Energy Transfer between Inorganic Perovskite Nanocrystals

de Weerd, C.; Gomez, L.; Zhang, H.; Buma, W.J.; Nedelcu, G.; Kovalenko, M.V.; Gregorkiewicz, T.

Published in:
The Journal of Physical Chemistry. C

DOI:
10.1021/acs.jpcc.6b04768

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Energy Transfer between Inorganic Perovskite Nanocrystals

Chris de Weerd,*† Leyre Gomez,*‡ Hong Zhang,* Wybren J. Buma,* Georgian Nedelcu,§∥ and Tom Gregorkiewicz‡

1Institute of Physics and 3Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
2Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
8Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland

Supporting Information

ABSTRACT: Cesium lead halide nanocrystals are a new attractive material for optoelectronic applications since they combine the advantageous properties of perovskites and quantum dots. For future applications in optoelectronics and photovoltaics, an efficient energy and/or carrier exchange is a necessary condition. Here, we explicitly demonstrate nonradiative energy transfer for colloidal CsPbBr3 nanocrystals. Using time-resolved optical characterization of purposefully prepared batches of nanocrystals with different sizes, we identify the energy transfer which can be driven by the concentration gradient of excited nanocrystals as well as by the bandgap energy difference. The latter process moves the energy from smaller to larger nanocrystals and opens a possibility of directional streaming of the excitation energy in these materials. The observed energy transfer is enabled in the colloids by proximity of individual nanocrystals due to clustering.

1. INTRODUCTION

Metal halide semiconductors with perovskite structure have attracted much interest in the past years due to their high emission efficiencies and low production costs, making them attractive for photovoltaic and optoelectronic applications.‡ 3,4 Most of the progress in this research field has been focused on hybrid organic–inorganic perovskites‡ 5–8 (e.g., CH3NH3PbI3, CH3NH3PbBr3, CH3NH3PbCl3, etc.) as a solid state material supported on a substrate, with grain sizes outside of the nanoscale. On the other hand, colloidal semiconductor nanocrystals (NCs)‡ 9,10 (e.g., CdSe, CdTe, PbS, etc.) have also been widely studied as optoelectronic materials because their optical properties are enhanced by quantum-confinement effects.‡ 10–12 The advantages of using semiconductor perovskites and NCs are combined in the colloidal inorganic cesium lead halide NCs (CsPbX3, X = Cl, Br, and I) with cubic perovskite structure. They were first synthesized by Protescu et al.,‡ 13 and their photoluminescence (PL) is characterized by narrow emission bands and high quantum yields (QYs) of 50–90%. The novelty of this material has driven many investigations during the past year, for instance studies of air stability,‡14,15 optical properties,‡ 16,17 and lasing.‡ 18–20 To design efficient optoelectronic devices based on semiconductor NCs,‡ 21,22 the interaction between individual NCs needs to be evaluated and possibly engineered. In particular, for photovoltaic cells, an exciton generated upon photon absorption needs to be either separated into an electron and a hole pair and the free carriers are transported toward the respective electrodes (semiconductor cells)‡ 23 or moved toward an interface and be split there (polymer cells).‡ 24 In general, there are three possible mechanisms of exciton transfer:‡ 25 cascade energy transfer (involving emission and subsequent reabsorption of a photon), Dexter transfer (involving electron exchange interactions), and Förster resonance energy transfer (FRET), mediated by Coulomb interactions between a donor and acceptor. Here, we explore the energy transfer (ET) between NCs, from a donor to an acceptor with a lower bandgap energy. ET between direct bandgap semiconductor NCs is typically described by FRET,‡ 26 which depends on the spectral overlap of donor emission and acceptor absorption, and the donor–acceptor Coulomb coupling, determined by the distance between them. ET in closed-packed ensembles of NCs of direct bandgap semiconductors (CdSe, CdTe, PbS, InP, etc.) has been demonstrated in the past by means of changes in the PL spectra and lifetimes.‡ 27–30 Also, the energy exchange between NCs of silicon, the most widely used material for photovoltaics and electronics, has been conclusively established.‡ 31,32 In hybrid perovskite-based solar cells, energy exchange has just been observed between perovskite films and layers of organic electron and hole acceptors‡ 33,34 and a so-called “dots-in-a-matrix” using PbS NCs.‡ 35 Accordingly, also exciton transfer between perovskite NCs could be expected but has not been shown until now. To the contrary, a recent study on perovskite NC films revealed no evidence of ET.‡ 36 While this negative
result was tentatively explained by large sizes of the investigated materials, the urgent need for further research appeared.

In this work, we investigate ET between cesium lead bromide (CsPbBr3) all-inorganic NCs with perovskite structure in colloidal state and provide explicit and conclusive evidence of effective ET proceeding from small to large NCs. We show that the ET process in the investigated colloids is enabled by clustering which brings the NCs in direct contact.

2. EXPERIMENTAL SECTION

Materials. Cesium carbonate (Cs2CO3, 99.9%, Sigma-Aldrich), octadecene (ODE, 90%, Sigma-Aldrich), oleic acid (OA, 90%, Sigma-Aldrich), oleylamine (OLA, 80—90%, Acros), lead(II) bromide (PbBr2, 98%, Sigma-Aldrich), and toluene (ACS reagent, ≥ 99.5%, Sigma-Aldrich) were used with no further purification, except for the drying period reported in the synthesis procedure.

Synthesis. Cesium lead bromide perovskites (CsPbBr3) were synthesized as described by Protesescu et al.13 Summarizing, 5 mL of ODE and 70 mg of PbBr2 were dried for 1 h at 120 °C under a N2 atmosphere. After water removal, 0.5 mL of dried OLA and 0.5 mL of dried OA were added to the reaction flask, and the temperature was raised up to the desired value. After complete solvation of the PbBr2 salt, 0.4 mL of a previously synthesized Cs-olate solution in ODE was injected. A few seconds later, the NC solution was quickly cooled down with an ice bath. The product was purified by centrifugation and redispersion in toluene. The perovskite synthesis was carried out at two different temperatures, yielding different NC sizes as described in the literature.13 The samples that were studied have a concentration of 0.2 mg/mL, as determined from the dry weight.

Characterization. The optical density of the investigated colloids was measured in a LAMBDA 950 UV/vis/NIR spectrophotometer (PerkinElmer). A combination of a tungsten–halogen and deuterium lamp is used together with a PMT and Peltier cooled PbS detector to provide a detection range of $E_{\text{det}} = 5.6–0.4$ eV. The sample and solvent measurements have been performed separately and afterward subtracted from each other. The PL has been studied under excitation by a Nd:YAG-pumped optical parametric oscillator (OPO) (repetition rate $f \approx 100$ Hz, pulse width $\Delta t \approx 5$ ns, excitation energy $E_{\text{exc}} = 2.88$ eV) and collected under a right-angle geometry and subsequently detected by a CCD (Hamamatsu S10141-1108S) coupled to a spectrometer (Solar, M266) or a PMT (Hamamatsu R9110). The spectra were corrected for the spectral sensitivity of the setup. The samples can also be placed in an integrating sphere to determine the PL quantum yield, using a 150 W xenon lamp coupled to a spectrometer (Solar, MSA-130) as an excitation source. The PL emission and excitation light are scattered coupled to a spectrometer (Solar, MSA-130) as an excitation source. The PL emission and excitation light are scattered coupled to a spectrometer (Solar, MSA-130) as an excitation source.

3. RESULTS AND DISCUSSION

The colloidal synthesis yields near-monodisperse CsPbBr3 NCs with a cubic perovskite structure whose size, and therefore PL emission energy, can be tuned between approximately 2.3 and 2.7 eV by controlling the temperature at which the synthesis is performed.13 Figure 1 shows the optical characterization (see also Figure S1 in the Supporting Information) and TEM images for the materials used in this study (samples A and B). The PL bands (Figure 1a) centered at 2.43 and 2.36 eV for samples A and B with full widths at half-maximum of 0.1 and 0.089 eV, respectively, show a small Stokes shift from their corresponding absorption spectra that exhibit a clear excitonic peak at the onset. The inset shows the samples under UV illumination (365 nm). TEM images (scale bar corresponds to 20 nm) with the corresponding histograms of samples A and B indicating cubic nanocrystals with an edge size of 8.4 ± 1.4 nm (b, c) and 18.3 ± 2.8 nm (d, e), respectively.

Figure 1. (a) Absorption and photoluminescence spectra of samples A and B. The inset shows the samples under UV illumination (365 nm). TEM images (scale bar corresponds to 20 nm) with the corresponding histograms of samples A and B indicating cubic nanocrystals with an edge size of 8.4 ± 1.4 nm (b, c) and 18.3 ± 2.8 nm (d, e), respectively.

The colloidal synthesis yields near-monodisperse CsPbBr3 NCs with a cubic perovskite structure whose size, and therefore PL emission energy, can be tuned between approximately 2.3 and 2.7 eV by controlling the temperature at which the synthesis is performed.13 Figure 1 shows the optical characterization (see also Figure S1 in the Supporting Information) and TEM images for the materials used in this study (samples A and B). The PL bands (Figure 1a) centered at 2.43 and 2.36 eV for samples A and B with full widths at half-maximum of 0.1 and 0.089 eV, respectively, show a small Stokes shift from their corresponding absorption spectra that exhibit a clear excitonic peak at the onset. The inset shows the samples under UV illumination (365 nm). TEM images (scale bar corresponds to 20 nm) with the corresponding histograms of samples A and B indicating cubic nanocrystals with an edge size of 8.4 ± 1.4 nm (b, c) and 18.3 ± 2.8 nm (d, e), respectively. We note that synthesis at a higher temperature (sample B) leads to a larger size distribution of the NCs and an occasional shape deformation. A similar PL line width of both samples A and B (Figure 1a) in spite of the significantly broader size distribution of sample B (Figures 1c,e) is the first indication of a possible excitation flow into a smaller subensemble of emitters.

In case that the energy transfer takes place, one can expect that the ensemble emission spectrum will be reduced on the high-energy side, and part of this intensity loss will reappear at a lower energy, since transfer only occurs from smaller to larger NCs. Such a spectral deformation can be induced by reabsorption of higher energy photons or by direct (photon-less) ET between adjacent NCs; in either case, the measured PL band will be red-shifted and will not have the usual Gaussian distribution of photon energies (resulting from the Gaussian distribution of NC sizes). Since the optical characteristics of the investigated samples are known, the PL spectrum can be easily corrected for reabsorption using the Lambert–Beer law.57,58
The increase of the lifetime is the most significant on the low-energy side since the transfer takes place from smaller (donors) to larger (acceptors) NCs (see Figure S2). To further investigate the possible PL dynamic change by ET, we measured the time-resolved PL signal at different detection energies. This is shown in Figures 2c and 2d for samples A and B, respectively. As can be seen, they both show a gradual increase of the PL lifetime toward lower energies, consistent with ET toward larger NCs.

A measure for the ET can be determined by comparing the emission of the as-prepared (ET takes place) and diluted (no ET takes place) samples. This is done by fitting both spectra using a number of Gaussian subcomponents centered at arbitrary chosen energies (Figures 3a,b). Upon ET, part of the emission on the high-energy side will decrease and subsequently reappear on the low-energy side. In this way, the area under each respective Gaussian (with the same peak energy) can be compared, providing a measure for the (maximum) amount of transferred excitons. In addition, the PL spectrum of the as-prepared sample can be fitted with a single Gaussian distribution where there remains a large discrepancy in integrated area under both curves is a measure for the minimum amount of carriers that are transferred. We find a maximum of 50% increase at 2.4 eV and a decrease of 95% at 2.45 eV.

Figure 3. PL spectra (corrected for reabsorption) of sample A as-prepared (a, black) and diluted (b, gray). The spectra are fitted using a number of Gaussian subcomponents (dotted lines) with the same peak energy for both samples (indicated by the colored arrows). (c) For each component the increase and decrease of the area under the curve are given. For the chosen components, we find a maximum increase of 50% at 2.4 eV and a decrease of 95% at 2.45 eV.

where

\[
\log \frac{I_0(\lambda)}{I(\lambda)} = OD
\]

Figure 2. (a) Normalized PL spectrum for sample A as-prepared (black) and sufficiently diluted (gray), corrected for reabsorption. Plotted in the same graph is the uncorrected spectrum of the as-prepared sample to demonstrate the effect of reabsorption on the emission spectrum. The solid line indicates where the time-resolved signal is detected. (b) PL decay detected at 2.38 eV for the respective samples. (c, d) Normalized time-resolved PL signal recorded at different detection energies for samples A and B, respectively.

Figure 4. (a) Cross-spectral correlation function corrected for reabsorption. (b) Cross-spectral correlation function measured for sample A and B. (c) Cross-spectral correlation function measured for sample C and D.
are corrected for a possible remaining reabsorption. Figure 4a shows the PL spectra of the samples A and B and their different mixtures. We clearly observe a shift of the PL spectrum, with the maximum changing continuously from that of the small NCs (sample A) to that of the larger ones (sample B) while an increasing fraction of small NCs is gradually substituted by the large ones. Furthermore, for the 1:1 and 1:4 mixing ratios (blue and green spectra), a shoulder appears, being consistent with the two different sizes present in the sample. Figure 4b shows the time-resolved PL signal for samples A and B and the 1:1 mixture of samples A and B (Figure S5). Included in the same graph is the simulated decay trace of the 1:1 mixed sample. This is obtained from simply summing the two experimentally obtained PL decay signals of samples A and B and subsequent dividing by two. It can be clearly seen that the simulated and experimentally obtained PL decays are not identical. This indicates that an additional transfer process is enabled upon mixing.

The ET can be further analyzed by comparing the experimentally measured PL spectra of the mixed samples and their simulated spectra. The latter are obtained, similarly as shown in Figure 4b, from adding the measured PL spectra of samples A and B according to their mixing ratios. Figure 5a presents the PL spectra of samples A and B and the 1:1 mixed colloid. The dotted lines represent the simulated PL spectra of the mixed sample using nominal (a) and scaled (b) composition. All PL spectra have been corrected for reabsorption.

Figure 5. (a) PL spectra of sample A and B and the 1:1 mixed colloid. The dotted lines represent the simulated PL spectra of the mixed sample using nominal (a) and scaled (b) composition. All PL spectra have been corrected for reabsorption.

The Journal of Physical Chemistry C
Author Contributions
C.d.W. and L.G. contributed equally. C.d.W., L.G., and T.G. conceived the project and designed the experiments; L.G. and G.N. prepared the samples; C.d.W. performed the spectroscopy measurements; G.N. and M.V.K. performed the TEM measurements; C.d.W. analyzed the data; C.d.W., L.G., and T.G. interpreted the data and cowrote the manuscript; H.Z. and W.J.B. facilitated the ultrafast time-resolved experiments; H.Z., W.J.B., G.N., and M.V.K. edited the manuscript. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was financially supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM) and by Technologiestichting STW, The Netherlands.

■ REFERENCES
(34) Yin, J.; Cortecchia, D.; Krishna, A.; Chen, S.; Mathews, N.; Grimsdale, C.; Sowi, C. Interface Charge Transfer Anisotropy in

