Glass sickness: Detection and prevention
Investigating unstable glass in museum collections

Verhaar, G.

Publication date
2018

Document Version
Other version

License
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
SUMMARY

GLASS SICKNESS: DETECTION AND PREVENTION

Investigating unstable glass in museum collections.
Glass sickness is a term often used to describe visual changes that occur on glass surfaces as a result of chemical deterioration. It is of particular relevance for objects which have been stored indoors for most of their lifetime, such as vessel glass objects in museum collections. Collection surveys carried out in various museums have demonstrated that between 10% and 30% of all glass objects show signs of deterioration and might be unstable.

Typical phenomena related to glass sickness are weeping and crizzling. Weeping is associated with the formation of hygroscopic salts on the glass surface. These salts may attract water to the surface and a moist film, or even droplets, can form. Crizzling is a term used to describe the formation of a fine network of hairline cracks. Both processes often develop gradually, but the onset of crizzling in particular may develop rapidly. It is, therefore, of vital importance to be able to distinguish those glasses prone to deterioration from those which are stable, before changes in appearance occur. At the moment, however, no straightforward method exists for the identification of these unstable glass objects other than visual inspection. This dissertation focuses on the development and implementation of analytical tools to identify unstable glass objects in museum collections straightforwardly and on making recommendations for preferential storage conditions for unstable glass objects.

The overall scope of this dissertation is to gain a better understanding of glass deterioration mechanisms in order to identify potentially unstable glass objects in museum collections and advise about suitable conservation strategies for these objects. The main issue in this research is: How can unstable glass objects in museum collections be identified using non-destructive, readily-available methods before irreversible changes in appearance occur and how can further deterioration of these objects be prevented?

The main method applied in this dissertation is the assessment of glass stability based on the presence of ions on the glass surface. Therefore, ion chromatography is deployed as the main analytical technique as it provides the opportunity to quantitatively analyse ions in aqueous solutions straightforwardly. Four gaps in the academic literature on historic glass deterioration are addressed in this dissertation. Firstly, the research focuses on the presence of compounds on the
surface of the glass rather than looking at structural changes inside the glass. Secondly, the dissertation aims at making recommendations for preventive conservation strategies based on analytical evidence. Thirdly, this study focuses on understanding glass deterioration in the museum environment and, fourthly, the research is aimed at increasing the impact of scientific studies in conservation practice.

Chapter 2 explores the existing body of work on deterioration of glass, in particular related to the decay of unstable glass in museum collections thus providing a theoretical framework for the subsequent chapters. It summarises theories on the chemical principles underlying glass deterioration, maps existing strategies for unstable glass conservation, current methods for analytical examination of historic glass and describes previous research on the development of early warning systems for unstable glass.

This overview demonstrates that glass deterioration is a complex topic, which is still not completely understood. However, existing theories often adequately describe observations made on historic glass. The ion exchange model is most often used to account for observed alterations in unstable historic glass, particularly the formation of an altered surface layer and the related changes in appearance: *weeping* and *crizzling*. Research aimed at developing conservation strategies for glass collections has focused mainly on the two factors influencing glass decay: the composition of the glass itself and the environment in which it is kept.

Compositional analysis of glass is carried out to distinguish between stable and unstable glass and to understand glass deterioration in museum collections. It has been established that in general “high alkali - low lime” glasses are unstable. However, as most historic glasses consist of many more than two or three components, it becomes more difficult to predict glass stability based on compositional analysis. Moreover, the quantitative analysis of the glass composition is only possible through destructive sampling or movement of the objects, for example for analysis in vacuum chambers. Therefore, other methods, such as Raman spectroscopy or ion beam analysis, have been used to investigate the compositional changes associated with glass deterioration and thereby attempt to provide an early warning system for unstable glass. Chapter 2 concludes, however,
that these techniques are not suitable to investigate a large number of objects due to the laborious method of analysis or the complicated data-processing necessary to provide an evaluation of glass stability.

The research of Chapter 2 addresses the issue that although ionic compounds (salts) do indeed form on the surface of unstable glass, this has never been used to make a quantitative assessment of glass stability. The principal ionic compound that has been detected in past research is sodium formate. However, very few attempts have been made to quantify the amount of ions on the glass surface, even though it should be an important parameter in the evaluation of glass stability. The nature of the salts that form is also important in the determination of the preferential storage conditions of unstable glass. Glass collections are often stored at 42%, which is the point at which potassium carbonate deliquesces. Since this is based on theoretical considerations and not on analytical evidence, Chapter 2 finally concludes that more information on the nature of salts on the surface of glass will provide important information for the preferential storage conditions for unstable glass.

Chapter 3 focuses on the implementation of ion chromatography as a technique for the analysis of glass surface deposits. It was demonstrated that ion chromatography is a pertinent technique to identify ionic species on the surface of unstable glasses. The research presented in this chapter acted as a proof of principle for the implementation of making an assessment of glass stability based on ions present on the surface. The method used is to analyse samples taken from locations where a moist layer or droplets had formed on clearly unstable glass objects. In this way the identity of the ions present was ascertained, as well as their consistency with the accepted glass deterioration processes. Although the results clearly demonstrate the value of ion chromatography for the study of glass deterioration, they also highlight the necessity of developing a straightforward yet reliable analytical protocol in order to be able to compare ion concentrations between objects.

On a more fundamental level, Chapter 3 concludes that the recommendation made in 1957 by Robert Organ to store unstable glass at 42% RH, based on the deliquescence of potassium carbonate, is in need of re-evaluation. The range of
ions present on the surface of unstable glass is likely to be associated with the formation of many more different salts than Organ anticipated. Due to the preponderance of formate in the analysed samples, it is likely that the dominant salts on the surface of unstable glass will be either sodium or potassium formate. These salts have a deliquescence relative humidity (DRH) of respectively 50.2-51.6% and 16-17% at room temperature. The low DRH of potassium formate indicates that in certain circumstances there might be no acceptable RH at which the onset of weeping is prevented.

Chapter 4 is solely focused on the development and validation of a reliable sampling and analytical protocol for quantitative analysis of ionic species that are found on the surface of unstable glass in museum collections. The protocol consists of three steps: sampling, extraction and analysis. Ion chromatography provides satisfactory results as both cations and anions of interest could be quantified straightforwardly. Swabbing is selected as a sampling method because of its ease of use and the fact that most conservators are familiar with the use of swabs. Polyester swabs are identified as the most suitable sampling material, as they result in the smallest contribution to the total ion concentration in the samples. Simple extraction in deionized water as the means to get the ions into solution for analysis with ion chromatography was optimised. Validation of the protocol using mock-up samples on Melinex polyester sheet as the substrate demonstrates the high accuracy, precision and reproducibility, and sufficiently low limits of quantification for lithium, sodium, potassium, magnesium, calcium, acetate, formate, nitrite, bromide, nitrate, sulfate and phosphate. Quantitative analysis of chloride and carbonate turned out to be problematic and ion concentrations determined for those two compounds should be regarded with caution.

Chapter 5 deals with studies involving artificial ageing of glass. The experiments carried out in this chapter are designed for two purposes. Firstly, they are aimed at investigating which ions can be attributed to the deterioration of glass, as the suite of ions selected in Chapter 3 includes ions which may be unrelated to glass deterioration. Secondly, the experiments allow for the evaluation of the analytical protocol on samples more closely related to the real-life situation in museum context than the mock-up samples used in Chapter 4.
Sodium and potassium are the main cationic species found on the surface of the glass. Formate and acetate are the main anionic species detected, but their presence on the surface of the glass is largely dependent on the environment in which they are aged. As anticipated, the results indicate that the detection of ions depends on the composition of the glass itself and on the environment in which the glass is kept. This fact is not taken into consideration in the specification of a single preferred target RH for storage of all unstable glass, but might be pivotal in the prevention of advanced deterioration symptoms such as weeping and crizzling.

Chapter 6 focuses on studying ionic species found on the surface of glass objects in museum collections. The main goal of the chapter is to compare ionic species found on unstable glass objects with ionic species found on stable glass objects. In order to achieve this, objects from Museum Boijmans van Beuningen (Rotterdam, The Netherlands) and the Rijksmuseum (Amsterdam, The Netherlands) are included in this study. Both museums have classified part of their collection into different categories based on visual examination of the condition of the objects. The objects included from Museum Boijmans van Beuningen (MBvB) are classified as either stable or unstable. Furthermore, all MBvB objects were cleaned between 2008 and 2011, which resulted in the removal of moist layers on the surface. Objects from the Rijksmuseum (RM) collection are chosen from a collection which was purposefully left uncleaned for this research, but contains objects displaying different stages of deterioration.

Sodium and potassium are indicative of the breakdown of glass for both the MBvB and RM samples. The power of ion chromatography as an analytical tool is demonstrated in particular for the MBvB samples, as higher sodium and potassium concentrations are found on the objects in the unstable group, whereas it would not have been possible to pinpoint them as being unstable with the naked eye. A preliminary classification method for vessel glass in museum collections based on the concentration of ions on the glass surface based on the sample set included in this study is proposed. From the results it can be concluded that the analytical protocol is suitable to act as an early warning system for glass instability. The initial results of this innovative approach thereby not only provide new insights in the field of historic glass conservation, but also pave the way for the straightforward identification of unstable glass objects in museum collections.
The research presented in this dissertation has primarily demonstrated the power of ion chromatography as a key analytical tool in the study of unstable glass objects in museum collections. It was demonstrated that the sum of the alkali ion (sodium and potassium) concentrations could be an indicator for chemical instability of glass objects. This conclusion was reached after investigation of artificially aged replica glasses and museum objects. Conservators had classified all objects under investigation according to their condition and the IC results were compared to this classification. The results presented in the study showed a separation between clearly unstable and stable objects, even when no visible signs of deterioration could be observed. However, some objects from the unstable category showed low ion concentrations, suggesting that they either are “less unstable” than the other objects, or that the applied method is not suitable to determine their stability. Nonetheless the results have demonstrated that the IC protocol is a suitable method to investigate glass stability in museum collections in a relatively quick way, with minimal intervention for the objects. This is the first time that a straightforward method has been devised for the identification of unstable glass in museum collections.

Storage conditions for unstable glass have received much attention in the past. Although analytical evidence for the cause of the onset of weeping was not provided in these publications, the recommendations for storage relative humidity were sufficient to prevent visible deterioration. The goal of specifying a RH for the prevention of glass deterioration is twofold. Firstly, it must attempt to prevent crizzling, which may occur due to the dehydration of the altered surface layer in low RH, by adopting a high (generally > 50%) relative humidity. This is, however, in contradiction with the second goal of climate control for storage of glass: preventing the formation of a moist film on the surface of the glass, which consists of a solution of hygroscopic salts. The recommendations of specific storage conditions are often based on the deliquescence relative humidity (DRH) of specific salts, and as water catalyses the glass deterioration it is often suggested to store glass below the DRH of those salts thought to be responsible for the attraction of water to the glass surface.

This dissertation has aimed at identification of salts on the surface of unstable glass, as this is crucial in the determination of preferential storage conditions for
unstable glass, but hardly any analytical data exists on the nature of salts forming on unstable glass. The wide range of ions found on the surface of unstable glass suggests that a complex mixture of salts could be present. This complicates the matter of finding a specific RH for storage as the DRH of salt mixtures is different than the DRH of the individual salts. However, the dominance of sodium, potassium and formate in the analytical data suggests that either sodium formate or potassium formate are the main salts forming on the surface of unstable glass. The very low DRH of potassium formate (16-17%) suggests that there may not be an acceptable RH which prevents the onset of weeping on all objects in a museum collection. It does, however, underline the necessity of identifying those specific objects on which the highly hygroscopic salts form in order to take specific measures to prevent further deterioration of these objects.
GLASZIEKTE: DETECTIE EN PREVENTIE
Onderzoek naar instabiel glas in museale collecties.
Glasziekte is een term die vaak wordt gebruikt om veranderingen in het uiterlijk van glazen objecten, als gevolg van chemische degradatie, te beschrijven. Deze term wordt in het bijzonder gebruikt voor objecten die gedurende hun bestaan binnenshuis zijn bewaard, zoals hol glas (drinkglazen, kommen, schalen e.d.) in museumcollecties. Het is moeilijk om instabiel glas te herkennen als er nog geen veranderingen in het uiterlijk zijn opgetreden. Uit onderzoek naar de conditie van glas in diverse collecties blijkt dat circa 10 tot 30% van deze objecten tekenen van chemische degradatie vertonen en mogelijk instabiel zijn. Op dit moment bestaat er, buiten visuele inspectie, echter geen eenvoudige methode voor de identificatie van instabiele glazen objecten.

Twee factoren die verantwoordelijk zijn voor het ontstaan van glasziekte zijn: de samenstelling van het glas zelf en de omgeving waarin het glas wordt bewaard. De chemische processen die aan glasziekte ten grondslag liggen komen voort uit de interactie van een glasobject van instabiele samenstelling met water in de atmosfeer. Als gevolg van deze interactie lekken kationen uit het glasnetwerk en worden vervangen door waterstof en hydroniumionen. Dit gaat gepaard met de migratie van moleculair water in het glasnetwerk. Hierdoor vormt zich een laag aan de oppervlakte die uit een relatief hoog percentage water kan bestaan en chemisch gezien verschillend is van de originele samenstelling van het glas. Dit heeft gevolgen voor het uiterlijk van het glas.

Typische verschijnselen die gerelateerd zijn aan glasziekte zijn, bij gebrek aan een geschikte Nederlandse term, weeping en crizzling. De term weeping wordt gebruikt om de vorming van een vochtige laag of zelfs druppels op het oppervlak van glas te beschrijven. De opeenhoping van vocht op het oppervlak van instabiel glas is een gevolg van de aanwezigheid van hygroscopische zouten, die zich vormen als de vrijgekomen kationen reageren met moleculen in de atmosfeer. Deze zouten kunnen water uit de atmosfeer aantrekken waardoor vocht accumuleert op het glasoppervlak. Crizzling is een term die wordt gebruikt om een netwerk van haarscheurtjes te beschrijven en is gerelateerd aan de uitdroging van de toplaag van het glas. Het uitdrogen van deze laag veroorzaakt een afname in het volume wat leidt tot interne spanning, die vrijkomt door scheurvorming. Beide processen ontwikkelen zich vaak geleidelijk, maar vooral crizzling kan zich snel ontwikkelen als de relatieve vochtigheid (RV) in de bewaaromgeving daalt. Het is daarom van
groot belang om onderscheid te kunnen maken tussen stabiel glas en instabiel glas om de ontwikkeling van degradatiepatronen te voorkomen. Dit proefschrift richt zich op de ontwikkeling en toepassing van analytische technieken om instabiele glazen objecten in museumcollecties op een eenduidige manier te identificeren en op het ontwikkelen van geschikte bewaarcondities voor instabiele objecten.

Het doel van dit proefschrift is om beter inzicht te krijgen in chemische degradatie van glazen objecten in museale collecties. De hoofdvraag luidt: *Hoe kunnen instabiele objecten van glas in museale collecties worden geïdentificeerd met behulp van non-destructieve, analytische methoden voordat onomkeerbare veranderingen in uiterlijk plaatsvinden en hoe kan verdere achteruitgang van de conditie van deze objecten worden voorkomen?*

De voornaamste methode die in dit proefschrift wordt toegepast, is de beoordeling van de chemische stabiliteit van glas op basis van de aanwezigheid van ionen op het glasoppervlak. Met behulp van ion chromatografie kunnen ionen, die gerelateerd worden aan degradatie van glas, eenvoudig kwantitatief geanalyseerd worden. Daarom is ion chromatografie in dit onderzoek de belangrijkste toegepaste analytische methode. In dit proefschrift worden vier lacunes in de academische literatuur over degradatie van historisch glas behandeld. Ten eerste wordt onderzocht wat zich op het oppervlak van instabiel glas afspeelt in plaats van dat nadruk wordt gelegd op veranderingen aan de structuur van het glas. Ten tweede richt het proefschrift zich op het doen van aanbevelingen voor preventieve conserveringsstrategieën op basis van analytische gegevens. Ten derde is deze studie gericht op het begrijpen van glasdegradatie in de museale context. Ten vierde is het onderzoek in dit proefschrift gericht op het vergroten van de impact van wetenschappelijke studies op het gebied van glasdegradatie in het beroepsveld van de conservering van historisch glas.

Hoofdstuk 2 onderzocht de bestaande academische literatuur over degradatie van instabiel glas in museale collecties en biedt een theoretisch kader voor de daaropvolgende hoofdstukken. Het vatte theorieën samen over de chemische principes die ten grondslag liggen aan glasdegradatie, bracht huidige strategieën over preventieve conservering van glas in kaart, onderzocht welke methodes worden ingezet ten behoeve van analytisch onderzoek naar historisch glas.
en beschreef eerder onderzoek naar de ontwikkeling van methodes voor de vroegtijdige identificatie van instabiel glas.

Het *ionenuitwisselingsmodel* werd geïdentificeerd als de belangrijkste theorie die chemische processen van glasdegradatie beschrijft die resulteren in uiterlijke veranderingen: *weeping* en *crizzling*. Voor restauratoren en conservatoren is het van groot belang om deze verschijnselen te voorkomen. Onderzoek naar preventie van glasdegradatie heeft zich vooral gericht op twee factoren: de samenstelling van het glas zelf en de omgeving waarin het wordt bewaard.

Hoewel aangetoond is dat ionische verbindingen (zouten) worden gevormd op het oppervlak van instabiel glas, is dit nooit gebruikt voor een kwantitatieve beoordeling van de glasstabiliteit. Daarnaast is de aard van de zouten die zich vormen belangrijk bij het bepalen van de klimaatcondities waarin instabiel glas wordt bewaard. Glascollecties worden vaak opgeslagen bij 42% RV, het punt waarop kaliumcarbonaat water uit de atmosfeer begint te absorberen (kritische relatieve vochtigheid, KRV). Omdat dit gebaseerd is op theoretische overwegingen en niet op analytisch bewijs, concludeerde hoofdstuk 2 uiteindelijk dat meer informatie over de aard van zouten op het glasoppervlak belangrijk is voor de het doen van aanbevelingen voor ideale klimaatomstandigheden waarin instabiel glas wordt bewaard.

Hoofdstuk 3 richtte zich op de toepassing van ion chromatografie (IC) voor de analyse van degradatieproducten aanwezig op het oppervlak van instabiel glas. Er werd aangetoond dat ion chromatografie een geschikte techniek is om ionen op het oppervlak van instabiele glazen te identificeren. Het onderzoek in dit hoofdstuk fungeerde als een *proof-of-principle* voor de beoordeling van de glasstabiliteit op basis van ionen die zich op het oppervlak van het glas bevinden. De monsters die in dit onderzoek zijn geanalyseerd werden genomen op plaatsen waar zich een vochtige laag of druppeltjes had gevormd. Op deze manier werd de identiteit van de aanwezige ionen vastgesteld. Hoewel de resultaten duidelijk de meerwaarde van ion chromatografie voor de studie naar degradatie van glas aantoonden, benadrukten ze ook de noodzaak van de ontwikkeling van een eenvoudig, doch betrouwbaar, analytisch protocol om ion concentraties tussen verschillende objecten te kunnen vergelijken. In Hoofdstuk 3 werd ook geconcludeerd dat de
aanbeveling om instabiel glas te bewaren bij 42% RV, op basis van de KRV van kaliumcarbonaat, opnieuw moet worden geëvalueerd. De resultaten toonden namelijk aan dat een breed spectrum aan ionen aanwezig was op het oppervlak van instabiel glas, wat waarschijnlijk leidt tot de vorming van een grotere diversiteit aan zouten dan eerder werd gedacht. Vanwege de dominante aanwezigheid van formeaat in de geanalyseerde monsters, is het waarschijnlijk dat de belangrijkste zouten op het oppervlak van instabiel glas natrium- of kaliumformeaat zullen zijn. Deze zouten hebben een KRV van respectievelijk 50,2-51,6% en 16-17% bij kamertemperatuur. De lage KRV van kaliumformeaat suggereert dat er mogelijk geen acceptabele RV is waarbij de vorming van een vochtige laag wordt voorkomen.

Hoofdstuk 4 richtte zich op de ontwikkeling en validatie van een betrouwbaar bemonsterings- en analyseprotocol voor kwantitatieve analyse van ionen die worden aangetroffen op het oppervlak van instabiel glas in museale collecties. Het protocol bestaat uit drie stappen: bemonstering, extractie en analyse. Ion chromatografie is een geschikte analytische techniek omdat concentraties van zowel kationen als anionen eenvoudig kunnen worden gekwantificeerd. De monsters werden genomen met behulp van een wattenstaafje vanwege het gebruiksgemak en het feit dat wattenstaafjes veel gebruikt worden door restauratoren tijdens de behandeling van objecten. Polyester wattenstaafjes bleken het meest geschikte bemonsteringsmateriaal te zijn, aangezien ze zelf de minste ionen bevatten van de geteste materialen. De monsters werden geëxtraheerd in gedeioniseerd water. Het protocol werd gevalideerd met behulp van proefmonsters op Melinexvellen en het analytisch protocol was van een hoge nauwkeurigheid, precisie en reproduceerbaarheid en met voldoende lage limieten van kwantificering voor lithium, natrium, kalium, magnesium, calcium, acetaat, formeaat, nitriet, bromide, nitraat, sulfaat en fosfaat. Kwantitatieve analyse van chloride en carbonaat bleek problematisch, waardoor de analytische methode minder betrouwbaar is voor deze ionen.

Hoofdstuk 5 behandelde onderzoek over kunstmatige veroudering van glas en de experimenten beschreven in dit hoofdstuk werden om twee redenen uitgevoerd. Ten eerste werd er onderzocht welke ionen zonder meer kunnen worden toegeschreven aan de chemische degradatie van glas. Ten tweede maakte
de kunstmatige veroudering van glas het mogelijk om het protocol uit Hoofdstuk 4 verder te evalueren. De verouderde monsters komen namelijk in grotere mate overeen met de werkelijke situatie in musea dan de modellen gebruikt tijdens de validatie. Natrium en kalium bleken de belangrijkste kationen op het oppervlak van de glasmonsters te zijn en formeaat en acetaat waren de belangrijkste anionen. Deze resultaten geven aan dat dit de vier belangrijkste ionen zijn waarmee rekening moet worden gehouden bij de ontwikkeling van een systeem voor vroegtijdige identificatie van instabiele glazen objecten. De resultaten bieden ook informatie over geschikte bewaarcondities voor instabiel glas. Zoals verwacht gaven de resultaten aan dat de detectie van ionen afhangt van de samenstelling van het glas zelf: natrium zal worden gevonden op die glazen waarvoor Na$_2$O het belangrijkste alkali oxide is, kalium op die waarbij K$_2$O de belangrijkste alkalicomponent is. Dit wordt niet in overweging genomen in de specificatie van een enkele RV voor opslag van reeds instabiel glas, maar zou cruciaal kunnen zijn bij het voorkomen van degradatieverschijnselen.

Hoofdstuk 6 richtte zich op het bestuderen van ionen die te vinden zijn op het oppervlak van objecten in museumcollecties. Het hoofddoel van het hoofdstuk was om instabiele glazen objecten te vergelijken met stabiele glazen objecten op basis van de soort en hoeveelheid van de ionen die zich op het oppervlak bevinden. Om dit doel te bereiken zijn objecten uit Museum Boijmans van Beuningen (Rotterdam, Nederland) en het Rijksmuseum (Amsterdam, Nederland) onderzocht. Beide musea hadden de collectie, op basis van visuele inspectie van de conditie van de objecten ingedeeld in verschillende categorieën. De objecten uit Museum Boijmans van Beuningen (MBvB) werden geclassificeerd als stabiel of instabiel en waren tussen 2008 en 2011 schoongemaakt, waardoor vochtige lagen op het oppervlak verwijderd waren. Objecten uit de collectie van het Rijksmuseum (RM) werden gekozen uit een groep objecten die doelbewust niet waren schoongemaakt. Dit waren objecten die verschillende stadia van glasdegradatie vertoonden.

De resultaten toonden aan dat, voor zowel de MBvB als RM monsters, natrium en kalium indicatief zijn voor verschillende stadia van glasdegradatie. De soort en hoeveelheid van de anionen kon niet worden gerelateerd aan de classificatie van de objecten. De kracht van ion chromatografie als een analytische methode werd
in het bijzonder aangetoond voor de MBvB monsters omdat hogere natrium- en kaliumconcentraties werden geïdentificeerd op de objecten in de instabiele groep dan in de stabiele referentiegroep, terwijl het niet mogelijk was om sporen van chemische degradatie met het blote oog waar te nemen. Een voorlopige CLASSIFICATIE-methode voor hol glas in musea op basis van de concentratie van ionen op het glasoppervlak werd voorgesteld op basis van de analyses in dit hoofdstuk. Uit de resultaten kan worden geconcludeerd dat het ontwikkelde protocol een geschikte methode is voor de vroege identificatie van instabiliteit van glas. De eerste resultaten van deze innovatieve aanpak bieden daarmee niet alleen nieuwe inzichten op het gebied van conservering van historisch glas, maar plaveiën ook de weg voor de ongecompliceerde identificatie van instabiele glasobjecten in museumcollecties.

Het onderzoek gepresenteerd in dit proefschrift heeft vooral de kracht van ion chromatografie als een belangrijke analytische methode in de studie van instabiel glas in museale collecties aangetoond. Er werd aangetoond dat de som van de concentraties van de alkali ionen (natrium en kalium) een indicator kan zijn voor chemische instabiliteit van glas. Vergelijking van de classificatie gemaakt door restauratoren en de analytische data toonde aan dat het mogelijk was om objecten inderdaad te classificeren op basis van de concentratie van ionen op het oppervlak van het glas, zelfs als er geen zichtbare sporen van degradatie waren. Sommige objecten uit de instabiele categorie vertoonden echter lage ion concentraties, wat suggereert dat ze ofwel “minder instabiel” zijn dan de andere objecten, of dat de toegepaste methode niet geschikt is om hun stabiliteit te bepalen. Niettemin hebben de resultaten aangetoond dat het IC-protocol een geschikte methode is om de stabiliteit van glas in museumcollecties op een relatief snelle manier te onderzoeken, met minimale interventie voor de objecten. Dit is de eerste keer dat er een eenvoudige, doch doeltreffende, methode is ontwikkeld voor de identificatie van instabiel glas in museumcollecties.

Klimaatcondities voor het bewaren van instabiel glas zijn in het verleden uitvoerig bestudeerd en men is tot condities gekomen die zichtbare degradatie van glas voorkomen, hoewel deze aanbevelingen niet zijn gebaseerd op analytische gegevens. Het doel van het specificeren van een specifiek klimaat (RV en temperatuur) voor de preventie van glasdegradatie is tweeledig. Ten eerste om
crizzling, wat ontstaat door een lage RV, te voorkomen door een hoge (in het algemeen > 50%) relatieve vochtigheid in depots toe te passen. Dit staat echter lijnrecht tegenover het tweede doel: het voorkomen van de accumulatie van vocht op het oppervlak van het glas. De aanbevelingen voor specifieke opslagcondities zijn vaak gebaseerd op de kritische relatieve vochtigheid (KRV) van specifieke zouten, en aangezien water de degradatie van het glas versnelt, wordt vaak gesuggereerd om glas onder de KRV van deze zouten te bewaren.

Dit proefschrift heeft zich gericht op de identificatie van zouten op het oppervlak van instabiel glas, omdat dit cruciaal is bij het bepalen van ideale bewaarcondities voor instabiel glas. De grote verscheidenheid aan ionen impliceert dat er een complex mengsel van zouten aanwezig zou kunnen zijn op het oppervlak van instabiel glas. Dit compliceert de kwestie van het vinden van een specifieke RV aangezien de KRV van zoutmengsels anders is dan de KRV van de individuele zouten. De hoge natrium-, kalium en formeaatconcentraties doen vermoeden dat natriumformeaat en/of kaliumformeaat de belangrijkste zouten op het oppervlak van instabiel glas zijn. De zeer lage KRV van kaliumformeaat (16-17%) impliceert dat er mogelijk geen realistische RV is die geschikt is voor het voorkomen van de accumulatie van vocht op het oppervlak van alle objecten. Dit toont de noodzaak aan van een vroege identificatie van instabiele objecten waarop deze zouten mogelijk vormen. Alleen wanneer deze instabiele objecten tijdig geïdentificeerd worden is het mogelijk om passende maatregelen te treffen om verdere degradatie van deze specifieke objecten te voorkomen.
Guus Verhaar was born on the 13th of March 1987 in Utrecht. He grew up in Bilthoven, a town in the vicinity of Utrecht, together with his parents and his two younger brothers. He obtained his high school diploma (VWO) at the Werkplaats Kindergemeenschap in Bilthoven in 2005. Hereafter he moved to Amsterdam where he obtained a Bachelor in Physics and Astronomy at the University of Amsterdam in 2009. He spent a year to obtain two minor degrees at the same university: one in Art History and one in Conservation and Restoration of Cultural Heritage. In 2010 he started the Master Conservation and Restoration of Cultural Heritage, with a specialisation in Conservation Science, at the University of Amsterdam, where he graduated in 2012. He subsequently worked for the Rijksmuseum as a Research Technician the year prior to the re-opening of the museum. In this year he focussed on research on Renaissance jewellery and also wrote a research proposal for a PhD project with the working title “Glass Sickness – its detection, prevention and treatment”. This proposal was accepted by the Faculty of Humanities at the University of Amsterdam and was partly funded by the Rijksmuseum. Guus started the project in 2013 and the results are presented in this dissertation. During his PhD, Guus presented his work at various conferences in the Netherlands, France, Germany, Poland, and the USA. After finishing his PhD-thesis, Guus was appointed as a postdoc by the Rijksmuseum, The Corning Museum of Glass and the University of Texas at Dallas in a project on technical studies of historic glass deterioration.
The work presented in this thesis originated from a problem faced by those responsible for maintaining historic glass collections. I was therefore very fortunate to be able to work together with a lot of different people involved in the conservation of unstable historic glass. The completion of this dissertation would not have been possible without the support of many people.

I would like to start by wholeheartedly thanking my advisors Norman Tennent and Maarten van Bommel. I think that your individual skills and specialisms complement each other very well, which creates an excellent supervision team. Norman, it has been a great pleasure to work with you ever since I made the transition from physics to conservation science. Your enthusiasm for the topic of glass deterioration has inspired me to continue in this field and pursue another challenge in conservation science in the form of a postdoc. I am grateful for our discussions in which you were able to help me place the research in the context of glass conservation. Besides that, I have thoroughly enjoyed our contemplations about life outside of conservation as well, during many dinners and drinks in diverse places. Maarten, your critical assessment of the analytical data and analytical chemistry skills have been crucial in the completion of this work. Analytical chemistry was a relatively new field for me and I have learned a lot from you in our discussions about troubleshooting (more often than one could wish for!), sample preparation, data processing and, most importantly, data interpretation and contextualisation. Thank you both for your patience and perseverance.

This work would not have been possible without the financial and non-financial support from the Rijksmuseum. In particular, I would like to thank Robert van Langh for his ongoing support of the research and for indulging me in the
international community of scientists working in cultural heritage research. Robert, the opportunities you created allowed this project to kickstart and your support and confidence towards the end truly helped in finalizing the thesis.

Being at the Conservation and Restoration department of the UvA has been a unique experience for me. Thank you to all co-workers there for inspiration and encouragement. I would in particular like to thank Kate van Lookeren and Mandy Slager. Your comments have been very constructive in putting the right information and questions into the right place. I am particularly grateful to your practical advice on sampling and aging methods. Nikè, thank you for your work on the residues left behind on glass surfaces through handling. Your study helped in understanding the source of ionic species on glass surfaces. Thank you, Elise, for developing a method to separate acetate and formate. Although your work was aimed at another application, it has been very useful in the analysis of samples obtained from glass surfaces as well. Jenny, thank you for being my buddy in the JVP1 attic during the final months of writing. Being able to share accomplishments and worries with was essential to keep a touch of sanity. Your support, reflection, humour, and generally positive and friendly attitude helped me a lot in reaching the finish line.

I would like to thank all my colleagues at the Rijksmuseum Conservation and Restoration department. It has been a great pleasure and a privilege to be able to work together with you all. Though I enjoy working with everybody in the AG, I would like to thank a few people personally: Bodill, thank you for being the instigator of this research project. Your curiosity into peculiar glass degradation phenomena has led to the formulation of some fundamental research questions and has been the inspiration for this research. Margot, I admire your eye for detail and very structured approach. I enjoyed the work we did together on the investigation of the collection together with Roosmarijn. I am extremely thankful to the three of you for the ‘monnikenwerk’ you have done by classifying the condition of hundreds of objects and providing samples for my research. I am very happy we were able to present our collaborative work at the Wrocław conference and I am looking forward to working together in the future. Isabelle, Lucienne, Ditte: thank you for diverging discussions on glass conservation and general research related issues. Sara, thank you very much for proofreading.
substantial amounts of my thesis. I am also grateful to Joosje, Ellen, Tamar, Arie, Jolanda, Judith, Kanaan, Annelies, Rob, Cécilia, Stina, Indra for various inspiring discussions both inside and outside the Ateliergebouw and of course, to whom it may concern, for our escapades on various dance floors.

Besides working with colleagues from the UvA and the Rijksmuseum I have had the pleasure of working together with many people from many institutes. I would like to thank the following people for stimulating exchanges and access to their collections: Christel van Hees (Museum Boijmans van Beuningen), Stephen Koob, Robert Brill and Astrid van Giffen (Corning Museum of Glass), Hélène Besançon (Nationaal Glasmuseum), Karen Stamm (Metropolitan Museum of Art), Julia Day (The Frick Collection), Silke Beiner-Büth (Hamburg Museum), Michiel van Ent (private conservator), Hortense de Corneillan (Musée Ariana/HE-ARC). You are the people having to deal with unstable glass in your collections and I hope that my contribution is helpful in the decision-making process concerning the preservation of cultural heritage objects made of glass. I would also like to address my colleagues and friends from the ICOM-CC Glass and Ceramics Working Group: Hanne, Agnes, Astrid, Lauren, Kate, Janis, Victoria, Andreia. Thanks for some great conferences, newsletters and energy invested in keeping up the momentum for glass and ceramics conservation research. For some important analyses and help in setting up experiments I would like to sincerely thank Luc Megens and Suzan de Groot (RCE), Vid Šelih and Hans van Elteren (National Institute of Chemistry, Slovenia), Cees Bruggink (Thermo Fisher), Katrien Keune (Rijksmuseum), Joost Rosier en Dick van Iperen (VU Amsterdam).

Completing this work would not have been possible without support of friends and family. Mijn beste en oudste vrienden Vincent en Boudewijn, Annelot en Inja, bedankt voor jullie steun, vertrouwen, humor, optimisme en realisme. Er zijn maar weinig mensen bij wie ik zo op mijn gemak ben als bij jullie. De Ruk Fun Group: Bastiaan, Moesa en Aurélie, Douwe, Douwe en Hannah, Jasper en Sanne, Joris, Oz. Dank voor de mooie reisjes, plezier in de kroeg, gedeelde fun en frustratie over prestaties van Ajax en het Nederlands Elftal. Mijn studievrienden en co bijeengebracht in voetbalteams Lokomotiv Seedorf en Broeders ten Strijde. Bart-Jan, Bastiaan, Dylan, Jacob, Jannis, Jip, Karel, Maarten, Marcel, Roy, Sez, Sjoerd, Wim, Yannick. Ik ben blij dat onze vriendschap verder rijk
dan natuurkunde, de voetbalzalen en voetbalvelden. Sport zorgt voor de nodige fysieke arbeid om te compenseren voor het denkwerk en het liefst doe ik dat in teamverband. Daarom dank ik al mijn teamgenoten en begeleiders uit DVVA 1, DVVA 2 en DVVA 10 die ik door de jaren heen heb leren kennen en met wie ik deze behoefte op een perfecte manier heb kunnen invullen.

De laatste woorden zijn voor mijn wederhelft en metgezel in het leven. Liefste Anouk, zonder jou was dit niet gelukt. Bedankt voor je nietsontziende eerlijkheid, je inlevingsvermogen, je ruimdenkendheid en je doelgerichte aanpakkersmentaliteit, waarmee je me dag in dag uit helpt het beste uit mijzelf te halen. Samen vormen we een sterk team en dit is de reden dat ik zo veel zin heb in de toekomst met jou. Promoveren is vast een peulenschil in vergelijking met wat ons nu te wachten staat, maar samen kunnen we de wereld aan.
The chemical deterioration of glass in museum collections is a large problem for conservators and curators. Objects of unstable composition typically show changes in appearance such as the accumulation of moisture on the surface and microcracking, which may render an object unfit for display or even cause its complete disintegration.

The identification of unstable glass objects is essential for their preservation as it allows for the implementation of targeted conservation strategies, but, as yet, no straightforward method exists. As it has been estimated that up to 30% of glass objects are susceptible to irreversible chemical deterioration, it is vital that glass degradation is identified at an early stage and that suitable storage conditions are in place.

Accordingly, this study focuses mainly on the early stages of glass deterioration. In particular, the presence and quantity of ions on glass surfaces, liberated from the glass during deterioration in the display or storage environment, is studied. The detection of key ions in very low concentrations, before surface changes become visible to the naked eye, provides conservators with the potential to identify glass objects which require special care to prevent ongoing deterioration. Hence, this research contributes to the discussion on the conservation of vulnerable glass objects and provides insight into fundamental deterioration mechanisms of historic glass.