Effect of channelling on the concentration of bulk-phase intermediates as cytosolic proteins become more concentrated

Kholodenko, B.N.; Westerhoff, H.V.; Cascante Marin, A.M.

DOI
10.1042/bj3130921

Publication date
1996

Published in
Biochemical Journal

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Effect of channelling on the concentration of bulk-phase intermediates as cytosolic proteins become more concentrated

Boris N. KOLODENKO,*† Hans V. WESTERHOFF‡§ and Marta CASCANTE†||

*B. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia, †Department de Bioquimica i Fisiologia, Universitat de Barcelona, Marti i Franqueses 1, Barcelona, Spain, ‡E. C. Slater Institute, Biocentrum, University of Amsterdam, Plantage Muidergracht 12, Amsterdam, The Netherlands and §Department of Microbial Physiology, Free University, De Boelelaan 1867, NL-1081 HV Amsterdam, The Netherlands

This paper shows that metabolic channelling can provide a mechanism for decreasing the concentration of metabolites in the cytoplasm when cytosolic proteins become more concentrated. A metabolic pathway in which two sequential enzymes can form a dynamic complex catalysing the direct transfer of an intermediate is compared with the analogous pathway lacking a channel (an ‘ideal’ pathway). In an ideal pathway a proportional increase in protein content does not result in a change in the steady-state concentration of the bulk-phase intermediate, whereas in a channelling pathway the bulk-phase intermediate either decreases or increases depending on the elemental rate constants within the enzyme mechanisms. When the concentrations of the enzymes are equal, the pool size decreases with increasing protein concentration if the elemental step depleting the bulk-phase intermediate exerts more control on its concentration than the step supplying the intermediate. Results are illustrated numerically, and a simplified dynamic channel is analysed in which the concentration of the enzyme–enzyme complex is negligible compared with the monomeric enzyme forms. For such a ‘hit-and-run’ channel it is shown that, when the product-releasing step of the enzyme located upstream is close to equilibrium, the pool size decreases as the concentrations of the enzymes increase in proportion, regardless of the rate, equilibrium constants and concentration ratios of the two sequential enzymes.

INTRODUCTION

The term metabolic channelling has been introduced to describe the mechanism whereby the reaction product of one enzyme is transferred to the next enzyme without mixing with the bulk-phase pool (for reviews see refs. [1,2]). Hand in hand with such a direct transfer, there usually exist reaction routes that allow some of the intermediate to enter the bulk phase [1–4]. Consequences of metabolic channelling on the concentrations of bulk-phase metabolites (pool sizes) have been the subject of intensive studies [2,5–8]. To discover whether channelling can specifically affect pool size, the effect of a parameter change enhancing the direct transfer flux in a channelled pathway can be compared with the effect of the same parameter change in the corresponding pathway lacking the channel. A pathway in which two enzymes form a complex (E[XE]) capable of channelling the intermediate (the dynamic channel [9–12]; Figure 1, top) and the same pathway without such complex-formation (Figure 1, bottom) can serve as a test system to examine this question [6–8].

In the present paper we apply a powerful method developed [13,14] within the framework of Metabolic Control Analysis ([15,16], see ref. [17] for a review) to examine how the concentration of the bulk-phase intermediate and the flux through a channel vary when the concentrations of the enzymes that constitute the channel are increased in proportion. The results suggest that, whereas the channelled flux increases with protein content, the bulk-phase pool can either increase or decrease depending on the elementary rate constants within both enzyme mechanisms. The paper shows that for some Gibbs energy profiles of the enzyme reactions, channelling of the intermediate provides a mechanism for decreasing bulk-phase pool size.

RESULTS

At very low enzyme concentrations when the fraction of the flux through a channel is almost zero, the two pathways in Figure 1 have almost the same flux and sustain the same concentration of the bulk-phase metabolite (X). A natural way of enhancing channelling is to increase the concentrations of the two directly interacting enzymes and hence the concentration of their complex (E[XE]). An equal relative change in both enzyme concentrations is a type of parameter adjustment that does not affect the pool of intermediate X in the pathway lacking the channel at all (Figure 1, bottom). However, these changes do affect the free metabolite pool in the dynamic channel of Figure 1 (top) [18,19].

To answer the question of how pool size is affected by such a proportional increase in enzyme concentrations, we shall rephrase it in terms of Metabolic Control Analysis: what does the sum of the enzyme control coefficients with respect to pool size amount to? The control coefficient (C) of an enzyme (i) over any steady-state flux (J) or pathway intermediate concentration (X) describes how J or X will change after a small change in enzyme concentration (e).

A strict mathematical definition is given by [15,16]:

\[
C_i^J = \left(\frac{dJ}{dJ}/d(e_i)\right)_s = \left(\frac{dJ}{d\ln e_i}\right)_s
\]

\[
C_i^X = \left(\frac{dX}{d\ln e_i}\right)_s
\]

where subscript s.s signifies that the derivatives of the flux and the concentration are taken at the steady state of a pathway.

In an ideal pathway (as in Figure 1 for example), in line with the lack of effect of a proportional increase in the enzyme concentrations on the intermediate pool, the sum of the enzyme control coefficients over this pool equals zero (the summation theorem [15,16]). For channelled pathways, new summation theorems have been derived [13,20–22]. When the concentrations of the two enzymes in Figure 1 (top) are equal (e_s = e_p = e), the sum of the enzyme control coefficients with respect to the intermediate pool (X) is proportional to the sum of the elemental...
The concentrations of the initial substrate, S, and the end product, P, are constants. X is the intermediate in the bulk phase. The positive direction of the flux \(J \) is from S to P. (Top) The enzyme–enzyme complex \(E_1X \) is formed after binding the substrate S to \(E_1 \). The upper route represents the usual reaction pathway through the bulk-phase intermediate, catalysed by free enzymes, and the lower route represents the channelling. The numbering of the elemental steps is shown.

Figure 1 Representation of (top) Dynamic channel and (bottom) the analogous ‘ideal’ pathway lacking the channel

The concentrations of substances (e.g. \(X, E, XE, E_1X \)) are designated by the same symbols as the substances themselves. \(J \) is the total flux and \(J_{\text{chan.}} \) denotes the flux through the channel. \(C_i^f \) and \(C_i^r \) are the control coefficients of enzymes 1 and 2 with respect to X, as defined by eqn. (1), and \(C_2^f \) and \(C_2^r \) are the elemental control coefficients of steps 2 and 3 defined in terms of identical relative modulation of forward and reverse rate constants [13,14]:

\[
\frac{\text{dln } X}{\text{dln } e} = C_i^f + C_i^r = \frac{J_{\text{chan.}}}{J} \times \frac{(C_i^f + C_i^r)}{(1 + E_1XE_2/e)}
\]

(2)

Here and below the concentrations of substrates (e.g. \(X, E, XE \)) are designated by the same symbols as the substances themselves. \(J \) is the total flux and \(J_{\text{chan.}} \) denotes the flux through the channel. \(C_i^f \) and \(C_i^r \) are the control coefficients of enzymes 1 and 2 with respect to X, as defined by eqn. (1), and \(C_2^f \) and \(C_2^r \) are the elemental control coefficients of steps 2 and 3 defined in terms of identical relative modulation of forward and reverse rate constants [13,14]:

\[
C_i^f = \frac{(\text{dln } X/\text{dln } k_{+i})_{X=0}}{k_{+/k_{-i}}} = \text{constant}
\]

(3)

Such a simultaneous modulation of the forward \((k_{+i}) \) and reverse \((k_{-/i}) \) rate constants of elemental step \(i \) by the same factor does not violate microscopic reversibility [23].

In either pathway of Figure 1 the total flux will increase with the proportional increase in enzyme concentrations. For the channelled pathway the increase in total flux is accompanied by an increase in flux through the channel because the enzyme–enzyme complex is formed [13]. Eqn. (2) shows that whether the pool size increases, remains constant or decreases depends on whether the sum of the elemental control coefficients of steps 2 and 3 is greater than, equal to or smaller than zero. Step 2 supplies, whereas step 3 consumes, the bulk-phase intermediate X. Therefore, normally, \(C_i^f \) is positive and \(C_i^r \) is negative. As a consequence, the sign of their sum \((C_i^f + C_i^r) \) depends on whether step 2 or step 3 is more limiting. Hence, whether the pool concentration X increases or decreases as cytosolic enzymes become more concentrated depends on the magnitudes of the kinetic constants within the enzyme mechanisms, as these ultimately determine the control coefficients.

When is the sum of the enzyme control coefficients over X negative or positive? A little bit of algebra

One of the fundamental concepts of Metabolic Control Analysis is that the control exerted by enzymes is determined by their elasticities rather than by their relative distances from equilibrium [15–17]. The elasticities of enzyme reactions cannot be determined via the Gibbs energy differences of these reactions. They depend on (phenomenological) kinetic parameters such as Michaelis constants, allosteric constants, etc. However, at the level of the elemental steps within enzyme mechanisms, i.e. the level at which the dynamic channel is considered here, the relation between the elasticities \((\epsilon^f) \) of the steps and the Gibbs energy differences \((\Delta G) \) across steps is straightforward [23]:

\[
\epsilon_i^f = v_i^+ / v_i^- = 1/(1 - e^{\Delta G_i/RT}), \epsilon_i^r = -v_i^- / v_i^+ = 1/(1 - e^{-\Delta G_i/RT})
\]

(4)

Here \(\epsilon_i^f \) and \(\epsilon_i^r \) are the elasticity coefficients of any step \(i \) of the dynamic channel with respect to its substrate \((y) \) and product \((z) \), \(v_i^+, v_i^- \) and \(v_i \) are the rates in the forward and reverse directions and the net rate of step \(i \) respectively, \(\Delta G_i \) is the chemical potential of the product(s) minus the chemical potential of the substrate(s) of step \(i \).

The elemental control coefficients \((C_i^f \) and \(C_i^r \) of steps 2 and 3 are related to their elasticities through the connectivity theorem (as applied at the level of the elemental steps [14,22,23]):

\[
C_i^f e_i^f + C_i^r e_i^r = -1
\]

(5)

Using eqns. (4) and (5) one may conjecture that when step 2 is near equilibrium \((\Delta G_i \text{ is close to zero}) \) and step 3 is far from equilibrium \((\Delta G_i \gg RT) \), the control exerted by step 3 is substantial and the control exerted by step 2 is small. From eqn. (2) one can conclude that, in such cases, the pool size decreases and the channel flux increases with an increase in enzyme concentrations.

To illustrate this conjecture we simplify the dynamic channel in Figure 1(a) to a ‘hit-and-run’ channel in which the concentration of the ternary complex, \(E_1XE_2 \), is negligible (see ref. [8]). In such a simplified channel the conversion of \(E_1X \) to \(E_2P \) is a single step (step 5 in Figure 2). Similar thermodynamic restrictions apply to both models of a dynamic channel, i.e. \(K_{eq,i}K_{eq,2} = K_{eq,5}K_{eq,6} \) for the channel in Figure 1 (top) and \(K_{eq,i}K_{eq,2} = K_{eq,5} \) for the ‘hit-and-run’ channel in Figure 2 (\(K_{eq,i} \) is the equilibrium constant of step \(i \)). These restrictions on the possible magnitudes of the rate constants reflect that, for any channel, the Gibbs energy change for each branch must be identical. Note that the ‘hit-and-run’ channel of Figure 2 can be considered as the limiting case of the dynamic channel of Figure 1 (top) when the rate constants \(k_2^- \) and \(k_2^+ \) are increased by the same factor (leaving the product \(K_{eq,5}K_{eq,6} \) unaffected).

Let us consider the ‘hit-and-run’ channel (Figure 2) for the case when the activation barrier for step 2 is so low, and hence its rate constants are so high compared with other steps, that step 2 is near equilibrium, whereas steps 1, 3, 4 and 5 are further away from equilibrium. Under such conditions the ratio of the
negative if, and only if, the sum of the enzyme control coefficients from S to P. Therefore eqn. (9) shows that the sum of the enzyme control coefficients, one obtains [13,25]:

\[C'_i + C'_j = 1 + C'_k \] \(\text{(10)} \)

\(C'_i \) is the (elemental) control coefficient of channel step 5. In a 'hit-and-run' channel, sequestration of enzymes by the formation of the enzyme-enzyme complex is negligible (see refs. [26,27]). From this it is already intuitively clear that the total flux will always increase with the activity of the channel step, i.e. \(C' > 0 \).

One can also prove the latter inequality by applying the summation and connectivity theorems to the elemental control coefficients [14,22,23]. Taking into account that the control coefficient of near-equilibrium step 2 can be neglected in comparison with the control coefficients of the other steps and using the branch (summation) theorem [28], one can write:

\[C'_2/C'_3 = (J - J_{\text{chan}})/J_{\text{chan}} \]

For thermodynamic reasons, the fluxes through the branches should flow in the same direction. As a consequence, \(C'_2 \) and \(C'_3 \) must have the same sign (i.e. both are positive or negative).

Further, from the connectivity theorem with regard to \(E_i \), it follows that \(C'_3 \) must have the same sign as \(C'_2 \) and \(C'_3 \), and from the connectivity theorem with regard to \(X \) it follows that \(C'_2 \) also has the same sign. As the sum of all the (elemental) control coefficients over the flux \(J \) is equal to 1, each term must be positive. Hence \(C' \) is greater than 0, and the sum in eqn. (10) is greater than 1. Therefore the sum of the enzyme control coefficients over the pool concentration \(X \) is negative under the conditions considered [see eqn. (9)]. Thus we have shown that, for some kinetic properties of the enzymes forming the channel, the pool concentration \(X \) decreases with an increase in protein concentrations and therefore with channelling (see also Appendix B).

It is instructive to consider also an 'opposite' case in which step 3 (rather than step 2) is near equilibrium. When all the other steps (1, 2, 4 and 5) are further away from equilibrium, step 3 is not limiting and its control coefficients are close to 0. Similarly to the above, one can obtain the following relationship between the sum of the enzyme control coefficients with respect to the flux \(J \) and the corresponding sum with respect to the concentration \(X \):

\[C'_2/C'_3 = 1 + f\ast(C'_2 + C'_3) \]

where

\[f\ast = (k_{-1} + k_{-4}P) \times E_i \times E_j \times X/Je \]

(11)

The factor \(f\ast \) is positive for positive \(J \), i.e. for positive values of the thermodynamic driving force. Therefore, in contrast with the previous case, the sum of the enzyme control coefficients over \(X \) is positive when the sum of the enzyme control coefficients over the pathway flux is greater than 1. Using the summation and connectivity theorems it is readily shown that, for this case also \(C'_2 > 0 \). Then from eqns. (10) and (11) it follows that the total control exerted by enzymes on the flux exceeds 1 and the control exerted on \(X \) is positive. Moreover, from the above proofs one can see that, for a 'hit-and-run' channel, a simplifying assumption, i.e. that the enzyme concentrations are equal (which was used for the more general case of dynamic channelling) can be relaxed provided that these concentrations increase at a constant ratio \(e_i/e_j = \text{constant} \).
We conclude that, when the protein concentrations in the ‘hit-and-run’ channel (Figure 2) increase proportionally (at any \(e_1/e_2\) ratio), the concentration of the bulk-phase intermediate will increase if step 3 is near equilibrium and decrease if step 2 is near equilibrium. Most importantly, this conclusion does not depend on the rate constants of steps that are not near equilibrium. Therefore it does not depend on which enzyme exerts more control on the flux (or which reaction, \(S \rightarrow X\) or \(X \rightarrow P\), is closer to thermodynamic equilibrium).

Numerical illustrations

For the dynamic channel of Figure 1 (top), Figure 3 shows the sums of the control coefficients of the enzymes (solid line) and of steps 2 and 3 (dashed line) with respect to the pool concentration \(X\) for the case in which step 3 is more limiting. One can see that the sum of the enzyme control coefficients approaches zero at very low enzyme concentrations. In line with eqn. (2), it assumes negative values if, and only if, the sum of the elemental control coefficients of steps 2 and 3 does the same. These negative values imply that the concentration of the intermediate \((X)\) decreases with increasing total enzyme concentration. For the same case, Figure 4 compares the behaviour of the bulk-phase intermediate \((X)\) for the two pathways of Figure 1. In the channelled pathway the free intermediate concentration decreased with increasing enzyme concentration, whereas in the same pathway lacking the channel it remained constant (Figure 4, top). Moreover, the concentration of all species in the bulk phase including the enzymes also decreased (Figure 4, top), possibly enhancing the solvent capacity of the cytoplasm. The inset to Figure 4, top shows that, with a further increase in enzyme concentration, the free intermediate concentration \((X)\), which starts above 70 (\(\mu\)M), decreases to less than 1.

The simulations show that, as long as the activation barriers of steps flowing to the branch points (steps 1 and 3 of Figure 1, top) are significantly higher than the activation barrier of any step (2 and 4) flowing away from these points, changes in particular values of the equilibrium constants of the enzymes have little if any effect on pool-size behaviour when enzymes become more concentrated.

The present demonstration was not for constant total flux. However, in all cases the total flux can be maintained constant by simultaneous equal modulation of all rate constants in addition to the modulation of total protein concentration. Indeed, such a modulation leaves all pathway concentrations unchanged and affects only pathway fluxes [13,29]. Consequently our results are also relevant for the constant-flux condition. Figure 4 (bottom) confirms this by plotting the bulk-phase pool size versus the total flux through either pathway. The inset to Figure 4 (bottom) shows how pool size depends on the flux fraction flowing through the channel.

For the dynamic channel of Figure 1 (top) the case of equal concentrations of the two enzymes was examined. Using eqn. (A3) one can show that the condition in which pool size \((X)\) falls with a proportional increase in enzyme concentration remains valid if the concentration of the second enzyme exceeds the concentration of the first. Although \(X\) decreases with an increase in \(e_2\) only, it continues to decrease when both \(e_1\) and \(e_2\) increase in proportion.

DISCUSSION

The suggestion that channelling can provide a mechanism for decreasing the concentration of bulk-phase intermediates has caused a flurry of discussions [2,6–8]. To elucidate the topic, the present paper applies a new method of Metabolic Control Analysis. This method descends to the level of the elemental
processes within the enzyme mechanism, then returns to the enzyme reactions (for a recent review see ref. [30]). The results show that channelling may cause either a decrease or an increase in pool size when compared with an analogous pathway lacking a channel. The behaviour of the bulk-phase intermediate when the enzymes become more concentrated strongly depends on the absolute values of the rate constants (i.e. on the activation barriers) of elemental steps located upstream and downstream of the branch points rather than on the standard Gibbs energy differences across those steps. As mentioned above, simultaneous equal relative changes in all the (elemental) rate constants do not alter any of the concentrations, whereas they do affect the pathway flux. Therefore our results imply that the channelling pathway and the same pathway without the channel may have the same flux (although the enzyme concentrations in the pathways differ), but pool size and even the concentrations of all the species is smaller in the case of channelling. Specifically, when the elemental step supplying the bulk-phase intermediate is sufficiently fast and the concentration of a dynamic enzyme–enzyme complex is much smaller than that of monomeric forms, the concentration of the bulk-phase intermediate decreases as enzymes become more concentrated.

Constraints on the possible kinetic advantage of channelling have been identified by Easterby [5]. If the two enzymes of a channel are embedded within a larger pathway, an increase in their concentrations may not result in an appreciable increase in the pathway flux. Under these conditions and at high concentration of enzyme 2, there was little if any reduction in total pool size in the channelled compared with the non-channelled case, as both the free and channelled pools are minimized [5].

At high enzyme concentrations any reduction in free intermediate (X) might be offset by an increase in bound X [5]. Whether this takes place depends on the particular values of the elemental rate constants within a channel and on the range of protein concentrations. Figure 4 (top) shows that, for some kinetic constants, total (free + bound) X decreased with increasing enzyme concentration, in an appreciable range of the latter.

Effects of high protein concentrations on metabolic channelling considered in this paper are of importance for extrapolation of information obtained in vitro to the situation in vivo. High concentrations of enzymes are commonly found in vivo where they can greatly exceed metabolite concentrations [31]. For these conditions channelling can provide a mechanism for decreasing pool size. Here the phenomenon of macromolecular crowding [32–34] may play a key role. An increase in total protein concentration reduces the effective solvent volume. Macromolecular crowding then increases the apparent effective concentrations of enzymes (resulting from an increase in their thermodynamic activities) much more than those of low-molecular-mass metabolites, in some cases to dramatic extents [32–34]. Under conditions of macromolecular crowding therefore a relatively small increase in the concentrations of two particular enzymes forming a channel may result in quite a significant decrease in pool sizes of small intermediate molecules. For organisms that are subject to transient changes in cytoplasmic water content, because of changes in the environment, this may be important.

We are grateful to the anonymous reviewers whose comments helped to improve the manuscript. This work was supported by the Comisionat per a Universitats i Recerca de la Generalitat de Catalunya, by Fondo de Investigaciones Sanitarias FIS 941086 and by the Netherlands organization for Scientific Research (NWO).

REFERENCES

APPENDIX A

We shall apply to the channelled pathway of Figure 1(a) the approach developed for an arbitrary ‘non-ideal’ pathway [1–3]. Let, in the initial steady state of the dynamic channel, the concentrations of E-containing species, i.e. E, E, E and E, be increased by a factor λ. Simultaneously one decreases the forward and reverse rate constants (k, and k,) of the elemental steps 1, 2, 5 and 6 (in which E-containing species participate) by the same factor (λ). Then the pathway attains a new steady state, in which all the rates (e.g. the flux J) and the concentration of the bulk-phase intermediate (X) retain their initial (unperturbed) values. However, some parameters, i.e. the rate constants (k, , k, , i = 1, 2, 5, 6) and the total enzyme concentrations (e, and e,).
differ between the original and the new steady state. The new values of these parameters are related to the original values through:

\[k_{i+}(\lambda) = k_{i+}/\lambda, \quad k_{i-}(\lambda) = k_{i-}/\lambda, \quad i = 1, 2, 5, 6 \]

\[e_i(\lambda) = E_i(\lambda) + E_i(X(\lambda) + E_iXE_{i-\lambda}(\lambda) = \lambda e_i \quad (A1) \]

\[e_i(\lambda) = E_2 + E_2 P + E_iXE_{i-\lambda}(\lambda) = e_2 + (\lambda - 1)E_iXE_{i-\lambda} \]

The concentrations of different enzyme forms (e.g. \(E_i, E_j, X_i, E_iXE_{i-\lambda} \)) are denoted by the same symbols as the forms themselves.

Taking into account that the steady-state concentration \(X \) is a unique function of the parameters \(k_{i+}, k_{i-}, e_i \) and using eqn. (A1) and the definitions [eqns. (1) and (3)] of the main text, one may write:

\[\text{dln } X/\text{dln } \lambda = C_{i+} + (C_{i+}X_iE_iXE_{i-\lambda}/e_i) - (C_{i+}X_i + C_{i+}X_i + C_{i+}X_i) = 0 \quad (A2) \]

On an analogous perturbation of all the \(E_i \)-containing species and rate constants \(k_{i+}, k_{i-}, i = 3, 4, 5, 6 \), one arrives at an equation system relating the enzyme control coefficients to the control coefficients of the elemental steps:

\[C_{i+} + (C_{i+}X_iE_iXE_{i-\lambda}/e_i) = (C_{i+} + C_{i+}X_i + C_{i+}X_i) \quad (A3) \]

\[C_{i+}X_iE_iXE_{i-\lambda}/e_i + C_{i+} = (C_{i+} + C_{i+}X_i + C_{i+}X_i) \]

For the case where the total concentrations of the two enzymes are equal \(e_i = e_i = e \), one may sum the two equations (A3) to obtain (see ref. [4]):

\[C_{i+}X_i + C_{i+}X_i = (C_{i+} + C_{i+}X_i)/(1 + E_iXE_{i-\lambda}) \quad (A4) \]

Here we assumed that the sum of the control coefficients with respect to \(X \) over all the elemental steps equals 0 [5]:

\[C_{i+}X_i + C_{i+}X_i + C_{i+}X_i + C_{i+}X_i = 0 \quad (A5) \]

The relative contribution of the channelled and unchannelled steps to the control of \(X \) is quantified by the branch theorems [6]:

\[(C_{i+}X_i)/J_{chan} = (C_{i+}X_i)/(J - J_{chan}) \quad (A6) \]

where \(J_{chan} \) denotes the flux through the channel. Using eqns. (A4) and (A6) one arrives at eqn. (2) of the main text. Taking into account eqn. (A5), one can obtain an expression equivalent to eqn. (2), but now expressing the sum of the enzyme control coefficients in terms of the elemental control coefficients of steps 1 and 4:

\[C_{i+}X_i + C_{i+}X_i = -(J_{chan}/J)(C_{i+}X_i)/(1 + E_iXE_{i-\lambda}) \quad (A7) \]

A comparison of eqns. (2) and (A7) helps us to understand the conclusion of the main text about the distribution of the control between the steps that result in a decrease in pool size concomitant with a proportional increase in enzyme concentration.

REFERENCES

APPENDIX B

This Appendix gives direct proof that, in a ‘hit-and-run’ channel, the pool size can decrease when enzyme concentrations increase proportionally. In order to avoid algebra that is too complex, the case is considered when steps 2 and 4 are near equilibrium and steps 1, 3 and 5 are not at equilibrium (hence steps 2 and 4 are not limiting).

Quasi-equilibrium conditions for steps 2 and 4 determine the concentrations of the enzyme intermediates as follows:

\[E_1 = e_2/(1 + X/K_{eq,1}), \quad E_1 X = e_2(X/K_{eq,1})/(1 + X/K_{eq,1}), \]

\[E_2 = e_2/(1 + P/K_{eq,2}), \quad E_2 P = e_2(P/K_{eq,2})/(1 + P/K_{eq,2}) \quad (B1) \]

Here \(e_1 \) and \(e_2 \) are the enzyme concentrations, \(X \) and \(P \) are the concentrations of the bulk-phase intermediate and the (ultimate) product respectively and \(K_{eq,1} \) and \(K_{eq,2} \) are the equilibrium constants of steps 2 and 4. Using eqn. (B1) one obtains the following expressions for the rates of steps 1, 3 and 5:

\[v_1 = e_1(k_{+1}X/K_{eq,1})/(1 + X/K_{eq,1}) \]

\[v_3 = e_2(k_{+3}X/k_{-3}P/K_{eq,2})/(1 + P/K_{eq,2}) \quad (B2) \]

\[v_5 = e_2(k_{+5}X/K_{eq,5} - k_{-5}P/K_{eq,5})/(1 + X/K_{eq,5})(1 + P/K_{eq,5}) \]

After the substitution of eqn. (B2) into the steady-state relationships for the elemental rates:

\[v_1 = v_2 + v_3 \quad (B3) \]

the concentration of the bulk-phase intermediate (\(X \)) is uniquely determined as a function of enzyme concentrations and rate constants. When the enzyme concentrations \(e_1 \) and \(e_2 \) increase proportionally with one another, the ratio \((e_2/e_1) = \rho \) is clamped, i.e.:

\[e_1 = e \text{ and } e_2 = \rho e \quad (B4) \]

Substituting eqn. (B4) into eqns. (B2) and (B3) and differentiating eqn. (B3) with respect to \(e \), one obtains:

\[dX/\text{d}e = \rho e_2 \left[(1 + P/K_{eq,2})/(e_1 + P/K_{eq,2}) \right] \left[(e_2/K_{eq,2})/(e_1 + P/K_{eq,2}) \right] \]

Using eqn. (B2) one can see that the partial derivative \((\partial v_i/\partial X) \) of rate \(v_i \) with respect to \(X \) is negative, whereas such derivatives of rates \(v_2 \) and \(v_3 \) (\(\partial v_2/\partial X \) and \(\partial v_3/\partial X \)) are positive. Then, from eqn. (B5) it follows that \(dX/\text{d}e \) is negative (for positive flux through the channel, i.e. for positive values of the thermodynamic driving force).