Energy Transfer between Inorganic Perovskite Nanocrystals

de Weerd, C.; Gomez, L.; Zhang, H.; Buma, W.J.; Nedelcu, G.; Kovalenko, M.V.; Gregorkiewicz, T.

Published in:
The Journal of Physical Chemistry. C

DOI:
10.1021/acs.jpcc.6b04768

Citation for published version (APA):
Energy Transfer between Inorganic Perovskite Nanocrystals

Chris de Weerd,*‡ Leyre Gomez,*‡ Hong Zhang,‡ Wybren J. Buma,§ Georgian Nedelcu,§∥ and Tom Gregorkiewicz§

1Institute of Physics and 2Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
3Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
4Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland

Abstract: Cesium lead halide nanocrystals are a new attractive material for optoelectronic applications since they combine the advantageous properties of perovskites and quantum dots. For future applications in optoelectronics and photovoltaics, an efficient energy and/or carrier exchange is a necessary condition. Here, we explicitly demonstrate nonradiative energy transfer for colloidal CsPbBr3 nanocrystals. Using time-resolved optical characterization of purposefully prepared batches of nanocrystals with different sizes, we identify the energy transfer which can be driven by the concentration gradient of excited nanocrystals as well as by the bandgap energy difference. The latter process moves the energy from smaller to larger nanocrystals and opens a possibility of directional streaming of the excitation energy in these materials. The observed energy transfer is enabled in the colloids by proximity of individual nanocrystals due to clustering.

1. INTRODUCTION
Metal halide semiconductors with perovskite structure have attracted much interest in the past years due to their high emission efficiencies and low production costs, making them attractive for photovoltaic and optoelectronic applications.1,2 Most of the progress in this research field has been focused on hybrid organic–inorganic perovskites3–6 (e.g., CH3NH3PbI3, CH3NH2PbBr3, etc.) as a solid state material supported on a substrate, with grain sizes outside of the nanoscale. On the other hand, colloidal semiconductor nanocrystals (NCs)7–9 (e.g., CdSe, CdTe, PbS, etc.) have also been widely studied as potential materials due to their optical properties being enhanced by quantum-confinement effects.10–12 The advantages of using semiconductor perovskites and NCs are combined in the colloidal inorganic cesium lead halide NCs (CsPbX3, X = Cl, Br, and I) with cubic perovskite structure. They were first synthesized by Proteescu et al.,13 and their photoluminescence (PL) is characterized by narrow emission bands and high quantum yields (QYs) of 50–90%. The novelty of this material has driven many investigations during the past year, for instance studies of air stability,14,15 optical properties,16,17 and lasing.18–20 To design efficient optoelectronic devices based on semiconductor NCs,2,21,22 the interaction between individual NCs needs to be evaluated and possibly engineered. In particular, for photovoltaic cells, an exciton generated upon photon absorption needs to be either separated into an electron and a hole pair and the free carriers are transported toward the respective electrodes (semiconductor cells),23 or moved toward an interface and be split there (polymer cells).24 In general, there are three possible mechanisms of exciton transfer:25 cascade energy transfer (involving emission and subsequent reabsorption of a photon), Dexter transfer (involving electron exchange interactions), and Förster resonance energy transfer (FRET), mediated by Coulomb interactions between a donor and acceptor. Here, we explore the energy transfer (ET) between NCs, from a donor to an acceptor with a lower bandgap energy. ET between direct bandgap semiconductor NCs is typically described by FRET,26 which depends on the spectral overlap of donor emission and acceptor absorption, and the donor–acceptor Coulomb coupling, determined by the distance between them. ET in closed-packed ensembles of NCs of direct bandgap semiconductors (CdSe, CdTe, PbS, InP, etc.) has been demonstrated in the past by means of changes in the PL spectra and lifetimes.27–30 Also, the energy exchange between NCs of silicon, the most widely used material for photovoltaics and electronics, has been conclusively established.31,32 In hybrid perovskite-based solar cells, energy exchange has just been observed between perovskite films and layers of organic electron and hole acceptors33,34 and a so-called “dots-in-a-matrix” using PbS NCs.35 Accordingly, also exciton transfer between perovskite NCs could be expected but has not been shown until now. To the contrary, a recent study on perovskite NC films revealed no evidence of ET.36 While this negative
result was tentatively explained by large sizes of the investigated materials, the urgent need for further research appeared.

In this work, we investigate ET between cesium lead bromide (CsPbBr₃) all-inorganic NCs with perovskite structure in colloidal state and provide explicit and conclusive evidence of effective ET proceeding from small to large NCs. We show that the ET process in the investigated colloids is enabled by clustering which brings the NCs in direct contact.

2. EXPERIMENTAL SECTION

Materials. Cesium carbonate (Cs₂CO₃, 99.9%, Sigma-Aldrich), octadecene (ODE, 90%, Sigma-Aldrich), oleic acid (OA, 90%, Sigma-Aldrich), oleylamine (OLA, 80–90%, Acros), lead(II) bromide (PbBr₂, 98%, Sigma-Aldrich), and toluene (OA, 90%, Sigma-Aldrich), octadecene (ODE, 90%, Sigma-Aldrich), oleic acid (OA, 90%, Sigma-Aldrich) were synthesized as described by Protesescu et al. 13 Lead(II) bromide, cesium carbonate, and toluene were used in the colloidal synthesis. The halogen and deuterium lamp is used together with a pulsed UV source. The PL emission and excitation light are scattered to a spectrometer (Solar, MSA-130) as an excitation source. The PL emission and excitation light are coupled to a PMT (Hamamatsu R9110). The spectra were corrected for the spectral sensitivity of the setup. The excitation energy, can be tuned between approximately 2.3 and 2.7 eV by controlling the temperature at which the synthesis is performed. 13 Figure 1 shows the optical characterization (see also Figure S1 in the Supporting Information) and TEM images for the materials used in this study (samples A and B). The PL bands (Figure 1a) centered at 2.43 and 2.36 eV for samples A and B with full widths at half-maximum of 0.1 and 0.089 eV, respectively, show a small Stokes shift from their corresponding absorption spectra that exhibit a clear excitonic peak at the onset. The inset shows the samples under UV illumination indicating that they are similarly bright to the eye; a minor difference in color can hardly be distinguished. We have determined a PL quantum yield of ~90% and ~30% for samples A and B, respectively. The TEM images with their corresponding histograms (Figures 1b–e) confirm the formation of cubic NCs with an average edge size of 8.4 ± 1.4 nm (c) and 18.3 ± 2.8 nm (d, e), respectively.

3. RESULTS AND DISCUSSION

The colloidal synthesis yields near-monodisperse CsPbBr₃ NCs with a cubic perovskite structure whose size, and therefore PL emission energy, can be tuned between approximately 2.3 and 2.7 eV by controlling the temperature at which the synthesis is performed. 13
The increase of the lifetime is the most significant on the low-energy side since the transfer takes place from smaller (donors) to larger (acceptors) NCs (see Figure S2). To further investigate the possible PL dynamic change by ET, we measured the time-resolved PL signal at different detection energies. This is shown in Figures 2c and 2d for samples A and B, respectively. As can be seen, they both show a gradual increase of the PL lifetime toward lower energies, consistent with ET toward larger NCs.

A measure for the ET can be determined by comparing the emission of the as-prepared (ET takes place) and diluted (no ET takes place) samples. This is done by fitting both spectra using a number of Gaussian subcomponents centered at arbitrary chosen energies (Figures 3a,b). Upon ET, part of the emission on the high-energy side will decrease and subsequently reappear on the low-energy side. In this way, the area under each respective Gaussian (with the same peak energy) can be compared, providing a measure for the (maximum) amount of transferred excitons. In addition, the PL spectrum of the as-prepared sample can be fitted with a single Gaussian distribution where there remains a large discrepancy in the integrated area under both curves is a measure for the minimum amount of carriers that are transferred. We find a maximum of 50% at 2.4 eV and a decrease of 95% at 2.45 eV.

The Journal of Physical Chemistry C

Figure 2. (a) Normalized PL spectrum for sample A as-prepared (black) and sufficiently diluted (gray), corrected for reabsorption. Plotted in the same graph is the uncorrected spectrum of the as-prepared sample to demonstrate the effect of reabsorption on the emission spectrum. The solid line indicates where the time-resolved signal is detected. (b) PL decay detected at 2.38 eV for the respective samples. (c, d) Normalized time-resolved PL signal recorded at different detection energies for samples A and B, respectively.

Figure 3. PL spectra (corrected for reabsorption) of sample A as-prepared (a, black) and diluted (b, gray). The spectra are fitted using a number of Gaussian subcomponents (dotted lines) with the same peak energy for both samples (indicated by the colored arrows). (c) For each component the increase and decrease of the area under the curve are given. For the chosen components, we find a maximum increase of 50% at 2.4 eV and a decrease of 95% at 2.45 eV.

\[
\log \left(\frac{I_0(\lambda)}{I(\lambda)} \right) = OD
\]

where \(I_0(\lambda)\) is the reabsorption free emission, \(I(\lambda)\) is the measured emission, and OD is the optical density determined from the steady-state absorption. Figure 2 shows the PL spectrum of sample A as measured (black, dotted) and corrected for reabsorption (black); as can be seen, the corrected PL spectrum shifts to the blue but remains asymmetric. On the other hand, being strongly distance-dependent, FRET can be fully eliminated by sufficient dilution. Indeed, we have observed that with increasing dilution the PL spectrum continued to blue-shift until it stabilized upon reaching a sufficiently low NC concentration; see the gray spectrum in Figure 2. We note that upon sufficient dilution, the PL spectrum attains the Gaussian shape, as expected. We conclude that the gray spectrum represents the true PL of sample A, free from any effects of ET; the fact that it is not identical with the corrected one for reabsorption (black) indicates the presence of ET. In the case of molecules, when the donor can be selectively excited, the ET can be directly monitored by investigating the PL dynamics by the time-dependent rise of the acceptor emission. In the case of ET between NCs, it is not possible to excite the donor without simultaneous excitation of the acceptor. However, the lengthening of the PL lifetime as a result of multiple ET events taking place prior to radiative recombination should appear. We remark that in principle the lengthening of the PL lifetime can still take place even upon even further dilution, a considerable blue-shift of the PL spectrum was observed, as ET can be eliminated by reducing the concentration (as previously explained in Figure 2a). Nonetheless, all PL spectra
are corrected for a possible remaining reabsorption. Figure 4a shows the PL spectra of the samples A and B and their different mixtures. We clearly observe a shift of the PL spectrum, with the maximum changing continuously from that of the small NCs (sample A) to that of the larger ones (sample B) while an increasing fraction of small NCs is gradually substituted by the large ones. Furthermore, for the 1:1 and 1:4 mixing ratios (blue and green spectra), a shoulder appears, being consistent with the two different sizes present in the sample. Figure 4b shows the time-resolved PL signal for samples A and B and the 1:1 mix (brown, orange, blue), detected at 2.39 eV. Included in the same graph is the simulated decay trace of the 1:1 mixed sample. This is obtained from simply summing the two experimentally obtained PL decay signals of samples A and B and subsequent dividing by two. It can be clearly seen that the simulated and experimentally obtained PL decays are not identical. This indicates that an additional transfer processes is enabled upon mixing.

The ET can be further analyzed by comparing the experimentally measured PL spectra of the mixed samples and their simulated spectra. The latter are obtained, similarly as shown in Figure 4b, from adding the measured PL spectra of samples A and B according to their mixing ratios.

Figure 5. (a) PL spectra of sample A and B and the 1:1 mixed colloid. The dotted lines represent the simulated PL spectra of the mixed sample using nominal (a) and scaled (b) composition. All PL spectra have been corrected for reabsorption.

Figure 5 shows the PL spectra of samples A and B and the 1:1 mixed colloid (solid lines). The dotted lines indicate the simulated spectra using nominal (Figure 5a) and scaled (Figure 5b) 1:1 composition. A considerable ET from the donors to the acceptors has to be assumed in order to fit the experimental data: the contribution of the large NCs to the emission had to be enhanced by a factor of 1.6. This is the result of donors transferring their energy instead of emitting. For the 4:1 and 1:4 mixed colloidal suspensions, similar discrepancies between the experimentally measured and simulated PL spectra are observed (see Figure S4).

The spectral and temporal changes as shown in Figures 4 and 5 upon the introduction of acceptors, which cannot be modeled and correctly predicted using equal contributions of the donors and acceptors, are consistent with the presence of ET. Figure 5b shows a considerable transfer from the donors to the acceptors. For completeness we note that an alternative explanation of spectral modification by ligand exchange between NCs of samples A and B upon mixing can be disregarded since, as discussed, evidence of ET has also been obtained for both samples separately, before mixing. However, the dynamic interaction of the ligands with the NC surface can be responsible for clustering of the NCs with time, which, in turn, enables the ET.

In the past investigations, ET between semiconductor NCs has mostly been observed in close-packed solids and seldom in dispersed colloids. In order to further investigate the ET in colloidal dispersions reported here, the NCs aggregation was examined. The TEM results revealed the presence of NC clustering (see Figure S5). Although it is known that these NCs self-assemble upon drying, it is consistent with the observations of precipitated NCs, and it also explains the spectral modifications upon time. An enhancement of ET as the colloids are allowed to settle for a few hours after mixing is observed (see Figure S6). Upon clustering, the contribution of the acceptors emission to the PL spectrum significantly increases. This indicates ET between NCs, but could alternatively be interpreted being due to sintering and formation of bigger chunks of material. However, since the clustering involves a large amount of NCs, the PL maximum would red-shift to the bulk value, which is not the case.

4. CONCLUSIONS
We have established the presence of effective ET between inorganic perovskite CsPbBr3 NCs in colloidal state, driven by concentration and energy gradients. This opens new insights for application of perovskite NCs where the ET can be engineered toward a specific goal.

■ ASSOCIATED CONTENT
■ Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b04768.

Absorption spectra of all considered samples with and without correction for the solvent absorption and the corresponding PL spectra (Figure S1); PL lifetimes at different detection energies for sample A (Figure S2); comparison of the normalized PL spectra measured and simulated (Figure S3); fitting of the normalized PL spectra of sample A corrected for reabsorption (Figure S4); TEM image of NCs aggregation (Figure S5); normalized PL spectra for the different mixed samples (Figure S6) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
* (C.D.W.) Tel (+31) 205255644, e-mail c.deweerd@uva.nl.
* (L.G.) Tel (+31) 205256339, e-mail l.gomeznavascues@uva.nl.
Author Contributions
C.d.W. and L.G. contributed equally. C.d.W., L.G., and T.G. conceived the project and designed the experiments; L.G. and G.N. prepared the samples; C.d.W. performed the spectroscopy measurements; G.N. and M.V.K. performed the TEM measurements; C.d.W. analyzed the data; C.d.W., L.G., and T.G. interpreted the data and cowrote the manuscript; H.Z. and W.J.B. facilitated the ultrafast time-resolved experiments; H.Z., W.J.B., G.N., and M.V.K. edited the manuscript. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was financially supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM) and by Technologiestichting STW, The Netherlands.

■ REFERENCES

(34) Yin, J.; Corteccia, D.; Krishna, A.; Chen, S.; Mathews, N.; Grimsdale, C.; Soci, C. Interface Charge Transfer Anisotropy in

