Uniaxial pressure dependence of the superconducting phase diagram of UPt3

van Dijk, N.H.; de Visser, A.; Franse, J.J.M.; Taillefer, L.

Publication date
1994

Published in
Physica B-Condensed Matter

Citation for published version (APA):
Uniaxial pressure dependence of the superconducting phase diagram of UPt$_3$

N.H. van Dijka,*, A. de Vissera, J.J.M. Fransea, L. Tailleferb

a Van der Waals Zeeman Laboratory, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
b Department of Physics, McGill University, H3A 2T8 Montreal, Canada

Abstract

Thermal expansion and magnetostriction techniques have been applied in order to determine the superconducting phase diagram of UPt$_3$ ($B \parallel c$ and $B \perp c$). The uniaxial pressure dependence of the various phases, as determined with the Ehrenfest relations, is strongly anisotropic. For pressure along the c-axis we obtain $d\Delta T_c/ dp_c = -22.3$ mK/kbar, and for pressure along the a-axis, $d\Delta T_a/ dp_a = 4.9$ mK/kbar ($\Delta T_c = T_c^+ - T_c^-$). The phase diagrams are discussed in view of the relevant Ginzburg–Landau models.

The heavy-fermion superconductor UPt$_3$ is one of the strongest candidates for unconventional superconductivity. Measurements of the specific heat [1], the sound velocity [2] and the thermal expansion [3] in a magnetic field revealed a complex superconducting phase diagram with at least three superconducting (SC) phases. Dilatometry experiments were performed on a single-crystalline UPt$_3$ sample (dimensions $a \times b \times c = 3 \times 1 \times 2$ mm3). The coefficient of linear thermal expansion, $\alpha(T) = L^{-1} dL/dT$, and the linear magnetostriction, $\lambda_i(B) = (L_i(B) - L_i(0))/L_i(0)$, were measured using a sensitive parallel-plate capacitance dilatometer [3]. Measurements of the dilatation along the c-axis, and recently along the a-axis, have been performed for $B \parallel a$, $B \parallel b$ and $B \perp c$.

Locating the anomalies at the SC phase boundaries detected by the thermal expansion and the magnetostriction measurements, in the $B T$ plane the SC phase diagrams of Fig. 1 result. The phase diagrams show three SC phases (labelled A, B and C). For both field orientations the three SC phases and the normal state (N) meet at a tetracritical point (TP). In zero field two SC transitions are observed at $T_c^+ = 0.503(2)$ K and $T_c^- = 0.389(2)$ K. The TP is located at $T_{cT} = 0.389(2)$ K and $B_{cT} = 0.435(5)$ T for $B \perp c$ and at $T_{cT} = 0.351(3)$ K and $B_{cT} = 0.948(5)$ T for $B \parallel c$. No significant anisotropy was observed for fields in the basal plane ($B \parallel a$ and $B \parallel b$).

In order to determine the uniaxial pressure dependence of the superconducting phase lines we apply one of the Ehrenfest relations, $d\Delta T_i/ dp_i = V_m \Delta \chi_i/ \Delta c (\Delta c T)$, where $p_i (i = a, b, c)$ refers to the uniaxial pressure and V_m to the molar volume. Using our thermal-expansion data [3] and the specific-heat data [1] we calculate the following values for the initial uniaxial pressure dependence of T_c^+ and T_c^-: $d\Delta T_c^+ / dp_a = 0$ mK/kbar, $d\Delta T_c^+ / dp_b = 2.1$ mK/kbar and $d\Delta T_c^- / dp_c = 4.9$ mK/kbar. $d\Delta T_c^- / dp_a = 13.5$ mK/kbar, $d\Delta T_c^- / dp_b = 8.8$ mK/kbar. The uniaxial pressure dependence of T_c is highly anisotropic and in good agreement with specific-heat measurements under pressure [4], as shown in Fig. 2 for $p \parallel c$. The splitting $\Delta T_c = T_c^+ - T_c^-$

* Corresponding author.
The superconducting phase diagram of UPt$_3$ for $B \perp c$ and $B \parallel c$, constructed from the anomalies detected in the thermal expansion (△) and the magnetostriction (■).

Fig. 2. Comparison of the uniaxial pressure dependence of T_c for $p \parallel c$ according to the Ehrenfest relations and the measured values (●) [4] (renormalised at T_c). The dashed line and the dash-dotted line correspond to an extrapolation of the NC and BC phase lines, respectively.

An alternative scenario uses two nearly degenerate 1D order parameters (AB model) [8]. Here the A and C phases correspond to states with a different 1D order parameter and the B phase shows a mixing of these 1D order parameters. In this scenario a TP is formed at p_c, and the C phase is most stable under pressure, as the B phase is suppressed between $p_{\text{cr}} < p_c < p_{\text{co}}$. This is in good agreement with the experimental phase diagram. The SC phase diagram, as determined with the Ehrenfest relations, is more in line with the AB model, although the E model can not be excluded. High precision measurements above the critical pressure are needed to resolve this question.
This work was part of the research program of the "Stichting FOM" (Foundation for Fundamental Research of Matter). The work of one of us (A.d.V.) was made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

References

