Formaldehyde as a superior nitrogen nucleophile in palladium(II) mediated synthesis of imidazolidines.

van Benthem, R.A.T.M.; Hiemstra, H.; Rodriguez Longarela, G.; Speckamp, W.N.

DOI
10.1016/0040-4039(94)88488-9

Publication date
1994

Published in
Tetrahedron Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 16 Sep 2023
Formamide as a Superior Nitrogen Nucleophile in Palladium(II) Mediated Synthesis of Imidazolidines

Rolf A. T. M. van Renthem, Henk Hiemstra, Gema Rodriguez Longarela and W. Nico Speckamp

Department of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

Abstract: Formamidines emerge as superior nitrogen nucleophiles in palladium(II) catalyzed oxidative 5-exo cyclizations of formaldehyde amines from allylic amines using palladium(II) catalysis was recently demonstrated by us.1 The key oxidative 5-exo cyclization of N,O-hemiacetals to oxazolidines ensured high regio- and stereoselectivities. With Pd(OAc)$_2$ as the catalyst, molecular oxygen was used as a clean stoichiometric oxidant without the need for a co-oxidant.2 Dimethyl sulfoxide, used as the solvent, bears a unique character in this remarkable process by inducing the formation of "giant" palladium clusters which are most likely the catalytically active species.3

Our present efforts involve the application of similar methodology to the synthesis of vicinal diamines, as depicted in Scheme 1. In this communication we report several Pd(II) catalyzed oxidative cyclizations in which different tethered nitrogen nucleophiles are incorporated into imidazolidines. As suitable precursors for these cyclizations amines of type 2 were prepared from N-Boc protected allylic amines formaldehyde and a protected nitrogen source. Their reactivities towards the oxidative cyclization conditions are reported. Furthermore, the convenient conversion of one imidazolidine into the corresponding diamine is described.

![Scheme 1. "Detachable connection" approach to allylic diamines](image)

Organometal-based techniques such as intramolecular aminopalladation,4 amidopalladation and palladium mediated amidocarbonylation of monoolefins6,7,8 dienes9 and allenes10 for the synthesis of five and six membered nitrogen containing heterocycles have been widely adopted. Acetamides and, especially, p-toluenesulfonylamides were the first nitrogen nucleophiles reported to be successful in 5-exo cyclizations.6 Since then, carbamates and urea derivatives have also been applied7,8 and have often been found superior to p-
toluenesulfonamides but sometimes inferior. The optimum balance between nitrogen nucleophilicity and acidity apparently varies from case to case.

Two parent allylic carbamates were selected for testing different nitrogen nucleophiles. \(N\)-Boc-2-cyclopentenylamine \(S \) was chosen because its hemiacetals were found to be the most reactive towards Pd(II) mediated 5-endo cyclization. More flexible aminals derived from the open chain \(N\)-Boc-3-pent-2-(E)-enylamine \(10 \) were expected to be less reactive. In addition, steric induction by the methyl group could be observed in the formation of the corresponding imidazolidine \(14 \). These substrates would enable us to discriminate between the different nitrogen nucleophiles in terms of both reactivity and stereoselectivity.

Scheme 2 shows the preparation of the aminals.\(^{11} \) Reaction of the parent carbamates \(5 \) and \(10 \) with paraformaldehyde and cesium carbonate\(^{12} \) in dioxane (60 °C, 2 h) gave \(N\)-hydroxymethylcarbamates \(6 \) and \(11 \), respectively, in good yields. These \(N,O \)-hemiacetals were stable at room temperature and were purified by flash chromatography (silica gel, ethyl acetate/hexanes). Treatment of \(6 \) and \(11 \) with a catalytic amount of \(p \)-toluenesulfonic acid in formamide directly gave formamide aminals \(8b \) and \(13b \), respectively, via the \(N \)-acyliminium ions in excellent yields. Acetoxyethyl carbamates \(7 \) and \(12 \) obtained from the hemiacetals (Ac₂O, DMAP, pyridine, 0 °C) were similarly converted into aminals by reaction with acetamide (8c), methyl carbamate (8e, 13e), benzyl carbamate (8d, 13d) or \(p \)-toluenesulfonamide (8a, 13a) in dichloromethane (reflux, 20 h) in the presence of a catalytic amount of PPTS, or with urea (8e) in acetic acid (50 °C, 2 h).

![Scheme 2. Preparation and Oxidative Cyclization of Aminals](image)

The aminals \(8 \) and \(13 \) were converted to their corresponding imidazolidines \(9 \) and \(14 \) under standard oxidative cyclization conditions\(^2 \) using Pd(OAc)\(_2\) (0.05 equiv) and one atmosphere of molecular oxygen. The
results of these reactions are summarized in Table 1. With the rigid cyclopentenyl derivatives ureas (8d) surprisingly turned out to be the least reactive nucleophile. Acetamide (8c) and carbamates (8e,f) gave satisfactory results but were found to be less reactive than formamide (8b) and p-toluene sulfonamide (8a). With the more flexible pentenyl derivatives, however, formamide (13b) emerged as the most successful nucleophile. Stereoselectivities were found to be equally moderate with formamide and p-toluene sulfonamide (13a) and poor with methyl carbamate (13e). An additional advantage of the use of formamide as the nitrogen source is the facile mono deprotection of cyclization products 9b and 14b to the N-Boc imidazolidines 9g and 14g, respectively, by mild hydrolysis (KOH, MeOH, 94%).

Table 1. Results of the Oxidative Cyclizations of Aminals.

<table>
<thead>
<tr>
<th>Aminal</th>
<th>mp (°C)</th>
<th>Reaction Time (h)</th>
<th>Yield (%)</th>
<th>Imidazolidine</th>
<th>mp (°C)</th>
<th>Isomer Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>105-107</td>
<td>1</td>
<td>71</td>
<td>9a</td>
<td>143-144</td>
<td></td>
</tr>
<tr>
<td>8b</td>
<td>67-69</td>
<td>2</td>
<td>86</td>
<td>9b</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>70-72</td>
<td>4</td>
<td>70</td>
<td>9c</td>
<td>104-106</td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td>119-120</td>
<td>4*</td>
<td>95 (68)</td>
<td>9d</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8e</td>
<td>62-63</td>
<td>4</td>
<td>83</td>
<td>9e</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8f</td>
<td>71-73</td>
<td>4</td>
<td>84</td>
<td>9f</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13a</td>
<td>76-78</td>
<td>4*</td>
<td>98 (66)</td>
<td>14a</td>
<td>-</td>
<td>(35/65)</td>
</tr>
<tr>
<td>13b</td>
<td>-</td>
<td>2</td>
<td>90</td>
<td>14b</td>
<td>-</td>
<td>(35/65)</td>
</tr>
<tr>
<td>13e</td>
<td>45-47</td>
<td>4*</td>
<td>98 (50)</td>
<td>14e</td>
<td>-</td>
<td>(47/53)</td>
</tr>
</tbody>
</table>

\(^{a}\) Conditions: 3% Pd(OAc)\(_2\), O\(_2\), DMF (0.2 M), 55-70 °C. Times given refer to complete reactions unless marked with an asterisk. \(^{b}\) Yields refer to isolated and purified (column chromatography) compounds. Recoveries of uncompleted reactions are followed between brackets by the conversion reached. \(^{c}\) Cis/trans: stereochemistry was established by means of \(^1\)H NMR NOE experiments.

The N-Boc imidazolidines 9e and 9f were also mono deprotected (Scheme 3) with the purpose of facilitating removal of the methylene tether. However, we were unable to convert imidazolidines 14g, 17, or 18 into the corresponding vicinal diamines by acid or base mediated hydrolysis. We therefore turned to electrochemistry once again for removal of the tether. Anodic oxidation in methanol mediated by a catalytic amount of NaCl\(_3\) surprisingly yielded amidine 15 quantitatively. Attempts to prepare the corresponding amidines from imidazolidines 17 and 18 in a similar way failed.

\[
\begin{align*}
17 & \text{R} = \text{CO}_2\text{Me} & 9 & \text{(R} = \text{CHO}) & 14 & \text{g} & 15 & \text{(mp 57-58 °C)} & 16 & \text{(mp 142-144 °C)} \\
18 & \text{R} = \text{CO}_2\text{Bn} & & & & & & & & \\
\end{align*}
\]

Scheme 3. Synthesis of mono protected imidazolidines and diamine
Conversion of amidine 15 to protected diamine 16 was finally achieved by reaction with acetic anhydride\(^{14}\) in acetic acid/water (1:1).

In conclusion, we have demonstrated the advantages of formamide as a nitrogen nucleophile in palladium catalyzed synthesis of imidazolidines because of (1) its high reactivity and (2) the ease of its deprotection and thereby the feasibility of stereocorerolled synthesis of vicinal diamines. This class of compounds have found widespread use as chiral ligands in asymmetric reactions\(^{15,16}\) and chiral derivatizing reagents for determination of enantiomeric composition.\(^{17}\) We are currently applying the methodology presented here to the synthesis of a wider variety of vicinal diamines.

Acknowledgement

This research was supported by the Innovation Oriented Research Programme on Catalysis by the Dutch Ministry of Economic Affairs.

References and Notes

11. All new compounds were characterized by means of\(^{1}H\) and\(^{13}C\) NMR (spectra were recorded at elevated temperatures because of strongly hindered rotation in bisamides) and IR spectroscopy. Solids showed correct elemental analysis data. Melting points are uncorrected.
13. Anodic oxidation in MeOH (0.07 M) using 1 mol% NaCl was performed with a potentiostal/galvanostat operating at 50mA. Carbon electrodes were used in an undivided cell as described in: Shono, T.; Matsunaga, Y.; Tsunaka, K. Org. Synth. 1985, 63, 206-213.

(Received in UK 19 August 1994; revised 10 October 1994; accepted 14 October 1994)