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Abstract 

When modeling latent variables at multiple levels, it is important to consider the meaning of 

the latent variables at the different levels. If a higher-level common factor represents the 

aggregated version of a lower-level factor, the associated factor loadings will be equal across 

levels. However, many researchers do not consider cross-level invariance constraints in their 

research. Not applying these constraints when in fact they are appropriate leads to 

overparameterized models, and associated convergence and estimation problems. This 

simulation study used a two-level mediation model on common factors to show that when 

factor loadings are equal in the population, not-applying cross-level invariance constraints 

leads to more estimation problems and smaller true positive rates. Some directions for future 

research on cross-level invariance in MLSEM are discussed. 

Keywords: Cross-level invariance, multilevel CFA, multilevel SEM 
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In educational and psychological research, data often have a multilevel structure, such as data 

from children in classrooms, employees in departments, or individuals in countries. Such data 

structures allow for the investigation of hypotheses at different levels using multilevel 

structural equation modeling (MLSEM). We limit our presentation to two-level structures of 

individuals (Level 1 or the within level) in clusters (Level 2 or the between level). MLSEM 

allows for different models for variances and covariances of within-cluster differences and 

between-cluster differences by decomposing the observed variables into a within component 

and a between component (Schmidt, 1969; Muthén, 1989, 1994). Given the multivariate 

response vector yij, with scores from subject i in cluster j, the scores are decomposed into 

means (μj), and individual deviations from the cluster means (ηij): 

 

yij = μj + ηij,         (Equation 1) 

 

where μj and ηij are independent. The overall covariances of yij (ΣTOTAL) can be written as the 

sum of the covariances of these two components: 

 

ΣTOTAL  = COV(μj, μj) + COV(ηij, ηij)     (Equation 2) 

 = ΣBETWEEN + ΣWITHIN. 

 

One can postulate separate models for ΣBETWEEN and ΣWITHIN. This model specification is 

denoted the within/between formulation (Muthén, 1989, 1994), and implies random intercepts 

for all observed variables. The observed variables can have variance at one or both of the 
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levels in two-level data. For example, in data from children in school classes, the variable 

‘Teacher gender’ only has variance at Level 2, since all children in the same school class 

share the same teacher. The gender of the child varies within school classes, and will have 

variance at Level 1, but not at Level 2, in cases where the distribution of boys and girls is 

equal across classes. In practice, variables that have variance at Level 1, often also have 

variance at Level 2. For example, children’s scores on a mathematical ability test may differ 

across different children from the same school class (Level 1), while the classroom average 

test scores are also likely different (Level 2).   

Preacher, Zyphur and Zhang (2010) showed how MLSEM can be used for testing mediation 

hypotheses with two-level nested data. The MLSEM framework allows the estimation of 

mediation models in which each of the variables involved can be present on Level 1, Level 2, 

or both. In contrast, standard multilevel modeling only allows the analysis of mediation 

models where the mediator and outcome variables are Level 1 variables. Moreover, MLSEM 

makes it possible to evaluate mediational hypotheses on latent variables.  

Despite the clear advantages of MLSEM, two issues warrant attention when working with 

multilevel factor models. First, one should carefully think about the interpretation of the 

common factors at the different levels, and use the measurement model that justifies the 

conclusions drawn about the latent variables (Stapleton, Yang & Hancock, 2016). Second, 

one should minimize estimation and convergence problems where possible, by using models 

that are not overly complex. Cross-level invariance constraints on factor loadings in practice 

often prevent interpretational as well as estimation problems. The goal of this study is 

therefore to evaluate the effect of not applying cross-level invariance constraints in situations 

where these constraints are actually needed. Before presenting the simulation study, we 

discuss the interpretational and estimation issues associated with cross-level invariance 

constraints on factor loadings in more detail. 
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Interpretation of common factors at different levels in MLSEM 

The technical possibility to fit different models to ΣBETWEEN and ΣWITHIN, has led to 

applications of MLSEM where different factor structures are applied to the different levels. In 

a review of reporting practices of multilevel factor analyses, Kim, Dedrick, Cao and Ferron 

(2016) found that 31% of the studies reported a different number of factors at the two levels. 

However, models with different numbers of factors at different levels are hard to interpret 

(Hox, Moerbeek & van der Schoot, 2017). The appropriate way of modeling latent variables 

in multilevel SEM depends on the theoretical meaning of the latent variable (Stapleton, Yang 

& Hancock, 2016). In situations where the within- and between factors reflect the within- and 

between components of the same latent variable, the same factor structure applies at the two 

levels, and the factor loadings will be equal across levels (Asparouhov & Muthén, 2012; 

Mehta & Neale, 2005; Rabe-Hesketh, Skrondal & Pickels, 2004). For example, suppose that 

researchers are interested in how teacher-student relations affect student achievement through 

student engagement, and that each of these constructs is measured using three appropriate 

items administered to several students per teacher. The hypothesized model is depicted in 

Figure 1. All variables have variance at the student-level as well as at the teacher-level, 

meaning that there is a potential mediational effect at each level. In the taxonomy of Preacher 

et al. this scenario would be called mediation in a 1-1-1 design. The mediational hypotheses 

of interest could be as follows. Students who have better relations with their teacher than 

classmates, may be more engaged in school work than their classmates, and subsequently 

achieve better than their classmates. At the same time, teachers who have on average better 

relations with their students than other teachers, may have students that are on average more 

engaged in school, and therefore on average achieve higher than students of other teachers. In 

order to evaluate the two mediational effects on the within- and between-components of the 

three constructs of interest, the factors should be modeled with equal factor loadings across 
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levels. This way, the observed variables are affected by the within- and between components 

of the same latent variable at the two levels. 

These types of constructs, which are frequently observed in the literature (Kim et al., 2016), 

are labeled “configural constructs’ in a recent taxonomy by Stapleton et al. (2016). Although 

often needed, the requirement of cross-level invariance is commonly overlooked, leading to 

researchers giving the same name to the factors at two levels, without actually modeling the 

factors accordingly. In a recent overview of 72 applications of multilevel factor analysis, Kim 

et al. found that cross-level invariance was tested in only 6 of the 72 applications, and that 

explicit discussions of how researchers conceptualize the constructs are generally lacking. 

Kim et al. stress that cross-level invariance is essential for the construct validity of configural 

constructs, and call for more attention to cross-level invariance in applications of multilevel 

factor analysis.  

It should be noted that the cross-level invariance constraints needed for correct interpretation 

of configural constructs apply to factor loadings only. All other parameters can be different 

across levels. By imposing cross-level invariance constraints, the covariance structure on the 

between-level is identified using the identification constraint at the within-level (or vice-

versa). This implies that if the factor variance is fixed for identification at one level, the factor 

variance at the other level can (and should) be freely estimated. Regression effects between 

latent variables may also be different across levels, allowing for contextual effects (Marsh, 

Lüdtke, Robitzsch, Trautwein, Asparouhov, Muthén & Nanengast, 2009). Residual variance 

is likely to be smaller at the between level than at the within level. It is actually quite common 

to find zero residual variance at the between-level for at least some variables, since strong 

factorial invariance across clusters implies absence of residual variance at the between level in 

a model with cross-level invariance (Jak & Jorgensen, 2017; Jak, Oort & Dolan, 2013; 

Muthén, 1990; Rabe-Hesketh et al. 2004). Stapleton et al. (2016) propose an even more 
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general model for configural constructs in which the variance of the within-cluster latent 

variable can be cluster specific. This model, and more complex models in which all item 

parameters can be random across clusters (e.g. de Jong, Steenkamp & Fox, 2007), can 

however only be estimated with Bayesian methods. In this study, we consider models with 

random intercepts only, so that all models can be estimated in the frequentist framework.  

Estimation problems in MLSEM 

Multilevel structural equation modeling is notorious for estimation problems. Especially in 

cases where the number of clusters is small, and/or the variance at level 2 is small, non-

converged and inadmissible solutions are frequently observed (Li & Beretvas, 2013; Ludtke, 

Marsh, Robitzsch & Trautwein, 2011; Jak, Oort & Dolan, 2014). One solution that is 

regularly applied to limit the number of parameters to be estimated, is applying cross-level 

invariance on the factor loadings (Depaoli & Clifton, 2015; Gonzalez-Roma & Hernandez, 

2017). This practice shows that, in addition to solving interpretational issues, invariance of 

factor loadings across levels also facilitates estimation of model parameters. Interestingly, 

applying these constraints has even been found to improve convergence, without leading to 

estimation bias, in conditions where the population factor loadings were unequal across levels 

(Kim & Cao, 2015).   

The current study 

To recapitulate, there are two reasons why researchers should evaluate cross-level invariance 

of factor loadings in MLSEM. The main reason is that it is a necessary constraint to enable 

the interpretation of the between factor and the within factor as the within and between 

components of the same common factor. The second reason is that in many situations, not-

applying cross-level invariance constraints leads to an overparameterized model, and 

associated estimation problems. Previous simulation studies never explicitly focused on the 

effect of (not) applying cross-level invariance constraints in multilevel factor models. Some 
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studies generated data with equal factor loadings, but did not apply cross-level constraints in 

the analysis (Li & Beretvas, 2013; Kim, Yoon, Wen, Luo & Kwok, 2015), others generated 

data with different numbers of factors or different factor loadings across levels (Hox, Maas & 

Brinkhuis, 2010; Lee & Cho, 2017), or focused on comparing frequentist and Bayesian 

estimation methods (Depaoli & Clifton, 2015; HoltmanKoch, Lochner & Eid, 2016; Guenole, 

2016). The goal of the current article is to evaluate the effect of not applying cross-level 

invariance constraints in a multilevel latent mediation model on estimation problems in 

situations where the constraints are actually appropriate, in the frequentist framework. We 

will conduct a simulation study to compare the performance of the model with and without 

cross-level invariance constraints in various conditions.  

 

Method 

Data generation 

The population model from which we generated the data is the two-level (1-1-1) mediation 

model on latent variables with three indicators each as depicted in Figure 2. Multivariate 

normal data are generated in two steps, using the package MASS (Venables & Ripley, 2002) 

in R (R Development Core Team, 2018). First, cluster means for the indicators are generated 

according to the following equation: 

 

μj = Λξj +  εj         (Equation 3) 

 

where μj has the cluster means of the indicators in cluster j, ξj contains the cluster-level factor 

scores for cluster j, εj contains the residual factor scores for cluster j, and Λ contains the factor 
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loadings. The factor scores ξj are drawn from a multivariate normal distribution with zero 

means and covariance matrix ΦBETWEEN: 

 

ΦBETWEEN = (I - ΒBETWEEN)-1  ΨBETWEEN  (I - ΒBETWEEN)-1T,   (Equation 4) 

 

where ΒBETWEEN is a square matrix with regression coefficients between the common factors, 

ΨBETWEEN is a symmetric matrix with the variances and covariances at the between-level, and 

I is an identity matrix with the same dimensions as ΒBETWEEN. Residual factor scores εj are 

also drawn from a multivariate normal distribution with zero means and a diagonal covariance 

matrix. In the next step, we drew data from the multivariate normal distribution for each 

cluster, with means corresponding to the associated cluster means μj from the previous step, 

and covariance matrix ΣWITHIN :  

 

 ΣWITHIN = Λ ΦWITHIN Λ + ΘWITHIN.       (Equation 5) 

 

Figure 2 shows the population values for all parameters in the conditions with an intraclass 

correlation (ICC) of .15. In the ICC = .05 conditions, the variances at the between-level were 

smaller than in the ICC = .15 conditions. To create ICCs of .05, the residual variance at the 

between level was .01, the variance of the exogenous factor at the between level was 0.09, 

and the residual variance of the mediating factor and outcome factor were 0.0675 and 0.0459 

respectively, leading to total factor variances of .09. Note that the mentioned ICC-values refer 

to the intraclass correlations of the observed variables. The ICC of the common factors in the 

ICC = .15 condition are .25 / (1 + .25) = .20, while in the ICC = .05 conditions they are .09 / 

(1 + .09) = .08. The R-code used for data generation and analysis is available through this 

link: https://www.dropbox.com/s/pixhqqt8pauxckl/sim_multilevel_mediation3.R?dl=0. 
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Conditions 

We varied the ICC-values (ICC = .15 or CC = .05), the number of clusters (20, 40, 80 or 100), 

and the cluster size (5, 20, 40, 60, 1000), leading to 40 conditions. These conditions include 

all sample size conditions that were evaluated by Li and Beretvas (2013), and in addition 

evaluate cluster sizes of 1000 that are representative of cross-cultural datasets such as PISA 

(OECD, 2016) and the European Social Survey (ESS, 2016), and cluster sizes of 5 that are 

encountered in educational research (Zee, Koomen, Jellesma, Geerlings & de Jong, 2016) and 

organizational research (Jackson & Joshi, 2004). We also evaluated conditions with 100 

clusters, which was found to be the minimum acceptable cluster size for which the chi-square 

statistic follows its expected asymptotic distribution to reasonable approximation (Hox et al., 

2010). We generate 2000 datasets per condition. 

Evaluation criteria and expectations 

To each dataset, we fitted the correctly specified model with equality constraints on the factor 

loadings, and the same model without the equality constraints. We will refer to these models 

as the ‘invariance model’ and the ‘free model’ respectively. We used lavaan version 0.6-3 

(Rosseel, 2012), which provides maximum likelihood estimation and robust standard errors 

(Huber, 1967; White, 1982) for all model parameters.  

Evaluation criteria were convergence rates, the proportion of replications that resulted in a 

warning message, the proportion of replications that resulted in negative variance estimates at 

the between level, and true positive rates of the Wald-test on the direct and indirect effects. 

These evaluation criteria were selected because these are outcomes that are expected to be 

different across the free and invariant model. While convergence rates and true positive rates 

are common outcomes in simulation studies, we are not aware of other studies that evaluate 

the frequency of warning messages or negative variance estimates. Typical warning messages 

that one obtains when analyzing MLSEM are messages about negative between-level 
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variances and problems with convergence or obtaining standard errors. These error messages 

are of course informative, but in practice often lead researchers to doubt whether the results 

can be trusted, potentially leading to rejection of the model. In the evaluation of the results we 

do not differentiate between different types of warnings, but we will evaluate the actual 

convergence rates and frequencies of negative variance estimates.  

True positive rates of the direct effect of Factor 1 on Factor 3 (β31 in Figure 2) and the indirect 

effect (β21 * β32 in Figure 2) are evaluated by calculating the proportion of replications for 

which the ratio of the parameter estimate over the associated standard error was larger than 

1.96. Given the asymmetry of the sampling distribution of indirect effects, bootstrapping 

methods are to be preferred over the simple z-test in practice (MacKinnon, Lockwood & 

Williams, 2004). Still, we apply the z-test here because using bootstrapping methods would 

make execution of the simulation study extremely slow, and the differences in true positive 

rates between the invariant and free model will be similar across methods.  

Because the free model is overparameterized, we expect that the free model leads to larger 

numbers of non-converged replications, more negative variance estimates at the between 

level, and to more error messages (Bates, Kliegl, Vasishth & Baayen, 2015). We also expect 

that the true positive rates for the direct and indirect effects will be larger for the invariant 

model than for the free model.   

 

Results 

We present all results graphically, in order to display the patterns in the results across 

conditions. The exact numerical results, as well as significance tests comparing the results for 

the free and invariant models, for all outcomes in all conditions can be found in Tables A1, 

A2 and A3 in Appendix A. 
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Convergence 

Figure 3 shows the convergence rates for the free and invariant model in all conditions. As 

expected, the invariant model leads to better or similar convergence rates than the free model 

in all conditions. With at least 40 observations per cluster, convergence is no problem for both 

models. For cluster sizes of 5, the proportion of converged solutions in the smallest sample 

size conditions was as low as 0.68-0.72 for the free model, and 0.80-0.87 for the invariant 

model. Convergence rates increased with larger numbers of clusters. For the remainder of the 

results section we only evaluated replications for which both the free and the invariance 

model converged. 

Warnings 

Figure 4 shows the proportions of replications that issued a warning per condition. As 

expected, the free model led to more (or equal) solutions with warnings than the invariant 

model. Overall, less warnings are observed with increasing cluster sizes, with increasing 

number of clusters, and with larger ICC. In the ICC = .05 conditions (upper panel of Figure 

4), all datasets with cluster sizes of 5 produced warnings for both models. Both models 

produce less than 5% warnings only with at least 40 clusters of size 1000, and for the 

invariant model also with at least 80 clusters of size 60 or larger. In the ICC = .15 conditions 

(see lower panel of Figure 4), both models lead to less than 5% warnings with at least 80 

clusters of size 50 or larger, and with at least 40 clusters of size 1000. The invariant model in 

addition leads to less than 5% warnings with at least 40 clusters of size 40, and with 20 

clusters of 1000.  

Negative residual variances 

Figures 5 and 6 respectively show the proportions of replications that resulted in a negative 

residual variance estimate for an observed variable (in Θ) and a latent variable (in Ψ) at the 
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between level. The differences between the free and invariant model in the occurrence of 

negative variances for latent variables were negligible in almost all conditions, and high 

proportions of negative estimates were only found in the smalles sample size conditions. The 

frequency of negative estimates of the residual variances of the observed variables was larger 

for the free model than for the invariant model in most conditions, and similar in some 

conditions. For both models, the proportions decreased with increasing number of clusters, 

cluster size, and ICC. In the ICC = 0.05 conditions, both models lead to negative variance 

estimates in practically all replications with cluster sizes of 5. Less than 5% negative variance 

estimates was obtained for both models with at least 40 clusters of size 1000, and for the 

invariant model already with 80 clusters of at least size 60. In the ICC = 0.15 conditions, less 

than 5% negative variance estimates was found for both model with at least 80 clusters with 

cluster sizes 20 or larger, and for the invariant model also with at least 40 clusters of size 40, 

or at least 20 clusters of size 1000. 

True positive rates 

True positive rates of the direct effect were larger for the invariant model than for the free 

model in all conditions (see Figure 7). As may be expected, the true positive rates increase 

with larger number of clusters of larger cluster sizes. Overall the true positive rates are higher 

in the ICC = 0.05 condition than in the ICC = .15 condition. For the direct effect, true positive 

rates are higher than .80 only in ICC = .05 conditions with at least 100 clusters with size 

1000. In the ICC = .15 conditions, only the invariant model leads to true positive rates higher 

than .80, in conditions with at least 100 clusters of 1000. An explanation for the higher true 

positive rates in the smaller ICC-condition is that there was relatively more residual variance 

present in ICC = .15 conditions. In the ICC = .05 condition, the percentage of residual 

variance at the between level was .01 / (.702*.09 + .01) * 100% = 18.4%, while in the ICC = 

.15 conditions this percentage was .05 / (.702*.25 + .05) * 100% = 29.0%. More residual 
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variance at the between-level negatively affects the true positive rates on test of direct effects 

between common factors.  

The results shown here are based on all converged replications, including the replications that 

lead to a warning. In Appendix B we show the results for only the replications for which both 

models converged without warnings. In small sample conditions all replications lead to 

warnings, so there were no results left to analyze, but in the other conditions the true positive 

rates are practically identical to those in Figure 7. 

Since the z-test is not recommended for testing the significance of indirect effects in practice, 

we do not discuss the absolute values of true positive rates for the indirect effect. Still, it is 

informative to see that the true positive rates are higher for the invariant model in almost all 

conditions (Figure 8). Contrary to expectations, in the conditions with cluster sizes of 5, the 

free model had larger true positive rates than the invariant model, and the true positive rates 

tend to decrease with increasing number clusters. These results are hard to interpret, and show 

that the behavior of the z-test for indirect effects may be erratic at small sample size 

conditions.   

 

Discussion 

This simulation study showed that, in addition to the theoretical need for cross-level 

invariance in multilevel factor models (Asparouhov & Muthén, 2012; Jak, Oort & Dolan, 

2013; Hox, Moerbeek & van der Schoot, 2017; Kim, Dedrick, Cao and Ferron, 2016; Mehta 

& Neale, 2005; Muthén, 1990; Rabe-Hesketh, Skrondal & Pickels, 2004; Stapleton, Yang & 

Hancock, 2016), constraining factor loadings across levels decreases estimation problems and 

increases true positive rates. Not applying cross-level invariance constraints when factor 

loadings are equal in the population leads to models that are too complex for the data, which 
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increases estimation problems and the power to detect true effects. Thus, researchers who plan 

to fit factor models to multilevel data should carefully think about the theoretical meaning of 

the factor(s) at the different levels. If a common factor at the higher level is to be interpreted 

as the between component of the factor at the lower level, cross level invariance should be 

applied. In the remainder of the discussion, we will discuss some directions for future 

research on cross-level invariance in MLSEM. 

If cross-level invariance doesn’t hold 

If in the population the factor loadings are unequal, then the model with cross-level invariance 

constraints is misspecified. It can be expected that this will lead to biased parameter estimates, 

biased standard errors, and bad coverage rates for confidence intervals. Indeed, Guenole 

(2016) found that inappropriately applying these constraints leads to untrustworthy results in 

the Bayesian framework with ordinal indicators. However, Guenole evaluated conditions with 

relatively large differences between the factor loadings at the two levels, because the 

population values of factor loadings in his study were based on standardized factor loadings, 

leading to much higher factor loadings at the between level than at the within level (Jak & 

Jorgensen, 2017). Kim et al, in another simulation study, found that applying cross-level 

invariance in conditions where factor loadings where actually not equal across levels lead to 

better performance of testing latent group mean difference across within-level groups. These 

contrasting results suggest that there may be a point where the benefits of applying cross-level 

invariance constraints on estimation performance outweighs the detrimental effects it has 

when the constraint is actually not appropriate. Future research may focus on the effect of 

applying cross-level invariance in conditions where there are smaller differences between 

loadings at different levels, and in conditions where only part of the loadings are invariant.  

If cross-level invariance doesn’t hold, the associated factors do not have the same 

interpretation across levels. For example, if the factor loading for a specific indicator is higher 
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at the between level than at the within level, than the factor at the between level will represent 

more of the content of that specific indicator (and the other way around). In research about the 

closeness of teacher-student relations for example, an item about whether a student “openly 

shares feelings” was found to be more indicative at the student level than at the teacher level 

(Spilt, Koomen & Jak, 2012). By freeing the invariance constraint on this factor loading, the 

interpretation of the common factor at the student level includes more of the attribute ‘openly 

sharing feelings’ than the factor at the teacher level. One can imagine that if several factor 

loadings differ in several directions across levels, it will become complicated to pinpoint how 

to interpret the factors exactly. Although the interpretation of factors will become difficult if 

cross-level invariance does not apply, in specific situations it may still be interesting to 

evaluate how the factor loadings differ across levels. Tay, Woo and Vermunt (2014) provide a 

discussion of weaker forms of cross-level invariance, such as cases where not the exact 

values, but the rank order of the size of factor loadings is the same across levels.  

Cross-level invariance for shared constructs 

Stapleton et al. discussed several possible multilevel factor models based on individual-level 

measures. In their taxonomy, configural construct models represent those models in which the 

common factor of interest features both at the within- and between level, and the authors 

explained that cross-level invariance constraints are needed for these models. Another type of 

constructs that they discuss are shared constructs, where the construct represents a 

characteristic of the cluster, and the within-level construct is not of direct interest. For 

example, researchers could be interested in measuring teacher quality, using the evaluations 

of the teacher’s students. For a truly shared construct, the item responses from students within 

the same classroom can be seen as interchangeable (Bliese, 2000). That is, the responses 

across students within the same classroom would be perfectly correlated at the population 

level, and all differences in responses within classrooms represent random variation. The 
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model at the within-level is not interesting in this situation, leading Stapleton at al. to propose 

fitting a saturated model at the within-level. However, this situation can also be represented 

using the same model as for configural constructs. One could apply a two-level factor model 

(with cross-level invariance) to these data, such that the common factor model at the between-

level represents the between component of teacher quality, and the factor at the within-level 

represents the within component of teacher quality. For truly shared constructs however, the 

within-component of teacher quality does not exist; there are assumed to be no structural 

differences in the student’s evaluation of teacher quality. Absence of these differences would 

imply zero covariance between the items at the within-level, and hence zero variance for the 

common factor at the within-level. The random variation at the student-level would then be 

represented by the residual variance at the within-level. The configural model specification 

would thus represent the situation for shared constructs as well, by allowing the factor 

variance at the within-level to be zero. This configuration leads to less parameters than the 

saturated model. For example, with 5 indicators and 1 common factor, the saturated model 

would lead to 5 * (6)/2 = 15 parameters to be estimated, while the configural model would 

lead to 5 (residual variances) + 1 (factor variance) = 6 parameters to be estimated. The 

saturated model is thus effectively overparameterized in this situation, potentially leading to 

estimation problems. Another advantage of using the factor model with cross-level invariance 

for theoretically shared constructs, is that if the construct is not truly shared, such that 

differences in individuals’ responses do reflect differences in the individuals’ evaluation of 

the between-level construct of interest, then this would be easily captured by non-zero factor 

variance at the within-level. Future research may evaluate the performance of this model for 

shared constructs.  

Other suggestions for future research 
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The current simulation study only evaluated conditions in which the model was correctly 

specified, and mainly focused on estimation problems as outcomes. This gives a clear picture 

of what may be expected if theoretically configural factors are not modelled as such. 

However, as is often the case with simulation studies, it is not difficult to think of other 

conditions and outcomes that would be interesting to investigate. For example, it could be 

interesting to evaluate conditions where cross-level invariance does not hold, and to evaluate 

model fit statistics under different conditions. Such a study would be informative to show 

whether for example the likelihood ratio test is able to detect the non-invariance in factor 

loadings, and how large the non-invariance should be to lead to biased results. The current 

simulation study was also limited to the evaluation of one specific multilevel mediation 

model, and by using one specific software package (lavaan 0.6-3). One can imagine that other 

SEM-programs, such as xxM (Mehta, 2013) or Mplus (Muthén & Muthén, 1998-2017), have 

slightly different implementations leading to different results with regard to convergence and 

warnings. Future research may evaluate these other conditions, outcomes, and other software 

packages. 
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Figure 1. Example of a 1-1-1 mediational design on common factors representing teacher-

student relations, student engagement, and student achievement.  
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Figure 2. Population model with population values from which the data was generated in the 

ICC = .15 conditions. 
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Figure 3. Convergence rates for the free and invariant model in all conditions. 
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Figure 4. Proportions of replications with warnings for the free and invariant model in all 

conditions. 
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Figure 5. Proportions of replications with negative residual variance estimates for observed 

variables at the between level (θB) for the free and invariant model in all conditions. 
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Figure 6. Proportions of replications with negative residual variance estimates for latent 

variables at the between level for the free and invariant model in all conditions. 
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Figure 7. True positive rates of the direct effect (β31) for the free and invariant model in all 

conditions. The dashed horizontal line marks a true positive rate of 0.80. 
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Figure 8. True positive rates of the indirect effect (β21 * β32) for the free and invariant model 

in all conditions. The dashed horizontal line marks a true positive rate of 0.80. 
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Appendix A: Tables containing all results  

Table A1: Proportions of replications with convergence issues and warnings 

   Convergence Warnings 

ICC NB CS FREE INV Δ sign FREE INV Δ sign 

0.05 20 5 0.676 0.804 YES 1 1 NO 

  20 0.818 0.893 YES 0.999 0.991 NO 

  40 0.943 0.968 YES 0.985 0.919 YES 

  60 0.986 0.992 NO 0.930 0.772 YES 

  1000 0.990 0.988 NO 0.288 0.124 YES 

 40 5 0.710 0.832 YES 1.000 0.999 NO 

  20 0.938 0.973 YES 0.985 0.924 YES 

  40 0.996 0.997 NO 0.769 0.562 YES 

  60 1.000 1.000 NO 0.515 0.300 YES 

  1000 0.998 1.000 NO 0.018 0.007 NO 

 80 5 0.743 0.877 YES 1.000 0.997 NO 

  20 0.996 0.998 NO 0.821 0.656 YES 

  40 1.000 1.000 NO 0.316 0.159 YES 

  60 1.000 1.000 NO 0.108 0.032 YES 

  1000 1000 1.000 NO 0.000 0.000 NO 

 100 5 0.774 0.899 YES 0.999 0.996 NO 

  20 0.998 0.999 NO 0.719 0.509 YES 

  40 1.000 1.000 NO 0.196 0.082 YES 

  60 1.000 1.000 NO 0.046 0.013 YES 

  1000 1.000 1.000 NO 0.000 0.000 NO 
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0.15 20 5 0.716 0.870 YES 1.000 0.994 NO 

  20 0.934 0.978 YES 0.838 0.561 YES 

  40 0.978 0.994 YES 0.624 0.274 YES 

  60 0.988 0.998 YES 0.511 0.161 YES 

  1000 0.999 0.998 NO 0.301 0.050 YES 

 40 5 0.793 0.929 YES 0.987 0.924 YES 

  20 0.996 1.000 NO 0.320 0.084 YES 

  40 1.000 1.000 NO 0.116 0.021 YES 

  60 1.000 1.000 NO 0.083 0.006 YES 

  1000 1.000 1.000 NO 0.013 0.000 NO 

 80 5 0.938 0.984 YES 0.826 0.554 YES 

  20 1.000 1.000 NO 0.032 0.002 YES 

  40 1.000 1.000 NO 0.004 0.000 NO 

  60 1.000 1.000 NO 0.002 0.000 NO 

  1000 1.000 1.000 NO 0.000 0.000 NO 

 100 5 0.972 0.991 YES 0.693 0.412 YES 

  20 1.000 1.000 NO 0.010 0.000 YES 

  40 1.000 1.000 NO 0.001 0.000 NO 

  60 1.000 1.000 NO 0.000 0.000 NO 

  1000 1.000 1.000 NO 0.000 0.000 NO 

Note: ICC = intraclass correlation, NB = number of clusters, CS = cluster size, FREE = model 

with unconstrained factor loadings, INV = model with constrained factor loadings across 

levels, Δ sign  = YES/NO indicates if the rates differ across the FREE and INV model as 

tested with McNemar’s test for dependent proportions with α = 0.05/(40 conditions*6 

outcomes). Warnings are based on converged replications only.  
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Table A2: Proportions of replications with negative residual variances at the between level 

   Negative estimate in ΘBETWEEN Negative estimate in ΨBETWEEN 

ICC NB CS FREE INV Δ sign FREE INV Δ sign 

0.05 20 5 1.000 1.000 NO 0.902 0.908 NO 

  20 0.999 0.977 YES 0.415 0.388 NO 

  40 0.979 0.897 YES 0.145 0.141 NO 

  60 0.921 0.750 YES 0.071 0.073 NO 

  1000 0.253 0.082 YES 0.038 0.043 NO 

 40 5 0.997 0.994 NO 0.785 0.794 NO 

  20 0.979 0.914 YES 0.121 0.093 YES 

  40 0.761 0.554 YES 0.014 0.013 NO 

  60 0.514 0.298 YES 0.001 0.001 NO 

  1000 0.015 0.003 YES 0.004 0.005 NO 

 80 5 0.998 0.992 NO 0.622 0.577 NO 

  20 0.817 0.651 YES 0.011 0.007 NO 

  40 0.316 0.159 YES 0.000 0.000 NO 

  60 0.108 0.032 YES 0.000 0.000 NO 

  1000 0.000 0.000 NO 0.000 0.000 NO 

 100 5 0.998 0.990 NO 0.549 0.498 YES 

  20 0.718 0.507 YES 0.003 0.002 NO 

  40 0.196 0.082 YES 0.000 0.000 NO 

  60 0.046 0.013 YES 0.000 0.000 NO 

  1000 0.000 0.000 NO 0.000 0.000 NO 

0.15 20 5 0.998 0.967 YES 0.656 0.664 NO 

  20 0.799 0.473 YES 0.131 0.147 NO 
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  40 0.597 0.224 YES 0.051 0.062 NO 

  60 0.487 0.125 YES 0.032 0.041 NO 

  1000 0.290 0.035 YES 0.014 0.017 NO 

 40 5 0.967 0.848 YES 0.379 0.350 NO 

  20 0.308 0.073 YES 0.015 0.012 NO 

  40 0.114 0.020 YES 0.002 0.002 NO 

  60 0.082 0.005 YES 0.001 0.002 NO 

  1000 0.013 0.000 NO 0.000 0.000 NO 

 80 5 0.802 0.511 YES 0.090 0.070 NO 

  20 0.031 0.002 YES 0.000 0.000 NO 

  40 0.004 0.000 NO 0.000 0.000 NO 

  60 0.002 0.000 NO 0.000 0.000 NO 

  1000 0.000 0.000 NO 0.000 0.000 NO 

 100 5 0.670 0.381 YES 0.063 0.042 YES 

  20 0.010 0.000 YES 0.000 0.000 NO 

  40 0.001 0.000 NO 0.000 0.000 NO 

  60 0.000 0.000 NO 0.000 0.000 NO 

  1000 0.000 0.000 NO 0.000 0.000 NO 

Note: ICC = intraclass correlation, NB = number of clusters, CS = cluster size, FREE = model 

with unconstrained factor loadings, INV = model with constrained factor loadings across 

levels, Δ sign  = YES/NO indicates if the rates differ across the FREE and INV model as 

tested with McNemar’s test for dependent proportions with α = 0.05/(40 conditions*6 

outcomes). Results are based on converged replications only.  
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Table A3: Proportions of replications with significant direct and indirect effects 

   TP direct effect TP indirect effect 

ICC NB CS FREE INV Δ sign FREE INV Δ sign 

0.05 20 5 0.007 0.085 YES 0.270 0.089 YES 

  20 0.048 0.141 YES 0.130 0.032 YES 

  40 0.120 0.188 YES 0.071 0.066 NO 

  60 0.169 0.242 YES 0.069 0.098 YES 

  1000 0.305 0.357 YES 0.230 0.283 YES 

 40 5 0.011 0.085 YES 0.209 0.070 YES 

  20 0.099 0.197 YES 0.052 0.056 NO 

  40 0.215 0.274 YES 0.142 0.226 YES 

  60 0.302 0.363 YES 0.263 0.344 YES 

  1000 0.493 0.527 YES 0.584 0.631 YES 

 80 5 0.013 0.072 YES 0.161 0.038 YES 

  20 0.225 0.324 YES 0.157 0.259 YES 

  40 0.447 0.496 YES 0.558 0.664 YES 

  60 0.536 0.566 YES 0.742 0.794 YES 

  1000 0.770 0.777 NO 0.964 0.968 NO 

 100 5 0.015 0.087 YES 0.116 0.033 YES 

  20 0.307 0.394 YES 0.273 0.418 YES 

  40 0.545 0.599 YES 0.736 0.818 YES 

  60 0.629 0.657 YES 0.884 0.916 YES 

  1000 0.832 0.840 NO 0.99 0.992 NO 

0.15 20 5 0.017 0.095 YES 0.172 0.040 YES 

  20 0.137 0.214 YES 0.067 0.062 NO 
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  40 0.181 0.264 YES 0.079 0.118 YES 

  60 0.205 0.273 YES 0.092 0.141 YES 

  1000 0.243 0.313 YES 0.155 0.215 YES 

 40 5 0.029 0.117 YES 0.095 0.025 YES 

  20 0.226 0.304 YES 0.144 0.234 YES 

  40 0.306 0.366 YES 0.256 0.348 YES 

  60 0.342 0.391 YES 0.312 0.422 YES 

  1000 0.398 0.452 YES 0.456 0.556 YES 

 80 5 0.099 0.188 YES 0.036 0.059 YES 

  20 0.434 0.498 YES 0.592 0.690 YES 

  40 0.537 0.578 YES 0.776 0.834 YES 

  60 0.588 0.624 YES 0.838 0.882 YES 

  1000 0.658 0.686 YES 0.918 0.946 YES 

 100 5 0.104 0.209 YES 0.065 0.123 YES 

  20 0.540 0.584 YES 0.755 0.824 YES 

  40 0.669 0.694 YES 0.906 0.934 YES 

  60 0.690 0.712 YES 0.939 0.960 YES 

  1000 0.781 0.802 YES 0.98 0.984 NO 

Note: ICC = intraclass correlation, NB = number of clusters, CS = cluster size, TP = yes 

positive rate, FREE = model with unconstrained factor loadings, INV = model with 

constrained factor loadings across levels, Δ sign  = YES/NO indicates if the rates differ across 

the FREE and INV model as tested with McNemar’s test for dependent proportions with α = 

0.05/(40 conditions*6 outcomes). Results are based on converged replications only. Cells 

from conditions that show results in the unexpected direction are marked italic (mainly CS=5 

conditions) 
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Appendix B:  True positive rates from only the replications without warnings 

True positive rates of direct effect 

 

True positive rates of the indirect effect 

 


