dijk, N.H.; de Visser, A.; Franse, J.J.M.; Taillefer, L.

Published in:
Physica B-Condensed Matter

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Uniaxial pressure dependence of the superconducting phase diagram of UPt₃

N.H. van Dijk*a, A. de Vissera, J.J.M. Fransen, L. Tailleferb

a Van der Waals Zeeman Laboratory, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
b Department of Physics, McGill University, H3A 2TW Montreal, Canada

Abstract

Thermal expansion and magnetostriction techniques have been applied in order to determine the superconducting phase diagram of UPt₃ (B || c and B ⊥ c). The uniaxial pressure dependence of the various phases, as determined with the Ehrenfest relations, is strongly anisotropic. For pressure along the c-axis we obtain \(\frac{dA_T}{dp_c} = -22.3 \text{ mK/kbar} \), and for pressure along the a-axis, \(\frac{dA_T}{dp_a} = 4.9 \text{ mK/kbar} \). The phase diagrams are discussed in view of the relevant Ginzburg-Landau models.

The heavy-fermion superconductor UPt₃ is one of the strongest candidates for unconventional superconductivity. Measurements of the specific heat [1], the sound velocity [2] and the thermal expansion [3] in a magnetic field revealed a complex superconducting phase diagram with at least three superconducting (SC) phases. Dilatometry experiments were performed on a single-crystalline UPt₃ sample (dimensions \(a \times b \times c = 3 \times 1 \times 2 \text{ mm}^3 \)). The coefficient of linear thermal expansion, \(\alpha(T) = \left. \frac{1}{L} \right| \frac{dL}{dT} \), and the linear magnetostriction, \(\lambda(B) = \left. (L(B) - L(0))/L(0) \right| \), were measured using a sensitive parallel-plate capacitance dilatometer [3]. Measurements of the dilatation along the c-axis, and recently along the a-axis, have been performed for \(B || a, B || b \) and \(B || c \).

Locating the anomalies at the SC phase boundaries detected by the thermal expansion and the magnetostriction measurements, in the \(B - T \) plane the SC phase diagrams of Fig. 1 result. The phase diagrams show three SC phases (labelled A, B and C). For both field orientations the three SC phases and the normal state (N) meet at a tetracritical point (TP). In zero field two SC transitions are observed at \(T_c^* = 0.493(2) \text{ K} \) and \(T_c^* = 0.438(2) \text{ K} \). The TP is located at \(T_c^* = 0.389(3) \text{ K} \) and \(B_c^* = 0.443(5) \text{ T} \) for \(B || c \) and at \(T_c^* = 0.351(3) \text{ K} \) and \(B_c^* = 0.948(5) \text{ T} \) for \(B || b \). No significant anisotropy was observed for fields in the basal plane (\(B || a \) and \(B || b \)).

In order to determine the uniaxial pressure dependence of the superconducting phase lines we apply one of the Ehrenfest relations, \(\frac{dA_T}{dp_i} = V_n \Delta \gamma_i \Delta T \), where \(p_i (i = a, b, c) \) refers to the uniaxial pressure and \(V_n \) to the molar volume. Using our thermal-expansion data [3] and the specific-heat data [1] we calculate the following values for the initial uniaxial pressure dependence of \(T_c^* \) and \(T_c^* \):

- \(\frac{dA_T}{dp_a} = -4.9 \text{ mK/kbar} \)
- \(\frac{dA_T}{dp_b} = -13.5 \text{ mK/kbar} \)
- \(\frac{dA_T}{dp_c} = -8.8 \text{ mK/kbar} \)

The uniaxial pressure dependence of \(T_c^* \) is highly anisotropic and in good agreement with specific-heat measurements under pressure [4], as shown in Fig. 2 for \(p || c \). The splitting \(\Delta T_c = T_c^* - T_c^* \)

* Corresponding author.

0921-4526/94 $07.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0921-4526(93)E0381-P
The superconducting phase diagram of UPt$_3$ for $B \perp c$ and $B \parallel c$, constructed from the anomalies detected in the thermal expansion (△) and the magnetostriction (■).

Fig. 1. The superconducting phase diagram of UPt$_3$ for $B \perp c$ and $B \parallel c$, constructed from the anomalies detected in the thermal expansion (△) and the magnetostriction (■).

Fig. 2. Comparison of the uniaxial pressure dependence of T_c for $p \parallel c$ according to the Ehrenfest relations and the measured values (●) [4] (renormalised at T_c). The dashed line and the dash-dotted line correspond to an extrapolation of the NC and BC phase lines, respectively.

In the frequently used Ginzburg–Landau scenario with a symmetry breaking field (SBF) ℓ, the hybrid gap function ($E_{1\ell}$) is given by $\psi(k) = \eta_x k_x k_x + \eta_y k_y k_y$, where the complex vector $\eta = (\eta_x, \eta_y)$ determines the order parameter (E model) [6]. The A, B and C phases then correspond to the (1, 0), the (1, $\pm i$) and the (0, 1) phase, respectively ($B \perp c$). Above the critical pressure p_c, the SBF vanishes, leading to a critical point where the (1, 0) phase is suppressed and the (1, $\pm i$) phase transforms into the (1, $\pm i$) phase under pressure. The specific heat anomaly at this transition is relatively small and given by $\Delta(c/T) \propto (d\varepsilon/dT)^2$. In the absence of a SBF the (1, i) phase is most stable in contrast to the prediction of the extrapolated phase diagram under pressure, which favours the (0, 1) phase. Recent calculations [7] indicated a possible transition from the (1, i) to the (1, 0) phase in a field for $p_c > p_{cr}$. The sound velocity measurements [5] partly traced two critical fields for 2.5 kbar ($= p_{cr}$) $< p_c < 3.7$ kbar, but only detected the upper critical field for $p_c > 3.7$ kbar.

An alternative scenario uses two nearly degenerate 1D order parameters (AB model) [8]. Here the A and C phases correspond to states with a different 1D order parameter and the B phase shows a mixing of these 1D order parameters. In this scenario a TP is formed at p_{cr} and the C phase is most stable under pressure, as the B phase is suppressed between $p_{cr} < p_c < p_{co}$. This is in good agreement with the experimental phase diagram. The SC phase diagram, as determined with the Ehrenfest relations, is more in line with the AB model, although the E model can not be excluded. High precision measurements above the critical pressure are needed to resolve this question.
This work was part of the research program of the "Stichting FOM" (Foundation for Fundamental Research of Matter). The work of one of us (A.d.V.) was made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

References

